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Abstract

Background: Insertions and deletions (indels) represent a common type of sequence variations,
which are less studied and pose many important biological questions. Recent research has shown
that the presence of sizable indels in protein sequences may be indicative of protein essentiality and
their role in protein interaction networks. Examples of utilization of indels for structure-based drug
design have also been recently demonstrated. Nonetheless many structural and functional
characteristics of indels remain less researched or unknown.

Description: We have created a web-based resource, Indel PDB, representing a structural
database of insertions/deletions identified from the sequence alignments of highly similar proteins
found in the Protein Data Bank (PDB). Indel PDB utilized large amounts of available structural
information to characterize |-, 2- and 3-dimensional features of indel sites.

Indel PDB contains 117,266 non-redundant indel sites extracted from 11,294 indel-containing
proteins. Unlike loop databases, Indel PDB features more indel sequences with secondary
structures including alpha-helices and beta-sheets in addition to loops. The insertion fragments
have been characterized by their sequences, lengths, locations, secondary structure composition,
solvent accessibility, protein domain association and three dimensional structures.

Conclusion: By utilizing the data available in Indel PDB, we have studied and presented here
several sequence and structural features of indels. We anticipate that Indel PDB will not only enable
future functional studies of indels, but will also assist protein modeling efforts and identification of
indel-directed drug binding sites.

Background

Insertions/deletions (indels) and amino acid substitu-
tions represent the two most common types of sequence
variations, observed among similar proteins [1]. Unlike
amino acid substitutions, which have been studied inten-
sively in the past years [2,3], indels remain less under-
stood and still pose many biological questions.

Recently, a large-scale indel analysis has been conducted
for 136 complete bacterial and protozoan genomes, and
the results have shown that up to 5-10% of all proteins
contained sizable indels, when compared to human
homologues [4]. Our research has further shown possible
relationships between indels and protein essentiality [5]
and the role of indels in protein-protein interactions. For
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instance, it has been shown that indel-containing proteins
were more likely to be essential than non-indel proteins
and involved in more protein-protein interactions [5]. It
has also been suggested that sequence insertions and dele-
tions can change protein-protein interactions and modify
protein network characteristics [6].

Moreover, it has also been demonstrated that the struc-
tural differences of indel sites between pathogen and host
proteins can have valuable therapeutic applications, ena-
bling selective targeting of conserved bacterial proteins,
but at the same time, eliminating drug cross-reaction with
the human homologues [7-9]. For instance, it has been
shown that a Leishmania elongation factor contains a 12
amino acid sequence deletion compared with its human
homolog, and the deletion site has been used for develop-
ing small compounds targeting specifically to the Leish-
mania protein but not the human protein [9].

Despite the common occurrences of indels and their
important roles in protein functions, currently there are
no bioinformatics resources that archive structural and
sequence information on indel sites derived from
sequence alignments of similar proteins. Although early
studies have shown us some common features shared by
indels in limited datasets [10-15], our understanding of
indels can be improved by utilizing the large amount of
structural data, as accumulated in Protein Data Bank [16].

Thus we present here, Indel PDB, a structural database of
insertion and deletion sites, extracted from aligned pro-
tein sequences in PDB. The goal of Indel PDB is to provide
a resource of indel 3D structures, which enable various
bioinformatics analyses including primary sequence com-
position, secondary structure assignment, solvent accessi-
bility, length distribution, protein domain association,
homology modeling and other comprehensive structural
studies. Some of such applications from Indel PDB have
been performed and reported in this paper.

Indel PDB is different from loop databases, whose scope
is limited to protein loops that lack clear secondary struc-
tures [17,18]. For instance in ArchDB [18], which repre-
sents one of the most comprehensive loop databases
available on the internet, loops are defined as regions that
connect the regular secondary structures, extracted from
9587 protein structures. ArchDB classified a total of
58,664 loops (ArchDB95, 13-6-2007) based on their
structural similarity with respect to the surrounding sec-
ondary structures.

On the other hand, Indel PDB is not limited to loops, but
includes all possible gaps (insertions or deletions) present
in sequence alignments among closely related proteins in
PDB, and therefore such indel sites can possess any possi-
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ble secondary structures. Although some overlap between
Indel PDB and loop databases is expected, Indel PDB fea-
tures more indel sequences with secondary structures
including alpha-helices and beta-sheets in addition to
loops. In fact, our analyses have demonstrated that many
indels had recognizable 2D structures, in contrast to pre-
vious studies that showed most indels had undefined
structures and loops [13]. To further distinguish between
indels and loops, their differences have been investigated
in three aspects: sequence composition, length distribu-
tion, and solvent accessibility.

In addition, Indel PDB contains a larger structural data-
base in comparison to ArchDB. Indel PDB is consisted of
117,266 non-redundant indel structures extracted from
11,294 indel-containing proteins. Both the indel struc-
tural data and the analysis results are freely accessible
through the Indel PDB website [19].

We believe data presented in Indel PDB will not only ena-
ble future functional studies of indels, but also facilitate
protein modeling of indels and the identification of novel
drug binding sites against infectious diseases. Thus,
potential users of Indel PDB include 1) molecular biolo-
gists who wish to study the functions of particular indel
sites by integrating information on protein domains, 2)
structural biologists who wish to improve protein homol-
ogy models or to perform a comprehensive indel struc-
tural analysis based on the available indel 3D coordinates,
and 3) computational chemists who are searching for
potential compound-binding sites of new drug leads by
the use of a comprehensive indel search engine available
at the Indel PDB website.

Construction and content

Construct Indel PDB

Building Indel PDB involved nine steps, each of which is
described in this section and depicted on Figure 1. In step
one, a total of 38,395 PDB structural files and their
sequences were downloaded from the PDB website ([20],
dated August 30th 2006). In step two, BLASTCLUST (a
part of BLAST 2.2.13 package) was used to cluster
sequences of the downloaded proteins, based on 100%
identity. Proteins that had 100% identical sequences were
removed, and only one representative protein was
included in the next steps. To avoid short protein
sequences, only proteins with 70 or more amino acids
were selected for the subsequent parts of the analysis.
There were a total of 22,103 proteins that met such crite-
ria.

Furthermore, 22,103 PDB protein sequences were aligned
to each other, using BLASTp (version 2.2.13) with the fol-
lowing parameters: e-value < 10-> and low-complexity fil-
ter turned on. The BLAST produced 1,299,971 insertion
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A flowchart for constructing the Indel PDB web server. The numbers in brackets indicate proteins or indels remained

at each stage of the bioinformatics pipeline.

sites, whose locations and sequences were parsed by in-
house Perl scripts, and the results were stored in a MySQL
database. Because an insertion site in a query sequence
implied a deletion site in a subject sequence, and vice
versa; only insertions but not deletions needed to be rep-
resented in the database. Therefore, in this paper the word
'indel' was used to refer insertion sites on query proteins.

In step four, the DSSP program (obtained from [21] in
August, 2006, original paper by [22]) was performed on
each of the 22,103 protein structures from step #2 to
determine the secondary structures and solvent accessibil-
ity. During step 1 to 4, we have noticed there were discrep-
ancies between some 'original' protein sequences as
obtained from the PDB website and the 'actual' sequences
as stored in the PDB structural files. Such discrepancies
were caused by unresolved structural regions or gaps in
the crystallographic analysis. Thus, in the fifth step,
another BLAST was performed on the original protein
sequences against the actual PDB sequences to identify all
the unresolved regions in the structural files. This step is
important to ensure that the unresolved structural regions
in the PDB files were removed from the subsequent indel
analyses, so that Indel PDB represents true insertions or
deletions in sequence alignments, not the structural gaps
in crystallographic analysis. In step number six, the infor-
mation from step #5 and the original indel positions (step

#3) was combined to accurately assign secondary struc-
tures and solvent accessibility scores to each of the indel
sites.

In the seventh step, indels were selected to be included in
the Indel PDB database, based on the following criteria
which ensured that the indels were the results of signifi-
cant BLAST alignments. The BLAST alignment criteria
were e-value < 10->, sequence similarity > 50%, and align-
ment coverage > 80%. In addition, any indel site that con-
tained unresolved region in the PDB structure or low-
complexity residues marked by BLAST, was removed from
the analysis and excluded from Indel PDB.

In the eighth step, Perl scripts were utilized to extract 3D
coordinates of the selected indel sites from the PDB struc-
tural files. The indel structures of the same protein were
copied into a single PDB file. A total of 11,294 PDB files
were produced, which together contained the 3D struc-
tures of 488,039 indel sites.

In the final step, an Apache web server was setup on an
IBM Pentium D computer, which links to all the necessary
indel information and files stored in a local MySQL data-
base. All of the above indel results are stored in two tables:
[indel_pdb_summary] and [pdb_blast_alignment], as
shown in Figure 2. The connection between the web server
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Figure 2

A database schema for Indel PDB.
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and the MySQL database was established through Perl
and CGIL

Comparative analysis of indels

To demonstrate applications of the Indel PDB database,
we utilized the indel data to investigate several indel fea-
tures that include sequence composition, length distribu-
tion, secondary structure composition, and solvent
accessibility. All of the analyses operated on a non-redun-
dant set of indel sites, which were extracted from the orig-
inal set of 488,039 indels by grouping together indel sites
with the same start and end position on the same protein.
The resulting non-redundant set contains 117,266 indel
sites. The values required for each of the analyses were
retrieved from the MySQL database using Perl scripts.

The analyses of amino acid sequence and secondary struc-
ture composition were repeated on both the indel sites
and the full-length indel-containing proteins (referred as
indel proteins). Data obtained from indel proteins were
treated as background values that were compared to the
indel site data. Chi-square test was applied to evaluate if
the differences between indel sites and indel proteins were
significant. For instance, in the case of comparing the
alpha-helix content (H) between indel sites and indel pro-
teins (our samples), the percentages of residues that were
H or non-H in both samples were calculated. Then a Chi-
square test value was calculated and a P-value was
assigned. The same process was repeated for the other sec-
ondary structures or the sequence compositions.

Solvent accessibility was measured by (the number of
water molecules in contact with a residue) multiplied by
10 or (residue water exposed surface in Angstrom)?2,
according to the DSSP program. Two sample t-test was
applied to compare the differences of solvent accessibility
between indel sites and indel proteins.

Length distribution

The indel and loop length distributions were modeled by
the Weibull [23] and power law distributions. The
Weibull distribution can be described by the function:

S(x) = exp{-(x/a)f}, x>0, a,p >0

where S(x) is the survival function, and o and f represent
a scaling factor and a shape parameter, respectively. The
double logarithmic transformation of the Weibull func-
tion was performed:

log(-log(S(x)) = B log(x) - p log(a)

The survival function, S(x), is the probability that a varia-
ble X has a value greater than a number x. S(x) was calcu-
lated by dividing the number of indels with more than x
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residues by the total number of indels, where x ranges
from 1 to 49. If the Weibull distribution can accurately
model the indel length distribution, the double logarith-
mic plot is expected to be linear. The Pearson correlation
coefficient (r2) as implemented in MS Excel was used to
evaluate the linearity of the resulting plot.

The power law distribution is represented by the function:
S(x) = axb
The logarithmic transformation of the function is:

log(S(x)) = log(a) - blog(x)

Therefore, the fitness of the power law function for the
indel/loop length distribution has been evaluated based
on the Pearson correlation coefficient (r2) of the linear
plot.

Location analysis of protein domain and indel

To further study functional aspects of indels presented in
Indel PDB, we have investigated the presence of protein
domains that were in the proximity of indel sites. First,
9,318 protein domain profiles characterized by Hidden
Markov Model (HMM) were obtained from the Pfam
database (version 22.0, [24]). Second, the HMMER pro-
gram (ver 2.3.2, [25]) was utilized to scan each of the
22,103 PDB protein sequences against each of the 9,318
Pfam domain profiles. The scanning processes were per-
formed on a cluster of 50 CPUs to generate outputs, which
contained the exact starting and ending amino acid resi-
dues where protein domains were located for each of the
protein sequences. In step three, the locations of the pro-
tein domains were overlaid with the locations of 117,266
indel sites in 11,294 indel-containing proteins. From an
indel perspective, we calculated the distance between any
given indel site and all domains on a given protein. The
distance was measured by the number of amino acid resi-
dues between the boundary of the indel site and a domain
site. If there was an overlap between the residues of the
indel and the domain, the distance was assigned a "0".

Based on the locations of the indels and the domains, we
have computed the overall percentages of indel sites that
overlapped with domains, and vise versa, the overall per-
centages of domain sites that overlapped with indels. In
addition, the top 20 protein domains with the highest
percentages of overlapping indels were reported with P
values determined by Fisher's exact test. The Fisher's exact
test was performed with a 2 x 2 contingency table (col-
umn 1: indel containing protein, column 2: non-indel
containing protein, row 1: contained a domain that over-
lapped with an indel, row 2: not contained a domain that
overlapped with an indel)

http://www.biomedcentral.com/1471-2105/9/293

Utility and Discussion

Overview of Indel PDB

Indel PDB contains sequence and structural data associ-
ated with 488,039 (or 117,266 non-redundant) indel
sites, extracted from 11,294 indel-containing proteins in
PDB. Indel PDB and the indel analysis results are freely
accessible to the public over the internet on the World
Wide Web [19].

An easy way for users to interact with indel data is through
a comprehensive indel search engine. Users can search
indels using one or more of the following criteria, includ-
ing PDB ID, indel length, secondary structure composi-
tion, solvent accessibility score, and proximity with
protein domains. In addition, users can specify the
sources (species) of query and subject proteins. For exam-
ple, the various searching criteria can be used to identify
indels of interests between pathogens and humans for
possible drug target binding sites. Furthermore, users can
set a specific range on indel length, secondary structure or
solvent accessibility to find indel sites that are, for
instance, long, mainly alpha-helical, and surface exposed.
Moreover, users can search for indels that overlap with
certain protein domains by turning on the domain search
option, setting the proximity domain distance to '0' and
giving a specific domain name or ID (e.g. Peroxidase or
PF00141). Such results are useful to study the functional
roles of indels among similar proteins.

Alternatively, a query protein sequence can be submitted
and searched against all the indel sequences in Indel PDB
by BLASTp. Successfully indel hits are displayed to users.

As shown in Figure 3, the following information of each
indel site is displayed: Query PDB ID (protein that con-
tains the insertion site), Query name, Query source, Sub-
ject PDB ID (protein that contains the corresponding
deletion site), Subject name, Subject source, BLAST align-
ment scores, the complete sequence alignment, indel
location (start and end position on the query protein),
indel length, indel sequence, indel secondary structure
composition, and indel solvent accessibility scores. More-
over, each indel protein has been cross-referenced to the
UniProt database for comprehensive functional annota-
tions. Furthermore, the page shows the number of protein
domains that are in proximity of the indel sites, with links
to additional information on the domains. The "help"
function on each webpage contains more detailed infor-
mation on web site navigation and display.

In addition, users can visualize each indel 3D structure on
Indel PDB by a Jmol JAVA applet [26]. As an example, a
3D view of a 14-amino acid indel site, with an alpha-helix
structure, between 1EDO_A and 1UZL_A is shown in Fig-
ure 4. Indel PDB includes not only the 3D atomic coordi-
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An indel detail page on Indel PDB. The navigation buttons on the top of the page provide easy access to different func-
tionality of the website. The indel report on the query protein, 10 gs_A is shown. The screenshot displays indel sites between
the query and one of its subject proteins (lags_A). A detailed BLAST alignment report, followed by an indel summary table is

shown.

nates of each indel, but also the anchoring residues up to
6 amino acids on each side of the indel, which can be used
for protein homology modeling of the indel regions. The
indel 3D structure files can be downloaded directly from
the Indel PDB website.

In the following sections, we demonstrated the applica-
tions of Indel PDB to characterize the structural features of
indels. In particular, we studied the sequence composi-
tion, length distribution, secondary structure composi-
tion, solvent accessibility and domain association of
indels in known protein structures. The results obtained
are important for understanding the functions of indels

and their roles in protein essentiality, protein-protein
interactions and drug design. For example, the results on
solvent accessibility and secondary structure composition
will enable the identification of surface exposed indel sites
with unique structural conformation, which can be
applied to design novel drug binding site for bacteria and
their host proteins. Moreover, each indel site in Indel PDB
has a start and end location with respect to its PDB
sequence, and thus the indel locations can be mapped to
nearby protein domains to investigate the functions of the
indels and their potential ligand-binding ability. In addi-
tion, the sequence composition results enable studying
the bias of amino acid usage on indel sites. Finally, the
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Figure 4

A 3D view of an indel site by the Jmol applet on Indel
PDB. The indel site (insertion) is |4 amino acid long, present
on a query protein, IEDO_A (Beta-keto acyl carrier protein
reductase), in an alignment with a subject protein, IUZL_A
(3-oxoacyl-[acyl-carrier protein] reductase). The indel site
has an alpha-helix structure.

length distribution models of indels can provide insights
about indel abundance among related proteins.

Sequence composition of indels

The average sequence composition of the 20 amino acids
in each of the 117,266 indel sites was calculated, and the
calculation was repeated in the full-length sequences of
the11,294 indel-containing proteins, where those indel
sites were extracted from. Indels and their indel proteins
were classified into four groups according to their length:
indels with > 1, > 5, > 10, > 15, or > 20 residues. Addi-
tional file 1 summarizes the sequence composition results
and the corresponding chi-square and p values of each
indel length category, by comparing indel sites and their
indel-containing proteins. The average amino acid com-
position of indels with different minimal length is
depicted in Figure 5. As shown in the Figure, the average
residue percentages of A, D, and E increased, but those of
G, L, N, S, T, and Y decreased when the length of indels
went up. The rest of amino acids did not show any clear
trend among different indel-length groups. This result

Indel sequence composition
Blength>= 1
mlength==5

6% H Olength > 10
4% Olength == 15
o @ length »= 20

ACDEFG \KL\ANFQ>§TUV'Y
amine acid

avg. amino acid %

Figure 5
Amino acid composition of indel sequences.
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The difference of average amino acid composition
between indel sites and full-length protein sequences.
The y-axis shows the natural logarithm of the ratio of aver-
age amino acid frequency in the indel sites to that in the full-
length protein sequences.

indicated that residues such as Alanine (A) and Glutamic
acid (E), which prefer a helix conformation [27], are more
frequently observed as the length of indels increased. This
observation is supported by the later analysis of secondary
structural composition, which showed an increase of
alpha-helix content (H) in indels as length increased.

Figure 6 shows the natural logarithm of the ratio of aver-
age amino acid frequency in the indel sites to that in the
full-length protein sequences. Some trends can be easily
identified from the Figure. For instance, indel sites con-
tained more D, P, and Y in comparison to the entire pro-
tein sequences, while I, L, Q, T and V were reduced in
indel sites. The differences are significant at P value <
0.001, based on the chi-square tests.

To compare the sequence composition of indels to that of
loops (protein regions that lack any defined secondary
structures), the average amino acid frequency of all loops
in the 11,294 indel-containing proteins has been com-
puted. A total of 310,103 of loops of various lengths have
been identified from the proteins. As shown in Figure 7,
the indel sites contained more A, D, E, F, K, M, R, W, Y res-

Sequence composition difference (indel vs. loop)

@length==1
Elength»=5
Olength == 10
alength >= 15
mlength == 20

loop)

A CDEF GH I KL MHNPOQRS THY w Y

LN(amine acid freq. of indel |

amino acid

Figure 7

The difference of average amino acid composition
between indel sites and loop sequences. The y-axis
shows the natural logarithm of the ratio of average amino
acid frequency in the indel sites to that in the loop
sequences.
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Figure 8

Accumulative indel length distribution. The survival
function of indel and loop lengths were plotted against a
range of lengths from | ~25 residues.

idues in comparison to the loops, butless C, I, L, N, P, Q,
S, T, V residues. The differences are significant at P value <
0.001, based on the chi-square tests. Additional file 2
summarizes the sequence composition results and the
corresponding chi-square and p values of each indel
length category, by comparing indel sites and loops.

Length distribution of indels

Our previous indel studies have shown that indel length
distribution could be accurately modeled by the Weibull
distribution [4,5]. Therefore, in the current study the
Weibull distribution was used to model the length distri-
bution of the 117,266 indel sites and 310,103 loops from
Indel PDB. In addition to the Weibull function, the length
distributions of indels and loops have been fitted to a
power-law function. The survival function over a range of
indel or loop lengths (from 1-25) was plotted on Figure
8, indicating that there were many short indels/loops but
very few longer indels/loops. The number of indels and
loops both reduced as the length increased, however, the
number of loops reduced as a faster rate than indels.
Moreover, the maximal loop length was 26 amino-acid
long, while the maximal indel length was 50 in the Indel
PDB dataset.

Figure 9a shows a double logarithmic plot of the survival
function versus the logarithm of the indel length. The plot
could be fitted onto a liner line with R2 value of 0.9661,
indicating a good fit of indel length distribution by the
Weibull distribution. In Figure 9b, the indel length distri-
bution was fitted into a logarithmic transformation of a
power law function, with R2 value of 0.9643. The loop
length distribution has been fitted to the Weibull function
(Figure 10a) with R2 value of 0.991, and the power law
function with R2 value of 0.9237 (Figure 10b).

Thus, the Weibull function has a better fit of the length
distribution of indels and loops, in comparison to the

http://www.biomedcentral.com/1471-2105/9/293
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Figure 9

Indel length modeled by the Weibull and power law
distribution. a) The double logarithm of the survival func-
tion in Weibull distribution was plotted against the logarithm
of indel length, which ranged from | to 49 residues. The plot
was fitted onto a liner line with R2=0.9661, indicating a good
fit of the Weibull distribution. b) The logarithm of the sur-
vival function in power law distribution was plotted against
the logarithm of indel length, which ranged from | to 49 res-
idues. The plot was fitted onto a liner line with R2= 0.9643.

power law function. In addition, the results suggest that
the occurrence of indels in the studied PDB proteins can-
not be attributed to random processes (when normal dis-
tribution behaviors would be expected), and the indel
lengths are likely to be associated with certain evolution-
ary mechanisms.

Secondary structure composition of indels

We have assigned secondary structures to each of the
11,294 indel-containing proteins and their 117,266 indel
sites in Indel PDB. Secondary structures were defined and
assigned by DSSP [22] and its computer program [21].
Additional file 3 summarizes the secondary structure
composition results and the corresponding chi-square
and p values of each indel length category, by comparing
indel sites and their indel-containing proteins. Figure 11
illustrates that when the indel length increased, there was
an increase of alpha-helix content (H) in indels, while the
percentages of extended beta-strands (E), H-bonded turns
(T), bends (S) and loops decreased. In comparison to the
indel proteins (as shown in Figure 12), indel sites have
increased percentages of T, S, and loop structures, but
reduced contents of alpha helices and beta strands. The
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Figure 10

Loop length modeled by the Weibull and power law
distribution. a) The double logarithm of the survival func-
tion in Weibull distribution was plotted against the logarithm
of loop length, which ranged from | to 25 residues. The plot
was fitted onto a liner line with R2 = 0.991, indicating a good
fit of the Weibull distribution. b) The logarithm of the sur-
vival function in power law distribution was plotted against
the logarithm of loop length, which ranged from | to 25 resi-
dues. The plot was fitted onto a liner line with R2= 0.9237.

differences are significant at P value < 0.001, based on the
chi-square tests. The proportion of alpha-helices in
shorter indels was lower, comparing to the indel protein

Indel secondary structure composition
50%
2 40% mlength == 1
Z 30% mength >= 5
% Olength >= 10
3; 20% Olength >= 15
s 10% O length == 20
0%
H B E G | T S loop
secondary structure
Figure 11

Average secondary structure composition of indels.
Secondary structures were defined by DSSP (Kabsch and
Sander 1983): H = alpha-helix, B = residue in isolated beta-
bridge. E = extended strand, participates in beta-ladder, G =
3-helix, | = 5-helix, T = H-bonded turn, S = bend, and loop =
undefined structure.

http://www.biomedcentral.com/1471-2105/9/293

Indel secondary structure composition difference

=4

t

b5

- @length >=1
.g T mlength=>=5
5 £ Olength »= 10
g a Olength >= 15
: @ length == 20
°

=

-

secondary structure (s.s.)
Figure 12

Difference of average secondary structure composi-
tion between indel sites and full-length protein
sequences. The y-axis shows the natural logarithm of the
ratio of average secondary structure frequency in the indel
sites to that in the full-length protein sequences.

sequences. However, longer indels had comparable or
higher H content than the indel proteins.

In contrast to previous findings [12,13], our results
showed that many indel sites had recognizable secondary
structures such as alpha helices and beta sheets, in addi-
tion to loops or turns.

Solvent accessibility of indels

The DSSP program was utilized to predict solvent accessi-
bility of the indel proteins and their indel sites. Table 1
indicates that indel sites in all five length groups had
higher average of solvent accessibility values than the
indel proteins. The differences of solvent accessibility val-
ues were significant at P value of 0. The result showed that
indel sites were more exposed to the protein surface than
average residues of the proteins.

In addition, the solvent accessibility of indels has been
compared to that of loops. Table 2 indicates that indel
sites in all five length groups had higher average of solvent
accessibility values than the loops with a significant P

Table I: Solvent accessibility of indel sites and indel proteins.

Minimal indel length | 5 10 15 20
Indel - avg. solvent 59.53 60.36 60.03 5846 60.50
accessibility

indel protein - avg. 4468 4352 4346 42.05 4280
solvent accessibility

T test value 16820 13052 73.96 4596 34.83
P value 0 0 0 0 0

Solvent accessibility was measured by (the number of water molecules
in contact with a residue) multiplied by 10 or (residue water exposed
surface in Angstrom)2, according to the DSSP program. The higher the
solvent accessibility value, the more exposed the residue is.
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Table 2: Solvent accessibility of indel sites and loops.

Minimal indel length | 5 10 15 20
indel — avg. solvent 59.53 6036 60.03 5846 60.50
accessibility

loop - avg. solvent 4926 47.62 4755 44.64 4421
accessibility

t test value 9874 85.06 47.53 3238 25.87
p value 0 0 0 0 0

Solvent accessibility was measured by (the number of water molecules
in contact with a residue) multiplied by 10 or (residue water exposed
surface in Angstrom)?, according to the DSSP program. The higher the
solvent accessibility value, the more exposed the residue is.

value of 0. The result showed that indel sites were more
exposed to the protein surface than the loops.

Proximity of indels and protein domains

Previous studies have suggested the roles of indels in
modification of protein functions and interactions. Thus,
it is possible to anticipate that such indel-directed modifi-
cations may occur in the proximity of protein functional
or structural domains. To determine the percentage of
indel sites that overlapped with at least one protein
domain, we have calculated the relative distance between
each indel site and a domain on all 22,103 PDB proteins.
The average length of domains was 151.4 amino-acid
long, with a minimal length of 8 and a maximal length of
1289. As shown in Table 3, among domains of all possible
lengths, 93.66% of all indel sites overlapped with at least
one domain. Among domains that were equal or less than
the average length, 47.33% of all indel sites overlapped
with at least one domain.

From a domain perspective, a total of 31,700 instances of
domains have been found on the 22,103 PDB proteins.
Table 4 indicates that among domains of all possible
lengths, 45.22% of the domains overlapped with at least
one indel site, and among domains that were equal or less
than the average length, 25.94% of the domains over-
lapped with an indel.

In addition, for each indel-overlapping domain, we have
calculated the faction of the number of proteins with such
a domain overlapped with an indel to the total number of
proteins where the domain was present. Table 5 shows the
top 20 over-represented indel-overlapping domains with

http://www.biomedcentral.com/1471-2105/9/293

P-values determined by the Fisher's exact test. Several
enzymatic domains such as peroxidase, nitric oxide syn-
thase, and catalase are among the top 20 list, and there-
fore the result has suggested some possible functional
roles of indels, participating in the modification of enzy-
matic activity of those proteins.

Opverall the results have indicated that a great number of
indel sites overlapped with the locations of protein
domains, and therefore it is possible to hypothesize that
some of such indel sites are associated with the change of
protein functions through domain modifications in evo-
lution.

Conclusion

We presented Indel PDB, a free web-based resource that
contains information on structural insertions and dele-
tions in proteins that have been derived from alignments
of closely related sequence. The developed Indel PDB
resource aims to facilitate bioinformatics analysis of 1-, 2-
and 3-dimensional features of indel sites and their roles in
protein essentiality, protein-protein interactions, homol-
ogy modeling and drug design.

The analysis of the database content demonstrated that
indel sites had certain bias of amino acid usage and that
indel tended to occur on solvent exposed areas of pro-
teins. In addition, it has been shown that protein indels
possessed distinguishable secondary structure composi-
tion where loops, turns and bends were the most abun-
dant structural features followed by alpha-helix and beta-
sheet containing fragments. It has also been demonstrated
that indel length distribution could be accurately
described by Weibull function. Moreover, a great number
of indel sites have overlapped with locations of protein
domains, and the result suggests a possible association
between indel occurrences and modifications of protein
function.

We anticipate that further applications of Indel PDB in
conjunction of protein domain and drug databases will
enable identification of novel indel-based drug binding
sites for computer-aided drug discovery.

Availability and requirements
Indel PDB is freely available over the internet on the
World Wide Web [19].

Table 3: Percentage of indel sites that overlapped with at least one protein domain.

Domain length # of indels overlapping with a % # of indels not overlapping with a % Total # of indels
domain domain
<=1289 109835 93.66% 7431 6.34% 117266
<=152 55503 47.33% 61763 52.67% 117266
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Table 4: Percentage of domains that overlapped with at least one indel site.

Domain length  # of domains overlapping with a % # of domains not overlapping with a % Total # of domains
indel indel
<=1289 14336 45.22% 17364 54.78% 31700
<=152 8222 25.94% 23478 74.06% 31700

Table 5: Top 20 domains that overlapped with indels.

Domain ID

Domain Name

# of proteins with the

Total # of proteins

Domain P-value (one tail) from

(Pfam) domain overlapping with the domain fraction Fisher's exact test
with an indel

PFO0141 Peroxidase 88 88 | |.85E-26

PF00565 Staphylococcal nuclease 44 44 | 1.42E-13
homologue

PF02876 Staphylococcal/Streptococcal 33 33 2.33E-10
toxin, beta-grasp domain

PF02898 Nitric oxide synthase, 31 31 | 8.94E-10
oxygenase domain

PF00199 Catalase 30 30 | 1.75E-09

PF00232 Glycosyl hydrolase family | 30 30 | |.75E-09

PF00502 Phycobilisome protein 29 29 | 3.43E-09

PFO1327 Polypeptide deformylase 24 24 | 9.92E-08

PF00896 Phosphorylase family 2 23 23 | 1.94E-07

PF00490 Delta-aminolevulinic acid 22 22 | 3.81E-07
dehydratase

PFO1742 Clostridial neurotoxin zinc 21 21 7.45E-07
protease

PF00022 Actin 20 20 | 1.46E-06

PF00274 Fructose-bisphosphate 20 20 | 1.46E-06
aldolase class-I

PF00503 G-protein alpha subunit 20 20 | 1.46E-06

PF00224 Pyruvate kinase, barrel 17 17 | |.10E-05
domain

PF03414 Glycosyltransferase family 6 16 16 | 2.15E-05

PF00217 ATP:guanido 15 15 | 4.21E-05
phosphotransferase, C-
terminal catalytic domain

PF00343 Carbohydrate phosphorylase 15 15 | 4.21E-05

PFOO113 Enolase, C-terminal TIM 14 14 | 8.24E-05
barrel domain

PFOO162 Phosphoglycerate kinase 13 13 | 1.61E-04
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