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Abstract
Background: Comparative analysis of expression microarray studies is difficult due to the large
influence of technical factors on experimental outcome. Still, the identified differentially expressed
genes may hint at the same biological processes. However, manually curated assignment of genes
to biological processes, such as pursued by the Gene Ontology (GO) consortium, is incomplete
and limited. We hypothesised that automatic association of genes with biological processes through
thesaurus-controlled mining of Medline abstracts would be more effective. Therefore, we
developed a novel algorithm (LAMA: Literature-Aided Meta-Analysis) to quantify the similarity
between transcriptomics studies. We evaluated our algorithm on a large compendium of 102
microarray studies published in the field of muscle development and disease, and compared it to
similarity measures based on gene overlap and over-representation of biological processes assigned
by GO.

Results: While the overlap in both genes and overrepresented GO-terms was poor, LAMA
retrieved many more biologically meaningful links between studies, with substantially lower
influence of technical factors. LAMA correctly grouped muscular dystrophy, regeneration and
myositis studies, and linked patient and corresponding mouse model studies. LAMA also retrieves
the connecting biological concepts. Among other new discoveries, we associated cullin proteins, a
class of ubiquitinylation proteins, with genes down-regulated during muscle regeneration, whereas
ubiquitinylation was previously reported to be activated during the inverse process: muscle
atrophy.

Conclusion: Our literature-based association analysis is capable of finding hidden common
biological denominators in microarray studies, and circumvents the need for raw data analysis or
curated gene annotation databases.
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Background
The comparative analysis of expression microarray studies
can refine conclusions and interpretations from individ-
ual studies and can be used to identify previously unchar-
acterized parallels between studies [1,2]. However, such
analyses are hampered by the large influences of biologi-
cal variation between specimens (see e.g. Eid-Dor et al.
[3]), and technical differences between the studies [4-9]
on the identified differentially expressed genes. The vary-
ing technical factors include: differences in experimental
procedures for the collection of the biological material
and for RNA amplification and labeling [8], differences in
sampling times and the DNA microarray platform used
(see Kuo et al. [9] for a recent platform comparison), and
the applied statistical analysis [6].

To overcome this hurdle, it has been suggested that stud-
ies should be compared at the level of perturbed biologi-
cal processes [10,11]. This could be more robust as
different genes may hint at the same process. To identify
perturbed biological processes, methodologies have been
developed in recent years by analysis of the correlated
behaviour of groups of genes with a similar biological
function [11-13]. A limitation when using these
approaches is that to identify which genes share a biolog-
ical function, we are currently largely dependent on the
ontology-based annotation of genes in manually curated
databases. Due to the labor intensive manual curation
effort, these databases are necessarily highly focused and
notoriously incomplete (see e.g. Khatri et al. [14]). The
best known public databases are the Gene Ontology (GO)
annotation project [15] for biological process, molecular
function and cellular localization, and KEGG [16] for
metabolic pathways.

In the present study we introduce an approach to compare
expression profiling studies based on perturbed biological
processes. Instead of using manually curated gene annota-
tion databases we base our approach on gene associations
automatically derived from literature. To identify gene
associations, concept profiles are generated for all genes
[17]. A concept profile is a weighted list of biological con-
cepts that characterizes the set of documents associated to
a gene. Subsequently concept profiles are compared to
identify gene associations: pairs of genes strongly associ-
ated to the same biological concepts. Finally, DNA micro-
array datasets are compared based on the observed
number of gene associations between the sets of differen-
tially expressed genes. We call our approach LAMA (Liter-
ature-Aided Meta-Analysis).

We evaluate our methodology on a compendium of 102
DNA microarray studies published in the field of muscle
development and disease, and compare it to analyses
based on gene overlap and the classical group overrepre-

sentation analysis. The compendium contains a very
diverse set of datasets: patient versus control studies for
different myopathies; studies in animal disease models
and studies in cultured muscle cells. The studies were per-
formed on 22 different microarray chip types, and in three
different organisms: human, mouse and rat. The consider-
able influence of the statistical analysis on the identified
differentially expressed genes [6], indicates that, ideally, a
standardized statistical analysis should precede any com-
parison between datasets. Unfortunately, raw data is
required for such an analysis and they are often unavaila-
ble (see also Larsson et al. [2]). Therefore, we relied on the
reported lists of differentially expressed genes, which
should be useful for initial comparisons of microarray
studies [18,19] and, at least, were judged by the authors to
be biologically relevant. In our evaluation, we first take a
directed approach: we measured to which extent the
approaches could reproduce a manual clustering of a
selection of datasets. Second, we perform an exploratory
clustering of all datasets, and characterize and interpret
the identified clusters.

Results
Study selection and data retrieval
The 102 microarray datasets in the compendium are rep-
resented and annotated [see Additional file 1] and the
data underlying the analyses is included [see Additional
file 2]. The compendium was extracted from 53 publica-
tions and 6 in-house studies. The datasets include studies
on myoblast differentiation as an in vitro model for mus-
cle development and regeneration, studies on gene expres-
sion differences between different types of skeletal
muscles, skeletal muscle disease (including induced mus-
cular atrophy), the effect of exercise and ageing and the
treatment with drugs, growth factors or lipid infusion. The
compendium was limited to studies in human (N = 37),
mouse (N = 51), and rat (N = 13), but included one study
in monkey performed with a human DNA microarray
platform. To allow for a direct comparison of datasets
from different organisms, homologous genes were
mapped to each other according to the NCBI's homolo-
gene database [20].

Frequency of differential expression per gene
After mapping of species-specific Entrez Gene IDs to
Homologene, 8282 unique genes were identified as differ-
entially expressed in at least one microarray study. Figure
1 displays the distribution of the number of microarray
studies in which a gene was found differentially expressed.
The majority of genes (4486) was found differentially
expressed in only a single study. The distribution implies
that the overlap between studies is limited. Indeed, 84%
of the genes occur in 3 or less studies, but they represent
54% of the total number of occurrences. Spp1 coding for
osteopontin was the most frequently identified gene; it
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was found in 33 different studies described in 15 different
papers coming from 8 different laboratories. Spp1 was
upregulated in animal models for muscular dystrophy
and in human polymyositis and dermatomyositis, and
can be regarded as an early marker for muscle inflamma-
tion [21,22]. Conversely, it was found downregulated in
presymptomatic mdx mice and during atrophy. Ankrd1
and Postn were found in 32 different studies. Judged from
the studies in which Ankrd1 is differentially expressed,
Ankrd1 could be the most robust marker for muscular dys-
trophy with ongoing regeneration. Postn (periostin) was
differentially expressed in many of the studies in which
Spp1 was found. A similar co-regulation was found in the
heart and vasculature [23,24], and both factors are
involved in tissue remodelling [22,25,26].

Pair-wise analysis of similarity between DNA microarray 
datasets
First, we compared the DNA microarray studies to each
other based on gene identity. For every study, the genes
interrogated by the DNA microarray platform were sepa-
rated into three categories: upregulated, downregulated
and not up- or downregulated. With the kappa statistic
[27] we measured the chance-corrected level of agreement
in the three categories between two studies. By performing
a kappa statistic based test [28] we found that of the 5151
possible dataset pairs only 307 (6%) have an above
chance level of agreement (p < 0.05). This is in line with
our conclusion of limited overlap in the previous section.
Second, our LAMA method found significant associations
(p < 0.05) between 2732 (53%) pairs of studies, which
indicates that considerably more similarities between
datasets are identified with our text-derived gene associa-
tions than based on gene list overlap.

Third, we compared datasets based on over-represented
GO codes. We tested over-representation of biological
processes in the up and down lists of our datasets sepa-
rately with a cutoff of p < 0.05 (hypergeometric test). Sub-
sequently, we evaluated the similarity between datasets
with the kappa measure: Only 18% of the dataset pairs
had a significant overlap (p < 0.05), whereas 34% of
scores was very low (<0). The used GO over-representa-
tion p-value cutoff is overly permissive, as with the high
number of tests, we should correct for multiple testing.
But when we corrected for multiple testing (Benjamini
and Hochberg's method [29], same chance level), we
found not any over-represented GO code for 43 of the 102
studies. With this cut-off, 85% of the kappa scores was 0
or lower and only 212 dataset pairs (4%) had a significant
association at the 0.05 significance level. The poor overlap
between datasets is partly caused by the fact that it is less
likely to identify an over-represented GO code if the gene
list is small.

Reproduction of a manual clustering
To evaluate the performance of the methods, we
attempted to manually group the studies in the compen-
dium based on similarities in the studied biological phe-
nomena, before the start of the development of any new
methodologies, We recognized 7 groups for a subset of 50
studies: dystrophin-deficiency (human and mouse), dys-
ferlin-deficiency (human and mouse), myositis, regenera-
tion and differentiation, ageing, atrophy, and extraocular
muscle (EOM)-specific expression profiles (cf. the table in
Additional file 1). A classification experiment was per-
formed to evaluate to which extent the kappa and LAMA
association scores could reproduce 7 manually identified
clusters, using the area under the ROC curve (AUC) statis-
tic. Results are shown in figure 2. The performance varies
from near perfect scores for the ageing group to near ran-
dom classification performance for the "regeneration and
differentiation" and atrophy groups. Indeed, the latter
groups studied more diverse conditions. The LAMA
method performs better than the kappa for the dysferlin-
opathy, regeneration and ageing subgroups, though only
for the dysferlinopathy group a statistically significant
improvement is observed (p < 0.05; Wilcoxon rank test).
Conversely, the kappa performed better for the myositis
and the extraocular subgroups, but these differences are
not statistically significant. Both methods performed sim-
ilarly for the dystrophinopathy group.

The dysferlinopathy group has much higher classification
rates with LAMA than in the kappa analysis. The studies in
this group were more heterogeneous than the other
groups in several aspects: it contained human and mouse
studies, different mouse strains and differently aged mice,
and four different microarray platforms were used in the
six studies contained in this group. The human study that

Distribution of the number of microarray studies in which a gene was found differentially expressedFigure 1
Distribution of the number of microarray studies in 
which a gene was found differentially expressed. A 
total of 102 studies was included with 8282 unique differen-
tially expressed genes.
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compared limb-girdle muscular dystrophy (LGMD) type
2B patients to controls (dataset 16) was much better clas-
sified to the dysferlinopathy group with the LAMA based
approach than with the kappa based approach (AUC 0.73
vs 0.48). Datasets 16 (human) and 75a (dysferlin-defi-
cient SJL mice versus controls) have no differentially
expressed genes in common. Nevertheless, the LAMA
score is the lowest possible score given the number of
Monte Carlo simulations, which indicates there is a highly
significant over-representation of gene associations. We
identified "macrophage" as the most important shared
concept between dysferlin-deficiency in humans and
mice. Indeed, many of the identified associations are
between genes known to be expressed in macrophages
and macrophage infiltration is an important feature in
both the LGMD patients pathology and the mouse model
[30].

The slightly worse performance of the LAMA method in
the classification of the myositis studies was due to strong
associations with the group of dystrophinopathy studies.
The two groups were found connected through concepts
pertaining to inflammatory processes. This is reflective of
the pronounced inflammatory component in both dys-
trophinopathies [21,22,31-33] and myositis patients. For
the extraocular group the lower performance for LAMA is
explained by the comparatively poor scores between data-
sets 4a and both 14a and b, while datasets 4b, 14a and
14b had high pairwise scores. Dataset 4a only contains 13
genes up-regulated genes, which limits the power for the
LAMA analysis. The list shared only 2 genes with 14a and
b, but still the kappa score was comparatively high due to

the limited overlap overall. Classification for the GO-
based over-representation analysis (p < 0.05, no correc-
tion for multiple testing) showed poor results: perform-
ance was considerably worse than based on gene list
overlap for 5 of the 7 groups, a similar score was obtained
for the dysferlinopathy group and a slightly better score
for the ageing group. These results and a view on the
shared GO codes indicated the used test condition was
too lenient and spurious GO codes were assigned. Based
on these results and the poor results presented in the pre-
vious section, we do not discuss the clustering based on
the method here, but include the classification results and
the clustering as supplementary material [see Additional
file 3].

Classification of new studies
To demonstrate the utility of our approach for the inter-
pretation of gene lists from new experiments, we com-
pared to our manual grouping the gene lists from a recent
paper on dy/dy mice [34]. These mice have a muscular
dystrophy as a consequence of a genetic defect in alpha-2
laminin. Our LAMA-approach classifies this study with
high confidence in the dystrophinopathy group (AUC =
0.83). This is correct given the pathology of these mice
and the two genetic deficiencies affecting the same macro-
molecular protein complex. The shared biological con-
cepts between this dataset and a dataset from mdx mice
(dataset 1; [22]), were the infiltration of macrophages and
differential expression of collagens, metalloproteinases,
cathepsins, and HLA-antigens.

Dataset clustering based on kappa statistic
To get an overall view on the identified connections
between studies, a hierarchical clustering of the microar-
ray studies was performed using the kappa value as a sim-
ilarity score (figure 3). One big cluster (indicated as cluster
1) and several smaller clusters were identified. Cluster 1
contains comparisons of the gene expression profiles
between dystrophic subjects and healthy controls (dys-
trophin-deficient mdx mice (datasets 1, 7c-f, 42c-f, 19, 32
47, 51, 72a-f), dysferlin-deficient SJL mice (datasets 8,
39ab), patients with Duchenne muscular dystrophy
(DMD, datasets 11b, 15)), as well as studies in human
myositis patients (datasets 24a-c, cluster 1c). Similar to
our note on the LAMA classification in the previous sec-
tion, muscular dystrophy and myositis expression profiles
have considerable overlap. Some muscular dystrophy
studies unexpectedly fall outside cluster 1 and have only
limited overlap to the datasets in cluster 1 (dataset 16, 67,
75a). We believe this to be at least partly attributable to
technical factors. The color bars on the side of figure 3
illustrate that studies tend to cluster on microarray plat-
form or laboratory. For example, the similar studies in the
mdx mouse by Porter et al. (datasets 1, 7, and 42) and by
Haslett et al. (dataset 72) do not cluster in a way that

Performance for reproduction of the manual grouping by kappa (circles) and LAMA (squares)Figure 2
Performance for reproduction of the manual group-
ing by kappa (circles) and LAMA (squares). A star indi-
cates a statistically significant difference according to the 
Wilcoxon ranks test at the 0.05 level.
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makes sense biologically, that is by age and muscle type-
dependent severity of the disease. Instead they cluster by
laboratory (cluster 1a – Porter; cluster 1b – Haslett).

Apart from the large dystrophy/myositis cluster of studies,
there is only very limited overlap between the gene lists
from the studies, as expected based on the pair-wise anal-
ysis presented above. Cluster 2 contains two studies inves-
tigating the spared EOM muscle in dystrophin-deficient
mdx mice and the expression profiles of the diaphragm
and hind limb muscles of presymptomatic mdx mice.
Cluster 3 contains 4 highly overlapping studies (datasets
5b-d) from the same paper on developmental changes in
the EOM muscle. Again, clusters 2 and 3 contain only
studies done by the same group on the same platform.

Dataset clustering based on LAMA
The LAMA-based hierarchical clustering revealed more
clusters and significant associations than the kappa-based
clustering (figure 4). The side bars show that the LAMA-
based clustering is less governed by technical factors like
microarray platform and laboratory, and is better able to
connect studies investigating the same biological phe-

nomenon in different species or biological systems (cell
culture or tissue; see below). Cluster 2 shows large overlap
with cluster 1 in the kappa-based clustering, but contains
many more studies. This cluster now contains all the stud-
ies on affected muscles in symptomatic mdx mice, all
mouse models for LGMD, and all studies in human mus-
cular dystrophy, including DMD, LGMD, and facioscapu-
lohumeral dystrophy (FSHD), and myositis patients. The
myositis patient profiles are closely associated with mdx
mice of 23 days (dataset 42c) (subcluster 2b). We ana-
lysed the gene associations between dataset 24a (inclu-
sion body myositis) and dataset 42c and found that the
biological concept that contributes most to the associa-
tions is "chemokines". Indeed, at the analyzed age of 23
days the secretion of chemokines in the muscles of the
mdx mice is maximal [22].

Table 1 shows the biological concepts underlying the gene
associations in the different groups. For cluster 2, the most
prominent biological terms for the upregulated genes
were metalloproteinase activity (involved in extracellular
matrix remodeling during fibrosis) and troponins. Metal-
loproteinases and troponins have been identified before

Kappa-based hierarchical clustering and heatmapFigure 3
Kappa-based hierarchical clustering and heatmap. The dotted pink line indicates the used clustering cutoff and the iden-
tified clusters are indicated in addition to relevant subclusters. The dataset ids are shown between the tree and the heatmap. 
The colored bars provide background information on the datasets.
Page 5 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:291 http://www.biomedcentral.com/1471-2105/9/291
to be important in muscular dystrophy (e.g. [22,35,36])
and in muscle regeneration. Studies on muscle regenera-
tion are also included in cluster 2 (subcluster 2c). Remark-
ably, subcluster 2d contains all in vitro myoblast
differentiation studies, both in primary human myoblast
and in transformed mouse C2C12 myoblasts, whereas
only a very small number of genes overlapped between
the studies. As apparent from table 1, the concept "cullin
proteins" formed the most significant link between the
downregulated genes from studies on muscle regenera-
tion (datasets 21, 22, 50). Since cullin proteins are ubiq-
uitin ligases, it seems that ubiquitinylation is shut down
during regeneration. This is an interesting discovery since
ubiquitinylation activity was previously shown to be acti-
vated in the inverse condition, muscular atrophy [37,38].

Cluster 1 was not found by the kappa-based clustering.
Analysis of the underlying concept associations revealed
similarities between the molecular processes during
induced atrophy in cultured myoblasts (dataset 63) and in
vivo models for muscular atrophy, i.e. during hind limb
suspension or in space-flown rats (datasets 28a, 28b and

71). Amongst others, there is an interesting set of non-
overlapping members of the semaphorin family shared
between atrophy studies. Semaphorins are presumably
involved in cell-cell contacts in neuronal cells [39] (dur-
ing axon regeneration) but also in fusing myoblasts [40].
For cluster 1 we observe an increase in metabolic activity
(both glycolytic and fatty acid oxidation) and a downreg-
ulation of extracellular matrix proteins: These processes
seem to be revelant to age-related changes in EOM muscle
(datasets 5b-d; subcluster 1b), and diverse myopathies
mitochondrial encephelo myopathy (dataset 41), nema-
line myopathy (dataset 34), and oculopharyngeal muscu-
lar dystrophy (OPMD; dataset 57). Cluster 3 contains all
the ageing and sarcopenia studies. Interestingly, also a cell
model for over-expression of the polyadenylation factor
PABPN1 (also responsible for OPMD, dataset 35) is
found in this cluster. In this case, the differences in RNA
metabolism induced in the cell model aid the interpreta-
tion of the molecular phenotype observed in the ageing
studies. Differences in RNA processing and splicing dur-
ing ageing were also noted by the authors of the ageing
studies [41,42].

LAMA-based hierarchical clustering and heatmapFigure 4
LAMA-based hierarchical clustering and heatmap. The dotted pink line indicates the used clustering cutoff and identi-
fied clusters are indicated in addition to relevat subclusters. The dataset ids are shown between the tree and the heatmap. The 
colored bars provide background information on the datasets.
Page 6 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:291 http://www.biomedcentral.com/1471-2105/9/291
Discussion
The overlap between the gene lists of the microarray data-
sets in our compendium was limited, even though the
studied phenomena were closely related. In addition,
studies performed in the same laboratory or on the same
microarray platform were more likely to demonstrate
overlap than studies where more heterogeneous technol-
ogies and analysis approaches were used. The comparative
analysis of the datasets through literature-derived gene
associations resulted in the finding of many biologically
relevant associations, and was more biology- than tech-
nology-driven. Both the analysis of the hierarchical clus-
terings and the reproduction of the manual clustering
revealed that the LAMA method identified useful associa-
tions between datasets that were not retrieved by looking
at gene overlap. Our method found these associations
through correctly retrieved shared biological processes
between the datasets.

Standard exploratory analysis based on an over-represen-
tation analysis of GO categories was not very powerful for
our compendium, as shown by the lack of overlap
between studies and the poor classification results. In gen-
eral, the hypergeometric test will not often identify over-
represented GO categories when short gene lists are ana-
lyzed. Yet, our association-based method was still able to
find useful associations between datasets, even in cases
where not a single shared over-represented GO code was
found. Also, the associations we use cover a much broader

range than GO. Indeed, not all of the concepts in table 1
are covered by the GO thesaurus (e.g. leptin). In addition,
even if an appropriate GO term exists, it may not have
been assigned any genes yet (e.g., cullin deneddylation).

Our broad network of associations increases our sensitiv-
ity for identifying interesting associations between data-
sets. We chose to use associations derived from literature
to optimize for serendipity, but the network of associa-
tions could be taken from any source, including GO. An
important feature of this approach is that by modulating
the associations that are taken up in the network, the spe-
cificity and sensitivity of the found associations between
datasets can be controlled.

Tomlins et al. [43] performed an over-representation
analysis on gene lists representing the different stages of
prostate cancer and used identified over-represented gene
groups to compare the disease stages. The basis for their
analysis was a database of 14000 groups of genes that
share a relevant characteristic, or "molecular concept".
They do not report low recall or lack of overlap of over-
represented "molecular concepts". The likely explanation
is that their meticulous sample preparation and highly
standardized data generation and analysis avoided lack of
overlap at the gene level and short gene lists. Clearly
access to the raw data is commendable for exploratory
studies, and standardized data generation is extremely
useful given the high levels of variance observed with

Table 1: Characterizing concepts for clusters identified through LASSO analysis.

Cluster Subcluster Characteristic Biological Concepts (Up) Biological Concepts (Down)

1 overall Atrophy - Cyclins
1 1A Atrophy – PABPN1 overexpression Amino acyl tRNA synthetases, 

spermidine, polyamines, spermine, 
eukaryotic initiation factors

Platelet-derived growth factor, 
transforming growth factor-beta, insulin-

like growth factor binding proteins
1 1B EOM-specific Adipocytes, acyl CoA dehydrogenase Cyclins, keratin, cyclin-dependent kinases
2 overall Dystrophy/myositis Troponin, matrix metalloproteases Mitogen activated protein kinases, 

insulin, ERK1 acitivity, 
phosphorylation

2 2A Dystrophin defiency in EOM muscle Troponin -
2 2B Myositis Chemokine, chemokine receptor -
2 2C Regeneration T-lymphocyte, phosphotransferases, 

phosphorylation, mitogen-activated 
protein kinases, integrins, cell cycle

Cullin proteins, mitogen-activated 
protein kinases, ligase

2 2D Differentiation Troponin, tropomyosin, nemaline 
myopathies, sarcomeres, myosin heavy 

chain, calsequestrin

Inhibitor of differentiation proteins, E2F 
transcription factors, proteoglycan, cell 

cycle proteins
2 2E Ky-mutant/diverse Leptin, desaturase, myosin heavy chains, 

neural cell adhesion molecules
Mitogen-activated protein kinases

3 overall Ageing Heterogeneous nuclear 
ribonucleoproteins, protein 
sumoylation, small nuclear 

ribonucleoprotein

-

Concepts are shown separately for the down and up regulated gene lists. The column "Characteristic" gives a description of the studied phenomena 
in the cluster.
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microarray experiments. It should be noted though that,
besides the limited availability of raw data, the statistical
models for the analysis of the raw data are hard to stand-
ardize. The choice for a statistical model depends on the
design of the study, e.g. time course experiments or group
comparisons, and technical factors, such as whether a one
or two color microarray is used. Therefore perhaps the
strongest point of our approach is that even with a wide
range of study designs and statistical evaluations, across
various platforms and species, a useful and insightful
exploratory study was possible.

The issue of comparability between studies has been
addressed for meta-analyses with a different objective
than ours; the aggregation of information obtained from
different DNA microarray studies [44-47]. It has been sug-
gested that DNA microarray datasets could well be com-
pared by the use of rankings of genes based on the level of
significance of differential expression [47,48]. Indeed,
also GSEA, a current popular method to test whether a set
of genes is associated with the experimental variable is
based on gene rankings [11]. It would be an interesting
extension of the current work to use rankings in the data-
set comparisons. A rank-based approach could be adapted
to incorporate our text-based associations between genes.
Also in this case, information on the statistical ranks is,
however, frequently unavailable.

A limitation of the current LAMA analysis is that it relies
on simulations to derive a measure to compare datasets.
Simulations are computationally intensive, and have a
resolution proportional to and limited by the number of
performed iterations. The results presented here can be
considered a proof of the utility of our approach, and a
logical next step is to derive a model-based approximation
as an alternative to our simulation-based measure. This
would also avoid the necessity for the setting of a thresh-
old on the gene association score. The currently applied
threshold of 1% appears to be optimal [see Additional file
4]. When lowering the threshold, results will be more sim-
ilar to the kappa method, as identity relations will start to
dominate, whereas raising the threshold introduces noise
and spurious connections.

Conclusion
The compendium of studies showed limited overlap on
gene ids, and a bias towards higher overlap between stud-
ies with technical similarities. The over-representation
analysis based on GO categories was not very helpful in
comparing studies, due to limited sensitivity and the
incompleteness of the manually curated gene annota-
tions. Compared to these approaches LAMA provided
more biology- than technology-driven results and identi-
fied more biologically relevant associations between data-
sets. As the shared biological processes between studies

could also be easily recognized, we believe LAMA is a
powerful approach for the comparative meta-analysis of
DNA microarray datasets.

Methods
Data acquisition
In our meta-analysis, we included DNA microarray stud-
ies on skeletal muscle development and/or disease. The
compendium was limited to studies in human, mouse,
and rat. Studies were included till December 2005. From
each paper, lists of up- and downregulated genes were
extracted from the tables reported in the paper or in the
supplementary data. The compendium is not complete.
For some of the studies, data could not be retrieved and
requests for gene lists to the authors were unsuccessful.
Since a full list of genes interrogated by each platform was
essential for statistical analysis, studies on home-made
arrays for which this information was not available had to
be omitted as well. All probes on the array were mapped
to Entrez Gene IDs. To be able to compare gene lists from
the different organisms we mapped homologous genes to
each other based on NCBI's HomoloGene database [20].

Comparing DNA microarray experiments based on gene 
identity
The similarity between two datasets based on gene iden-
tity was measured using the kappa statistic [27]. Classi-
cally the kappa statistic is used to measure inter-rater
reliability. It is more robust than simple agreement scores
as it also takes agreement by chance into account. To use
this measure the DNA microarray experiments are consid-
ered to assign every gene on the microarray platform a tag:
upregulated, downregulated or the remainder category.
The kappa statistic is defined as

where P(A) is the proportion of times that the two exper-
iments give the same tag to a gene and P(E) is the expected
proportion of times that the experiments give the same tag
to a dataset. When calculating kappa we only consider the
genes that are present on both platforms. If the DNA
microarray datasets show identical results (P(A) = 1) then
κ = 1. If the agreement is close to the level of agreement
expected to occur by chance (P(A) ≈ P(E)) then κ ≈ 0.

Recognizing references to concepts in texts
The corpus of literature for our experiments consisted of
3,160,002 MEDLINE abstracts, selected with the PubMed
query "(protein OR gene) AND mammals". We used
titles, MeSH headings, and abstracts. Stop words were
removed and words were stemmed to their uninflected
form by the LVG normalizer [49]. We used a thesaurus to
identify concepts in texts. The thesaurus was composed of

k = −
−

P A P E
P E

( ) ( )
( )1
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two parts: the 2006AC version of the UMLS thesaurus [50]
and a gene thesaurus derived from multiple databases.
The gene thesaurus was a combination of gene names
from the rat genome database [51], mouse genome data-
base [52], and a human gene thesaurus from several data-
bases [53]. Homologous genes between the three species
were mapped to each other using NCBI's HomoloGene
database [20]. In order to exclude irrelevant concepts, two
molecular biologists created a list of UMLS semantic types
[see Additional file 5 for the complete list] relevant for
biological information about genes. All concepts with
other semantic types were removed from the thesaurus.
Following Aronson [54], the UMLS thesaurus was also
adapted for efficient natural language processing, avoid-
ing overly ambiguous or duplicate terms, and terms that
are very unlikely to be found in natural text. The gene the-
saurus was expanded by rewrite rules to take into account
common spelling variations [55]. For instance, numbers
were replaced with roman numerals and vice versa, and
hyphens before numbers at the end of gene symbols were
inserted or removed (e.g. "WAF1" was rewritten as "WAF-
1" and added as a synonym).

Concept profile methodology
For every gene in our thesaurus that we identified in at
least 5 documents, we characterized the documents in
which the gene occurs with a concept profile. A concept
profile of a concept i, for instance a gene, is an M-dimen-
sional vector wi = (wi1, wi2, , wiM) where M is the number
of concepts in the thesaurus. The weight wij for a concept j
in this profile indicates the strength of its association to
the concept i. The weights in a concept profile for concept
i are derived from the set of documents in which concept
i occurs, Di, which is a subset of the total set of documents
D.

To obtain the weight wij we apply the symmetric uncer-
tainty coefficient U (Xi, Yj) [56] as suggested and evaluated
earlier [57]:

Here the stochastic variable Xi defines whether a docu-
ment is in Di, and Yj gives the occurrence frequency of con-
cept j. The entropies H are defined as follows:

where O and Oi represent the number of concept occur-
rences in D and Di resp.; oj and oij represent the number of

occurrences of concept j in D and Di resp. The uncertainty
coefficient is a normalized variant of the mutual informa-
tion measure. The symmetric coefficient is the weighted
average of the two assymmetric uncertainty coefficients: 1.
the proportion of information in Y explained by knowl-
edge of X and 2. the proportion of information in X
explained by knowledge of Y.

Literature-based comparison of gene lists
The similarity of the concept profiles of two genes was
measured with the cosine similarity score [58]. If the sim-
ilarity score exceeded a threshold, then the two genes were
considered to have an association. For our experiments
here, we calculated the similarity score for all pairs of
genes for which a concept profile was available; the high-
est scoring 1% of pairs were taken as associations. A justi-
fication for the use of this threshold is given in the
supplementary material. Subsequently, the associations
are used to compare two gene lists. To do this, two gene
lists were considered as separate sets of nodes, and the
number of associations between the two were counted.
We assessed how uncommon the observed number of
associations was, by means of a distribution representing
unassociated genelists. This distribution was estimated
based on Monte Carlo simulations. For each simulation
we performed the following two steps: 1. For each gene
list we randomly selected a number of genes equal to the
size of the gene list. These genes were selected from the
genes present on the appropriate DNA microarray plat-
form for which we had a concept profile available. 2. The
number of connections between the two new gene lists
were counted. Using the empirical distribution we subse-
quently estimated the chance of observing the given
number of associations or more.

For each DNA microarray experiment we retrieved two
gene lists, the upregulated and the downregulated genes.
When comparing two experiments, p-values were com-
puted for the two up and down lists; the final LAMA score
was obtained by taking the log of the product of the two
p-values. The log of the p-value product is commonly
used in meta-analysis and is known as Fisher's method
[59]. This score has been shown to follow a chi-square dis-
tribution, and can be used to derive a p-value. Here the
measure is used to identify strongly associated datasets.

In order to interpret the LAMA score between two datasets
we developed a computer program. The program shows
for every gene in one set the associations that connect it to
the other set. The biomedical concepts that underlie the
gene associations could readily be retrieved and traced
back to the literature through an incorporated version of
Anni, a tool we published earlier [17]. To annotate a clus-
ter of datasets we calculate the percentual contribution to
the number of annotations for every gene, averaged over
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all dataset comparisons between cluster members. Subse-
quently we identified descriptive concepts for the cluster
by retrieving concepts strongly associated to the top-rank-
ing genes through the Anni annotation view. For table 1
we used as cutoffs 0.2% for selecting the genes and con-
cepts in the annotation view were selected when their con-
tribution was larger than 1. For brevity genes were
excluded from this table. Of partially redundant concepts
(e.g. "heterogeneous nuclear ribonucleoproteins" and
"heterogeneous nuclear ribonucleoproteins activity")
only the highest scoring concept was shown.

High-throughput analysis of over-represented GO-terms
To evaluate if a set of differentially expressed genes shows
an over-representation of genes belonging to a certain bio-
logical process, molecular function or cellular localiza-
tion, as annotated by the Gene Ontology (GO)
consortium [60], a hypergeometric test is commonly
used, see e.g. the web tools DAVID [61] and GOTM [62].
We used the HyperGTest from the GOstats 2.0.4 package
from the bioconductor open source software platform
[63]. Only GO terms from the branch "Biological Process"
subset of GO-terms were evaluated, since this was most
relevant to the biological problem. To perform the test, an
annotation package was built per species with the
AnnBuilder 1.12.0 package in R, for the concatenated list
of Entrez Gene identifiers represented by the relevant plat-
forms. We analyzed up and down regulated gene lists sep-
arately. Similar to how we calculated the similarity of gene
lists based on gene identifiers, the kappa statistic was used
to calculate the similarity of significantly overrepresented
GO-terms (p < 0.05) in the up-and downregulated gene
sets from two microarray datasets.

Reproduction of a manual clustering
We tested to which extent a manual grouping based on
studied biological phenomena (cf. table 1) was reflected
by the pair-wise similarity dataset scores by performing a
classification experiment: The association measures were
used to produce a ranking of the set of studies relative to
one so-called seed study. All studies in turn served as a
seed, producing a ranking for each of the other studies in
the groups. Studies from the same group as the seed study
were considered positive, studies from other groups nega-
tive cases. Based on the sorted list of positive and negative
cases we constructed for each study a receiver operating
characteristics (ROC) curve [64]. The area under the curve
(AUC) was used as a performance measure [65]. An AUC
of 1 represents perfect ordering, i.e. the studies from the
same group as the selected study hold the top ranks, and
an AUC of 0.5 is the expected score for a random ordering
[65].

Clustering DNA microarray data experiments
The DNA microarray studies can be compared to each
other through the LAMA and kappa measures. To identify
patterns in these associations we clustered the studies
through agglomerative hierarchical clustering and subse-
quently annotated the identified clusters. For this purpose
the LAMA scores were -log10 transformed.

Abbreviations
AUC: The area under the receiver operating characteristics
(ROC) curve; EOM: extraocular muscle; FSHD: facio-
scapulohumeral dystrophy; GO: gene ontology; LAMA:
literature-aided meta-analysis; LGMD: limb-girdle muscu-
lar dystrophy; OPMD: oculopharyngeal muscular dystro-
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Additional file 1
Description of datasets. Description of datasets in the compendium. The 
table gives for each dataset: 1. Pubmed ID (if available); 2. Paper first 
author; 3. Year of publication; 4. Species (human, mouse, rat); 5. Plat-
form category; 6. Platform specification; 7. Studied material: tissue/cell-
line; 8. Specification of tissue; 9. Studied condition; 10. Treatment; 11. 
Used control; 12. Used statistical test; 13. Number of up-regulated genes; 
14. Number of down-regulated genes; 15. Grouping as performed by 
experts (see section).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-291-S1.pdf]

Additional file 2
Compendium data. The files containing the compendium data for the 
comparative meta-analysis. DatasetInfo.txt: This file defines the datasets 
and contains the entrez gene ids of the up and down regulated genes as 
well as some meta-info. Entries in this file are tab-separated and provides 
per dataset the following info: the dataset ID, species, a platform ID and 
on a newlines the the entrez gene IDs for the up and down regulated 
genes. PlatformInfo.txt: This file provides information about the platforms 
used for the experiments. The entrez gene ids of all the checked genes are 
included. Entries in this file are platformIDs (correspond to those men-
tioned in DatasetInfo) followed by tab separated Entrez gene IDs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-291-S2.zip]
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