
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Relating gene expression data on two-component systems to 
functional annotations in Escherichia coli
Anne M Denton*1, Jianfei Wu1, Megan K Townsend2, Preeti Sule2 and 
Birgit M Prüß2

Address: 1Department of Computer Science and Operations Research, North Dakota State University, Fargo, ND 58105, USA and 2Department of 
Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58105, USA

Email: Anne M Denton* - anne.denton@ndsu.edu; Jianfei Wu - jianfei.wu@ndsu.edu; Megan K Townsend - megan.townsend@ndsu.edu; 
Preeti Sule - preeti.sule@ndsu.edu; Birgit M Prüß - birgit.pruess@ndsu.edu

* Corresponding author    

Abstract
Background: Obtaining physiological insights from microarray experiments requires
computational techniques that relate gene expression data to functional information. Traditionally,
this has been done in two consecutive steps. The first step identifies important genes through
clustering or statistical techniques, while the second step assigns biological functions to the
identified groups. Recently, techniques have been developed that identify such relationships in a
single step.

Results: We have developed an algorithm that relates patterns of gene expression in a set of
microarray experiments to functional groups in one step. Our only assumption is that patterns co-
occur frequently. The effectiveness of the algorithm is demonstrated as part of a study of regulation
by two-component systems in Escherichia coli. The significance of the relationships between
expression data and functional annotations is evaluated based on density histograms that are
constructed using product similarity among expression vectors. We present a biological analysis of
three of the resulting functional groups of proteins, develop hypotheses for further biological
studies, and test one of these hypotheses experimentally. A comparison with other algorithms and
a different data set is presented.

Conclusion: Our new algorithm is able to find interesting and biologically meaningful relationships,
not found by other algorithms, in previously analyzed data sets. Scaling of the algorithm to large
data sets can be achieved based on a theoretical model.

Background
Microarray experiments are popular tools in functional
genomics. Correspondingly, many techniques have been
developed to analyze their results. Typical questions asked
include which genes are differentially expressed [1], and
which groups of genes show similar expression in multi-

ple related experiments [2]. Identifying functional pat-
terns among the resulting list or groups of genes is a
separate step that is not supported by standard clustering
techniques. Biclustering techniques have been developed
to group functions and experiments simultaneously [3,4].
Gene expression information is also used to predict gene
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functions [5]. In experiments related to transcriptional
regulation, the objective is to understand the regulation
process rather than predicting protein function. That
means that predictive techniques are not appropriate.

Recently, gene set enrichment analysis, GSEA [6,7], has
become a popular tool for relating expression values to
properties that define sets of genes. Gene set analysis con-
ventionally tests the relationship of gene expression
experiments related to a discrete phenotype to any one of
a number of possible grouping criteria. A phenotype may
distinguish between healthy and diseased tissue or
between different strains of bacteria. GSEA also enables
such analysis for continuous phenotype labels. This fea-
ture can be used for time series gene expression data.
However, this analysis type requires knowing what the
profile of interest is. Two example applications are sug-
gested in the GSEA documentation [8]: An expected pro-

file such as a peak or alternatively the expression of a
particular gene may be used as profile of interest.

Our algorithm does not require any input of an expected
profile. The distribution of gene expression profiles alone
is what determines whether the gene set shows enrich-
ment. This allows us to not only consider time course
experiments for which a particular profile may be natural
to expect but any group of related experiments. Fig. 1 illus-
trates the concept: The same set of curves is shown in the
left and in the right panel of the figure. Each curve repre-
sents a gene expression profile over multiple related
experiments. In each panel, a different subset of profiles is
highlighted, corresponding to genes of a different func-
tional designation. The highlighted profiles in the left
panel show a clear pattern, while the ones in the right
panel do not. We quantify the presence of patterns by
identifying neighboring relationships among profiles
using a product measure. If a gene has many neighbors

Sample expression profiles for two subsets of dataFigure 1
Sample expression profiles for two subsets of data. The top panels show gene expression profiles over multiple related 
experiments. The same set of curves are shown in the left and in the right panel. In each panel, a different subset of profiles is 
highlighted, corresponding to genes of a different functional designation. The bottom panels quantify the presence of patterns 
by identifying neighboring relationships among profiles using a product similarity measure. The number of neighbors, for all 
genes that show the function, is summarized in a histogram.
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with a similar expression profile – more than would be
expected by random chance – then it supports the exist-
ence of a pattern. The number of neighbors, for all genes
that show the function, is summarized in a histogram. In
the left panel, two of the profiles have all other three genes
as neighbors, and the others have two neighbors. In the
right panel, in contrast, none of the profiles has any neigh-
bor. It is expected that some profiles may have neighbors
by random chance alone. For this reason, we compare the
resulting histograms with ones that are generated for ran-
dom subsets of the same size.

The concept of gene set enrichment has previously been
applied to the results of clustering or biclustering [9]. In
this approach it is tested whether any one particular func-
tional category shows enrichment for the clustering that
was determined. Fig. 2 illustrates the limitations of such a
two-step process. This schematic uses the same type of
representation as Fig. 1, in which experiments are shown
side-by-side and are connected by lines. The example was
constructed such, that there are two clear clusters that
would be identified by most clustering algorithms. One
cluster is formed by the five genes that have primarily pos-
itive expression values and the other cluster by those that
have primarily negative values. Neither of these clusters
shows enrichment for the function that is highlighted,
since each of them has two out of five members with the
annotation. The genes with the annotation, nevertheless,
show a clear pattern. The right panel illustrates that the
histogram of neighbors for the subset of highlighted genes
differs from what would be expected for a random subset,

showing that such patterns are accessible to our algo-
rithm. Notice that the similarity among the highlighted
genes is not sufficient to consider them as a cluster based
on expression values alone. Our algorithm, in contrast,
tests solely whether their distribution within the space of
gene expression values differs from what would be
expected. No information is lost prior to that test. If clus-
tering/biclustering is performed first, the information that
the highlighted genes are similar despite being in different
clusters is lost. This limitation of the clustering-based
approach cannot be resolved by using different clustering
algorithms that use functional information [10] since
such algorithms would distort the probability of finding
enrichment. Our one-step approach resolves the prob-
lems of the two-step approaches at a fundamental level.

Work by Kim et al. [11] can also be compared with our
approach. In this work conventional statistical techniques
are used, in particular the Pearson correlation coefficient.
For that reason, gene sets have to be grouped into func-
tional clusters first, such that there is a sufficiently large
number of genes in each group. The histogram-based
analysis in our presented algorithm can be applied to
fewer genes, and furthermore performs a direct compari-
son with a randomized distribution. Using the Pearson
correlation coefficient directly as a measure of coherence
amounts to an assumption of a homogeneous compari-
son distribution, much as our theoretical model, which is
introduced as a high-performing alternative. In contrast to
the work by Kim and coworkers, our algorithm allows a
more accurate comparison based on resampling. Other
modifications have been proposed to the gene set enrich-
ment concept, such as dimensionality reduction [12] and
considering multiple functional groups [13]. Reviews of
some related techniques can be found in [14,15].

Our algorithm is tested on a published set of microarray
data [16], in which each experiment corresponds to one
knock-out mutant that represents one two-component
system, compared to wild-type E. coli. Two-component
systems are regulatory systems that involve two protein
components, a histidine kinase and a response regulator.
In response to an environmental stimulus, the histidine
kinase phosphorylates itself and then transfers the phos-
phate to the response regulator. Transcription regulation
only happens when the response regulator is in its phos-
phorylated state. In this sense, two-component systems
are the predominant signal transduction system in bacte-
ria, being used for the response to a diverse set of environ-
mental signals (for a review on the physiological role of
two-component systems, please, see [17]). Two-compo-
nent systems have attracted the attention of bioinformat-
ics researchers for the past years. The abundance of these
systems makes them particularly suitable for genomics
studies. Many bacteria have two-component systems, the

Toy example to illustrate limitations of a two-step approachFigure 2
Toy example to illustrate limitations of a two-step 
approach. The schematic demonstrates why clustering or 
biclustering followed by gene-enrichment analysis may miss 
patterns that can be found by our approach. The left panel 
shows two hypothetical experiments side by side using the 
same type of visualization as in Fig. 1. Genes with a particular 
functional annotation are highlighted; others are represented 
by dashed lines. It can be seen that the natural clusters in the 
data set do not show enrichment and would, hence not be 
considered significant by a two-step approach. In contrast, 
for our approach the histogram of neighbors (right panel) dif-
fers from what would be expected for a random subset.
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majority of them possessing multiple of them. In addi-
tion, sensor domains that are unrelated to the sensor
kinase domain and the response regulator domain are
abundant within two-component systems, further
increasing their complexity. Crosstalk between different
signaling systems completes the signaling network (for an
early study on the signaling network, please, see [18]).

Genomics studies involving two-component systems
include sequence comparisons of a single two-component
system (chemotaxis) across many different bacteria [19],
sequence based structural classification of several
response regulators across many genomes [20], and the
development of new protocols to identify two-compo-
nent systems in newly sequenced genomes [21]. Evolu-
tionary studies identified recently evolved signaling
molecules, indicating increased selective pressure upon
the bacteria [22]. A new database, Sentra [23,24], includes
many two-component systems, as well as other signaling
proteins. It was hypothesized that a network of two-com-
ponent systems might equip the bacteria with a rudimen-
tary form of intelligence [25].

All of these studies use a comparative genomics approach
to obtain structural and/or functional information. As the
function of most of these two-component systems (excep-
tion chemotaxis) lies in gene regulation, functional
genomics experiments have been performed for a small
number of them [26,27]. The data set used for this study
constitutes the most complete compilation of data on
gene regulation by two-component systems that is cur-
rently available [16]. We will use an integrated approach
to analyze this data set, combining functional or domain
information with gene expression data. Throughout this
manuscript, we will refer to the two-component system
mutants as attributes and the log expression ratios
between mutant and wild-type as attribute values.

The objective of the study is to find functional groups that
are preferentially regulated by a specific set of two-compo-
nent systems. Such information is of interest in under-
standing gene regulation. The objective is different from
conventional clustering approaches, in which the actual
gene clusters are in the foreground [2] and functional
information may be used to improve clustering results
[3,10,28]. Functional information has also been consid-
ered in the context of determining the significance of clus-
tering results [29]. Our approach, in contrast, finds the
significance of the relationship between the function and
the differential expression. A related algorithm, using a
subspace-based distance measure, has been discussed pre-
viously [30], and applied to cell cycle experiments in
yeast.

This study is based on the perspective that groups of sim-
ilar data points represent patterns in the data. Most clus-
tering techniques implicitly use this concept and density-
based techniques [31] are explicitly based on it. Pattern-
based techniques have also been used to find differen-
tially expressed genes [32,33]. While most algorithms use
the full data set to find patterns, in this study we only con-
sider the subset of data points that have a particular prop-
erty of interest. Properties may either be functional
designations, as provided through Gene Ontology (GO-
terms [34]) or hidden Markov models for protein
domains (HMMs [35]). If the subset shows an inhomoge-
neous distribution of data points, then we conclude that
the property is related to the gene expression data set.

The objective of our study is, hence, slightly different from
the goals of GSEA, where a main motivation is summa-
rized by Efron & Tibshirani [36] as "By borrowing strength
across the gene-set, there is potential for increased statisti-
cal power". Towards this goal, it is essential to correctly
take into consideration that not just one test is performed,
but multiple. The GSEA algorithm does so by controlling
the false discovery rate [37]. In a multiple hypothesis test-
ing context, overlap between gene sets has to be carefully
taken into consideration [38,39]. In our work, the focus is
on establishing that any one pattern we find is significant.
It is not our intention to increase the significance of the
gene expression experiment, but rather to find non-obvi-
ous patterns involving multiple, possibly independent,
experiments. We thereby follow the pattern mining para-
digm, which typically takes the perspective that any one
reported pattern should be significant, but each pattern is
an independently determined entity [40].

Results and discussion
Algorithm

The algorithm has two objectives: (1) Identifying subsets
that have a distribution that significantly differs from
what would be expected for a random subset and (2) find-
ing those data points that have more neighbors than
expected. We define a density measure that is evaluated
for each data point, and is given by the number of neigh-
bors that are close according to a product similarity meas-
ure. Product similarity is used, rather than cosine
similarity or Euclidean distance, since we expect those vec-
tor pairs to be most relevant that exhibit a large absolute
value of differential expression as well as a small angle
between vectors. The product similarity measure for vec-

tors x(j) and x(k), with coordinates  and  respec-

tively, is defined as follows

xi
j( ) xi

k( )
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where N is the number of selected data points, and d the
number of dimensions, i.e. the number of experiments
that are being considered. Vectors for which Sjk exceeds a
threshold t are considered neighbors. The threshold is
given as

where μ is chosen to be 0.3 in the evaluation. The algo-
rithm does not strongly depend on the choice of μ as will
be discussed in the section on choices within the algo-
rithm. Each data point is associated with a density that is
of type integer: the number of neighbors that satisfy the
product similarity criterion. The occurring density values
for all data points can be summarized using histograms.
Density calculations are done on column-wise z-normal-
ized data [41], i.e. for each attribute, the mean is sub-
tracted and the attribute values are divided by the
standard deviation. The rationale for using column-wise
rather than row-wise normalization is that overall large
absolute log expression ratios of individual genes are
thereby preserved. This choice is also discussed in detail
later. Fig. 3 and 4 show examples of histograms of the
observed density values that are derived using the product
similarity criterion (blue bars). These examples are
derived as part of the evaluation on the Oshima data set
on two-component systems [16], which is discussed in
more detail in the next section.

Even randomly distributed vectors are expected to have
some neighbors. We, therefore, have to evaluate the
expected distribution of densities. This is done by ran-
domly selecting a subset of genes that has the same
number of elements as the protein function under consid-
eration. A histogram is then constructed for the random
subset. The process is repeated multiple times and the
results averaged over 20 runs. Table 1 summarizes this
resampling-based algorithm. Figs. 3 and 4 (white bars)
show the distribution for random data sets in addition to
the experimental ones.

An observed histogram is considered significant if it
would be unlikely to encounter it based on a randomly
selected set of genes. A χ2 goodness-of-fit test is used to
compare the histogram with its randomized counterpart.
We consider patterns as significant, if the comparison
yields a p-value ≤ 0.05. The methods section provides
details on the significance testing. Fig. 3 shows three vec-

tor-item patterns that are considered significant, while Fig.
4 shows one counter example that is not considered sig-
nificant.

Application of the algorithm to two-component system 
data
We applied the algorithm to the two-component system
data from Oshima and coworkers [16]. Throughout the
entire data set, expression ratios represent the expression
of mutants divided by those of the wild-type strain. There-
fore, an expression ratio above 1 indicates that the gene is
repressed by the corresponding two-component system.
Expression ratios below 1 indicate activation by the two-
component system. Log expression ratios for individual
experiments are considered dimensions in a d-dimen-
sional vector space, where d is the number of experiments
considered. Histograms for all functional groups were
derived. Seven functional designations were found to be
significant, as shown in Table 2 and Fig. 5. The histograms
for the gene ontology terms GO:0009057 =
macromolecule_catabolism, GO:0009260 =
response_to_desiccation, and GO:0043283 =
biopolymer_metabolism are presented in Fig. 3.

Table 2 shows the p-values for each of the significant func-
tional groups. The fifth column shows how many genes
have the respective functional designation. When con-
structing histograms, some genes may have substantially
more neighbors than would be expected from the rand-
omized or theoretical model. These genes are considered
particularly important since they have an unusual number
of similar genes and may hence be considered as repre-
senting a pattern as was shown in Fig. 1. We define the tail
of the histogram as those genes on the right side of the dis-
tribution, for which the expected density is less than 1.
Table 2 shows in column 6 how many of the genes in each
of the functional groups are tail genes. Notice that all sig-
nificant patterns involve GO-terms and none of them
Pfam HMMs. This observation is not surprising given that
GO terms are expected to represent protein function far
more effectively.

To understand our result better we also calculated the var-
iance of the expression of genes that have the functional
designation (column 3) in comparison with the overall
data set (0.02676). We expect that the genes with a signif-
icant functional designation should rather be more clearly
differentially expressed, i.e. have a higher variance of the
differential expression. This is not required for our algo-
rithm and the variance is not used in our algorithm. How-
ever, it might be an indication of a problem if significant
functional designations were consistently less expressed.
The same holds to an even greater extent for the genes that
are in the tail of the distribution (column 4). These genes
represent the patterns that contribute to the significance
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Experimental and randomized histograms for the functions macromolecule catabolism, response to desiccation, and biopoly-mer metabolismFigure 3
Experimental and randomized histograms for the functions macromolecule catabolism, response to desicca-
tion, and biopolymer metabolism. A density measure that is evaluated for each data point is given by the number of neigh-
bors that are close according to a product similarity measure. The blue bars in the histograms represent the sum of all these 
densities. Those vector pairs are expected to be most relevant that exhibit a large absolute value of differential expression and 
a small angle between vectors. The white bars show the randomly distributed vectors that are expected to have some neigh-
bors as well. Subsets of genes that have the same number of elements as the protein function under consideration were ran-
domly selected. The histogram was constructed for this random subset. The process was repeated multiple times and averaged 
over 20 runs. The top panel shows the histogram for the macromolecule catabolism function, the middle panels for the 
response to desiccation function, and the bottom panel for the biopolymer metabolism function.
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of the functional designation. If the patterns were due to
genes that showed a low differential expression, the value
of our observations to biologists would be questionable.
In fact, when we used a previous algorithm [30] on our
data set, this is exactly what we found: Significant patterns
were found that were due to genes with an exceptionally
low variance of differential expression. Later, we will
present details on the comparison between our previous
and our current algorithm and show that the variance of
expression can be used as a means of validating if our
results are useful from a biological perspective. Fig. 6
shows the expression profiles of all those genes in the
above functional groups that have a larger number of
points in the neighborhood than any of the points in the
histograms for the random subset (blue tails in the histo-
grams). The individual genes that form this group are
indicated in the inserted legends. The numbers on the x-
axis symbolize the individual two-component systems.
The order of two-component systems (attributes) is iden-
tical to the original data set [16]. For the purpose of this

study, #3 is OmpR/EnvZ, #4 is BasSR, #9 is YfhA, #15 is
UvrY, #16 is YpdAB, #19 is DcuSR, #20 is NtrBC, and #22
is ArcB. These are the two-component systems for which
the grouping of expression ratios is most visible within the
profiles. Tables 3, 4, and 5 provide the log10 expression
ratios for the genes that are in the histogram tails. The first
row in both tables lists the two-component systems and
the first column the genes that belong to the respective
functional group. Log expression ratios that are <
log10(0.5) or > log10(2) are presented in bold face.

Biological significance of the data
The first functional group of study is GO:0009057 =
macromolecule_catabolism (Table 3). This group con-
tains seven genes in four operons. Three operons include
genes for galactarate and glucarate degradation. These are
garD, garP (also containing garLRK), and gudP (also con-
taining gudD). The fourth operon is ptsA (also containing
fsaB and gldA) that encodes a phosphotransferase system.

The results suggest that two-component signaling plays an
important role in the regulation of the galactarate and glu-
carate genes. This is important because little has previ-

p-values for all domain setsFigure 5
p-values for all domain sets. p-values of the χ2 goodness-
of-fit test were performed on all 20 domains. Seven domains 
were considered significant.

Table 1: Resampling-based Algorithm

Data: genes; /* expression values */
Data: functions /* for each function */
Result: significance, tailGenes; /* vector of zeros */
1 normGenes = normalize(genes);
2 hist = zeros(1, nPts);
3 foreach f ∈ function do
4 subset = findPoints(normGenes, f);
5 foreach x ∈ subset do
6 dens = NumberOfNeighbors(x);
7 hist(dens)++;
8 randHist = findRandomHistogram(1, nPts, normGenes);
9 significance(f) = chiSquaredGoodynessOfFit(hist, randHist);
10 tailGenes(f) = findTailGenes(hist, randHist);
11 return significance, tailGenes

Experimental and randomized histograms for the function response regulatorsFigure 4
Experimental and randomized histograms for the 
function response regulators. Experimental and rand-
omized histograms were constructed as described for Fig. 2. 
The response regulator function is one example of a function 
for which the experimental and the randomized histogram 
did not yield any major differences.
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ously been known about the regulation of these genes.
Galactarate and glucarate are contained in various fruits.
They can serve as growth substrates for several bacteria,
including E. coli. The pathway that is used for the degrada-
tion of galactarate and glucarate leads to the production of
pyruvate and glycerate.

The second functional group that is analyzed more closely
is GO:0009269 = response_to_desiccation (Table 4). The
eleven genes listed in Table 4 are all part of the cps operon.
They encode enzymes, such as glycosyl and acetyl trans-
ferases and other auxiliary proteins that contribute to the
formation of the colanic acid capsule (cps). The genes for
the colanic acid capsule are clustered at about 45 min on
the chromosome and expressed from a single promoter
upstream of the gene wza [42]. This promoter is character-
ized by its -10 and -35 sites, as well as the RcsAB box that
permits binding of RcsAB [43]. The Rcs system is the
major system of regulation for the cps operon. It consti-
tutes an unusual form of a phosphorelay, involving two of
each, the kinase and the response regulator domains. It is
not included in the data set that was used for this study
[16].

The two-component systems that appear as most impor-
tant for the regulation of the capsule genes (Table 4)
respond to diverse environmental signals, such as iron
[26], carbon [44], nitrogen [45], oxygen [46], and osmo-
larity [47]. It becomes obvious that the production of cap-
sules is under tight environmental control, including
many two-component systems. This regulation is in addi-
tion to the known regulation by the Rcs system [48]. It is
consistent with the observation that colanic acid capsules
have no known role in the virulence of the bacteria [49],
but are needed for various lifestyles outside the host.
Examples for stressful situations include osmotic shock or
desiccation. Complex gene regulation by several two-
component systems would enable the bacteria to perform
this complex adaptation.

The third functional group under investigation is
GO:0043283 = biopolymer_metabolism. As the most
interesting observation, this group contains many of the
genes of the cps operon that were discussed above. How-
ever, additional genes are included in this group. These
are listed at the bottom of Table 5 and include rfbC, rfbX,
wbbH, wbbJ, and cld. The regulation of these five genes by
DcuSR is all above the two fold threshold and, therefore,
more pronounced than regulation of any of the other
genes by any of the other two-component systems. It
appears that DcuSR is the major regulator of these genes.
Additional minor regulators might be UvrY and NtrBC.

The rfbC, rfbX, wbbH, wbbJ, and cld genes are all involved
in the synthesis of the O-antigen. The O-antigen is

another surface polymer (for a review on capsular
polysaccharides in E. coli, please, see [50]). Variation in its
structure is the reason for the many O-specific serotypes
that E. coli can exhibit. It provides a challenge to the host
immune system, having to continuously adapt to new
bacterial surface proteins. The colanic acid genes and the
O-antigen genes cluster together on the E. coli chromo-
some, with the O-antigen genes being located down-
stream of the capsule genes (Fig. 7). An additional
promoter (besides the wza promoter) has been postulated
within this gene cluster. It resides in the intergenic region
between galF and rfbB and probably constitutes a tran-
scriptional start site for the O-antigen genes. According to
our data, the wza promoter could be regulated by BasSR,
UvrY, NtrBC, and YpdAB. The rfbB promoter might be reg-
ulated by UvrY, NtrBC, and DcuSR. This indicates that our
algorithm is able to predict transcriptional units within
gene clusters, based upon similarity in function and gene
expression profiles.

Biological questions and hypotheses derived from this 
study
We used the new analysis of the previously published data
set [16] to design biological questions that could lead to
future experiments. Three questions were asked in partic-
ular:

1. Under which conditions is E. coli able to use galactarate
and glucarate as growth substrates? The observation that
several two-component systems are involved in the regu-
lation of the galactarate and glucarate genes indicates that
E. coli might be able to grow on galactarate and glucarate
under more environmental conditions than previously
thought.

2. Are the two-component systems BasS/BasR, BarA/UvrY,
NtrB/NtrC, and ArcB/ArcA involved in the formation of
biofilms? In a recent review article, we summarized a net-
work of regulation that involved the agellar master regula-
tor FlhD/FlhC and several two-component systems [51].
The network affected the expression and synthesis of sev-
eral cell surface organelles, including capsules. The forma-
tion of biofilms was used as a connecting theme to explain
regulations within the network. This study extends previ-
ous observations. The number of two-component systems
that is involved in the regulation of biofilms might be
larger than anticipated earlier [51]. Whether any or all of
these two-component systems are really involved in the
formation of biofilms, can easily be determined experi-
mentally.

3. Do our data indicate new functions for two-component
systems of previously unknown function? YfhA is the
response regulator that is phosphorylated by its cognate
kinase, YfhK [52]. Considering that the expression ratios
Page 8 of 19
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for YfhA are higher than for the other two-component sys-
tems that contribute to the regulation of the galactare and
glucarate genes (Table 3), one might assume that YfhA is
a major regulator of these genes. YpdAB is another two-
component system whose function is currently unknown.
It appears in our data as the major negative regulator of
the colanic acid capsule genes (Table 4).

Testing of one hypothesis derived from this study
We tested part of hypothesis two, the involvement of two-
component systems in biofilm formation, with a quanti-
tative biofilm assay that was previously described [53].
The two-component systems tested were BasSR, NtrBC,
and UvrY. Mutants in basSR, ntrBC, and uvrY were com-
pared to their isogenic wild-type strain (Fig. 8). All three
mutants produced more biofilm than the wild-type. This
is consistent with our hypothesis.

Application of the algorithm to a second data set
To test the algorithm for its general usefulness, we applied
it to a second data set. The data set by Baev and coworkers
[54-56] contains a total of 12 experiments, each represent-
ing a time point in the growth profile of E. coli growing in
LB at 37°C. Applying the algorithm to this data set yielded
one structural group of proteins that exhibited similar
expression profiles. Histograms and profiles are shown in
Fig. 9. The group hmm.mfs-1 consists of transporters that
belong to the major facilitator superfamily. Many of them
are involved in drug export and multidrug resistance. This
functional group was not analyzed in the three previous
publications [54-56]. This analysis is a good example of
how the biological question asked and the algorithm used
impact the results that are to be expected. Baev and cow-
orkers identified functional groups first and analyzed
their expression profiles in a second step. They found pro-

teins transporting a certain compound and the enzymes
that are used for the degradation of this compound
exhibit similar expression profiles. Our algorithm identi-
fies patterns involving functional groups and gene expres-
sion data in one step. We found one large group of
transporters. This demonstrates that applying a new algo-
rithm to an already well analyzed data set can still yield
new information.

Comparison with the GSEA algorithm
We compared our algorithm with the gene set enrichment
analysis algorithm, GSEA [6]. In order to use this algo-
rithm, the gene expression data were transformed to GSEA
format, then phenotype files as well as gene sets for each
domain were created. For both the Oshima and Baev data
sets, no domain was considered significantly enriched at
nominal p-value <0.05 by the GSEA algorithm. All possi-
ble combinations of parameters, which include 'metric for
ranking genes' and 'gene list sorting mode', were used.

Comparison with clustering and biclustering followed by 
enrichment analysis
We then applied biclustering to the Oshima data set. For
this comparison, we first considered the Bimax algorithm
[57], which is available as part of the Biclustering Analysis
Toolbox BicAT [58]. With default settings, this algorithm
did not return any results. When setting the 'discretization
threshold' to 0.3, which approximately corresponds to the
log10(2) we received 950 clusters as a result, but each of
them with no more than 4 genes which was too small for
further statistical analysis.

We then used the Expander software [9], following the
suggestions in the documentation (providing unnormal-
ized log2 values of the expression ratios as input, followed

Table 2: Significant vector-item patterns

Function Name p-Value Variance for group Variance for tail genes Number of genes in 
group

Number of genes in 
tail

cellular biosynthesis 1.88e-008 0.025 0.028 37 11
macromolecule 
catabolism

0.011 0.033 0.055 15 7

carbohydrate metabolism 3.18e-7 0.029 0.039 44 15
cellular macromolecule 
metabolism

1.98e-8 0.025 0.030 32 12

macromolecule 
biosynthesis

1.08e-5 0.025 0.030 32 12

biopolymer metabolism 5.92e-5 0.025 0.030 34 13
response to desiccation 0.019 0.027 0.029 18 11

Column 1: Function name from GO annotation.
Column 2: p-value for standard χ2 goodness-of-fit test.
Column 3: The average expression level of genes with the given function.
Column 4: The average expression level of genes with the given tail.
Column 5: Number of genes with the function.
Column 6: Number of genes in the tail.
Page 9 of 19
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Gene expression profiles for the functions macromolecule catabolism, response to desiccation, and biopolymer metabolismFigure 6
Gene expression profiles for the functions macromolecule catabolism, response to desiccation, and biopoly-
mer metabolism. Profiles were obtained for all those genes in the functional groups of catabolism, response to desiccation, 
and biopolymer metabolism that have a larger number of points in the neighborhood than any of the points in the histograms 
for the random subset (blue tails in the histograms). The individual genes that form this group are indicated in the inserted leg-
ends. The numbers on the x-axis symbolize the individual two-component systems. The order of two-component systems 
(attributes) is identical to the original data set [16]. The following two-component systems are discussed in the text: #3 is 
OmpR/EnvZ, #4 is BasSR, #9 is YfhA, #15 is UvrY, #16 is YpdAB, #19 is DcuSR, #20 is NtrBC, and #22 is ArcB.
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by a standardization of "Mean 0 and Variance 1", i.e. row-
wise z-normalization). For consistency reasons we used
the same gene annotation data as for our own algorithm.
TANGO enrichment analysis was performed, both on the
results of the SAMBA biclustering [4] and the CLICK clus-
tering algorithm [59], using default parameters through-
out. Both SAMBA and CLICK results led to the
identification of two enriched functional groups, however
only one of them (GO:0008610 = lipid_biosynthesis) was
found by both algorithms. The SAMBA result showed
enrichment for GO:0009269 = response_to_desiccation
and the CLICK result for GO:0044260 =
cellular_macromolecule_metabolism.

Both GO:0009269 = response_to_desiccation and
GO:0044260 = cellular_macromolecule_metabolism are
also found by our algorithm. In addition, our algorithm
identifies five functional categories as significant that are
not found by the comparison methods. As expected,
based on the discussion that accompanies Fig. 2, our algo-
rithm is able to identify patterns that are not accessible by
a two-step method. Note that GO:0008610 =
lipid_biosynthesis, which is found by both comparison
methods does not satisfy the filter condition of a mini-
mum of 15 genes that we applied to the data set when
using our own algorithm. The clustering- and biclustering-
based approaches also return a smaller number of genes
as members of the significant clusters (4–8 genes). Fig. 10
highlights genes identified by each algorithm for
GO:0009269 = response_to_desiccation. Two genes in the
cps operon were considered significant by both ours and
the SAMBA-based algorithm. Our algorithm found nine
additional genes within the same functional group,
whereas SAMBA/TANGO found only four additional
genes. Both algorithms pointed to the same operon, in
which all genes are expected to be similarly expressed and
have related functions.

Comparison with a previously proposed subspace-based 
algorithm
The development of this new algorithm was motivated by
problems that we observed when applying one of our pre-

vious algorithms [30] (which we will call subspace-based)
to the Oshima data set. The subspace-based algorithm cal-
culates histograms based on the following definition of a
neighborhood: A gene is considered a neighbor of another
gene if it is within a predefined range for at least a prede-
fined fraction of dimensions. That means that two genes
can be considered neighbors because they both show a
particularly small differential expression. Table 6 illus-
trates this problem: For the subspace-base algorithm (col-
umn 4), the variance of the differential expression of
genes in the tail of the distribution is smaller than the var-
iance of all genes with the respective functional designa-
tion. That means that the corresponding functional
annotations are significant, based on genes that show lit-
tle or no differential expression. Note that from a statisti-
cal perspective such functional annotations may very well
be significant, but from a practical perspective they are
only of interest to biological researchers if the goal is to
identify housekeeping genes and not differentially
expressed genes.

The similarity measure used in this work is inherently
designed to measure the degree to which positive or neg-
ative differential expression matches between any two
genes. Table 6 illustrates that for the new algorithm, as
expected, the variance in the tail is indeed larger than the
overall variance (column 2). Note that the variance of the
differential expression does not enter the algorithm as
such but rather is a result.

Choices within the algorithm
We tested how sensitive the algorithm is with respect to
the value of the threshold value μ. We compared the out-
come of the analysis for eight different choices of μ in the
range from 0.03 to 0.39. Six of the 20 functional annota-
tions were significantly related to the gene expression data
for all choices of μ, and 3 were not significant for any of
the choices. For each of the remaining 4 choices, the value
at μ = 0.3 matched the result for at least half of the param-
eter choices. It can be concluded that the algorithm is not
very sensitive to the choice of μ.

Table 3: Macromolecule catabolism

OmpR/EnvZ YfhA UvrY DcuSR ArcB Protein Function

garP -0.92 0.29 -0.48 0.22 -0.77 D-galactarate transporter
garL -0.37 0.29 -0.34 0.17 -0.24 2-dehydro-3-desoxygalactarate aldolase
garR -0.74 0.19 -0.27 0.09 -0.42 Tartronate semialdehyde reductase
garD -0.64 0.64 -0.21 0.35 -0.33 D-galactarate dehydratase
gudP -0.74 0.19 -0.27 - -0.42 D-glucarate transporter
gudX -0.33 0.24 -0.08 0.24 -0.18 D-glucarate dehydratase
ptsA 0.06 0.18 - 0.18 -0.02 Phosphotransferase system I

Column 1: Genes that are part of the function macromolecule catablism. The first gene in each operon is printed in bold.
Column 2 through 6: Two-component systems that are involved in the regulation of the genes in column 1. These are the most dramatic peaks in 
Fig. 6, top panel.
Column 7: Functions of the proteins that are encoded by the genes in column 1.
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In addition, we evaluated the impact of data imputation
on the results. Our data set has 14% unavailable data, and
hence it can be argued that selecting those from the esti-
mated distribution of values is more appropriate than
replacing them with the mean. We used the multiple
imputation software by Allison [60] for this purpose. The
functional groups, for which the majority of μ-values indi-
cate a significant relationship with the gene expression
data, as well as the result for μ = 0.3 remain the same. We
found that no more than, on average, one gene is consid-
ered as being in the tail without imputation and not in the
tail with imputation or vice versa for the functional anno-
tations that are significant in both settings. Hence, we con-
clude that imputation does not have a strong impact on
the outcome of the analysis either. Finally, we tested how
strongly the normalization affects the result. For this com-

parison, we applied z-normalization to rows and then
applied the algorithm as previously. We found that only
one additional functional annotation was considered sig-
nificant, the ABC_transporter domain from Pfam. We also
checked whether the significant relationships were due to
highly expressed genes. The results are shown as column
3 of Table 6. It can be seen that the variance of expression
values for the genes in the tail is typically smaller than the
corresponding quantity based on all genes that share the
functional annotation. Only two of the annotations show
higher variance in the tails (ABC_transporter and
macromolecule_catabolism). For the column-wise nor-
malization that we use otherwise, the genes in the tail of
the distribution have an higher variance for all functional
annotations, i.e. the genes in the tail are more clearly dif-
ferentially expressed. We, therefore, consider the results

Table 5: Biopolymer metabolism

BasSR UvrY NtrBC YpdAB DcuSR Protein Function

wzb -0.10 - 0.05 -0.04 0.25 Protein tyrosine phosphatase
wzc -0.19 - -0.43 - 0.13 Autophosphorylating protein tyrosine kinase Wzc
wcaC -0.24 -0.19 -0.22 0.03 -0.22 Putative colonic acid biosynthesis glycosyl transferase
wcaE -0.20 -0.59 -0.11 0.34 -0.11 Putative colonic acid biosynthesis glycosyl transferase
wcaF -0.25 -0.23 -0.25 -0.17 -0.25 Putative colonic acid biosynthesis acetyl transferase
gmd -0.19 - -0.28 0.04 -0.28 Fucose biosynthesis, GDP-D-mannose 4,6-dehydratase
cpsB -0.40 0.00 -0.12 - 0.00 Mannose 6-phosphate isomerase
wcaK -0.12 -0.32 -0.01 0.17 -0.07 Colanic acid biosynthesis protein
rfbC -0.06 -0.17 -0.12 0.13 -0.30 D-TDP-4-dehydrorhamnose 3,5-epimerase
rfbX -0.13 -0.24 -0.19 -0.03 -0.46 O-antigen translocase
wbbH -0.22 -0.24 -0.30 -0.06 -0.60 O-antigen translocase
wbbJ -0.03 -0.19 -0.12 0.00 -0.36 O-acetyltransferase
cld -0.09 0.00 -0.10 -0.06 -0.30 Chain length regulator

Column 1: Genes that are part of the function biopolymer metabolism. The first gene in each operon is printed in bold.
Column 2 through 6: Two-component systems that are involved in the regulation of the genes in column 1. These are the most dramatic peaks in 
Fig. 6, bottom panel.
Column 7: Functions of the proteins that are encoded by the genes in column 1.

Table 4: Response to desiccation

BasSR UvrY NtrBC YpdAB Protein Function

wza -0.19 -0.22 -0.24 - Outer membrane auxillary Wza
wzc -0.19 - -0.43 - Autophosphorylating protein tyrosine kinase Wzc
wcaC -0.24 -0.19 -0.22 0.03 Putative colonic acid biosynthesis glycosyl transferase
wcaE -0.20 -0.59 -0.11 0.34 Putative colonic acid biosynthesis glycosyl transferase
wcaF -0.25 -0.23 -0.25 -0.17 Putative colonic acid biosynthesis acetyl transferase
gmd -0.19 - -0.28 0.04 Fucose biosynthesis, GDP-D-mannose 4,6-dehydratase
fcl -0.40 -0.49 0.04 0.34 NADPH dependent GDP-L-fucose synthase
cpsB -0.41 0.00 -0.12 - Mannose 6-phosphate isomerase
cpsG -0.04 - -0.21 0.30 Phosphomannomutase isozyme
wcaJ -0.22 -0.28 -0.03 0.05 Putative colonic isozyme biosynthesis

UDP-glucose lipid carrier transferase
wcaK -0.12 -0.32 -0.01 0.17 Colanic acid biosynthesis protein

Column 1: Genes that are part of the function response to desiccation. The first gene in each operon is printed in bold.
Column 2 through 5: Two-component systems that are involved in the regulation of the genes in column 1. These are the most dramatic peaks in 
Fig. 6, middle panel.
Column 6: Functions of the proteins that are encoded by the genes in column 1.
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with column-wise normalization to more likely represent
useful information.

Performance
The algorithm scales linearly with the number of domain
or function subsets. For each domain, scaling as a func-
tion of domain size is approximately quadratic, as Fig. 11
shows. For the E. coli data set that was used in this study,
the quadratic complexity is not a problem, and it can be
seen that execution times are so small that performance is
not expected to be a bottleneck even for larger genomes.

The runtime for one subset can be expressed as follow:

Where Tc is the runtime of the algorithm for one subset,

Thist the time to create the histogram for one subset, Textract

is the time for extracting the subset of genes, R is the
number of runs for random subsets (R = 20 in the evalua-

tion) and  is the time for the statistical analysis.

Under the assumption that data sets are small enough
such that all genes can be kept in memory, the time is
dominated by Thist, which is quadratic in the number

genes in a subset.

Notice that the main contribution to Tc comes from the
histogram evaluation on random subsets. In the following

section, we discuss a theoretical model for deriving the
random histogram without resampling. The model
ignores correlations that may occur even among unrelated
genes, and is hence not expected to be as accurate as the
randomized evaluation. Nevertheless, it provides an alter-
native if the data sets are very large.

Theoretical model for histograms
The resampling version of the algorithm, which is used for
the remainder of this study, is robust with respect to uctu-
ations in the data set. The theoretical derivation of a com-
parison distribution that is presented in this section is
given for the sake of performance improvement where
necessary, but is not expected to lead to equally robust
results. For the random model that is used in the theoret-
ical derivation, we assume that all experimental data fol-
low a normal distribution. This assumption is not
expected to be fully accurate, since gene expression exper-
iments typically do not exactly follow such a distribution.
The calculation also assumes that dimensions for the ran-
dom comparison model are unrelated, which is a different
approximation. Both assumptions only apply to the theo-
retical model and not to the resampling approach that is
used for this study. The resampling model is expected to
be substantially more accurate, and the theoretical model
should only be used if the computational complexity of
the resampling model is considered prohibitive.

The coordinates of two experiments are denoted by vec-
tors x and y. All those pairs of genes are considered signif-
icantly related, for which the product is greater than
threshold t. The expected probability that the product for

T R T T Tc extract hist test
= + ∗ + + −( ) ( )1 2c (3)

T
testc 2 −

Quantitative biofilm assayFigure 8
Quantitative biofilm assay. The ability to form biofilms 
was compared between wild-type bacteria and mutants in 
basSR, ntrBC, and uvrY. Bioluminescence is indicative of bio-
mass and calculated relative to wild-type E. coli. The experi-
ment was performed three times. Average and standard 
deviations are presented.
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Schematic of the capsule gene clusterFigure 7
Schematic of the capsule gene cluster. Each arrow rep-
resents one gene in the direction of transcription. Genes in 
red are genes that are contained in the response to desicca-
tion function. This operon encodes proteins of the colonic 
acid capsule. Genes in blue are genes that are contained in 
the biopolymer metabolism function and are not included in 
the response to desiccation function. This operon encodes 
components of the O-antigen. Two-component systems that 
regulate each group of genes are indicated.

O-antigen
(regulated by UvrY, NtrBC, and DcuSR)

wzz     ugd        gnd                        wbbK wbbJwbbI  wbbH    glf     rfbX   rfbC  rfbA  rfbD    rfbB        galF

wcaM  wcaL  wcaK     wzxC    wcaJ  cpsG   cpsB   wcaI   fcl    gmd  wcaF wcaD wcaC    wcaA       wzc    wzb wza

wcaH wcaE               wcaB

Colanic acid capsule
(regulated by BasSR, UvrY, NtrBC, and YpdAB)
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Experimental and randomized histogram and profile for the function hmm.mfs_1 for the Baev data setFigure 9
Experimental and randomized histogram and profile for the function hmm.mfs_1 for the Baev data set. Top 
panel: A density measure that is evaluated for each data point is given by the number of neighbors that are close according to a 
product similarity measure. The blue bars in the histograms represent the sum of all these densities. Those vector pairs are 
expected to be most relevant that exhibit a large absolute value of differential expression and a small angle between vectors. 
The white bars show the randomly distributed vectors that are expected to have some neighbors as well. Subsets of genes that 
have the same number of elements as the protein function under consideration were randomly selected. The histogram was 
constructed for this random subset. The process was repeated multiple times and averaged over 20 runs. Bottom panel: Gene 
expression profile for the function hmm.mfs_1. Profiles were obtained for all those genes in the functional group of hmm.mfs_1 
that have a larger number of points in the neighborhood than any of the points in the histograms for the random subset (tails 
in the histograms). The individual genes that form this group are indicated in the inserted figure legends. The numbers on the 
x-axis symbolize the individual two-component systems. The order of two-component systems (attributes) is identical to Fig. 5.
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any two experiments is beyond the threshold t can be cal-
culated by integrating the following expression over the
relevant Gaussian distribution functions:

where θ is the Heaviside step function, which is 1 for a
positive argument and 0 otherwise. We integrate over all
directions of x and y with their respective weights

Note the data are normalized using z-normalization,
resulting in mean 0 and standard deviation 1 for both vec-
tors x and y. The radius of the vector x will be denoted by
r and the integration re-written

where Sn is the surface of a hypervolume in n dimensions

The integration over y can be written as an integration
over the coordinate in the direction of x, which we will
denote as z and the vector perpendicular to x, represented
by u. We can now rewrite the θ-function as follows

This function does not depend on u. The n - 1-dimen-
sional integration over u, therefore only has a normalized
n - 1 dimensional Gaussian function as integral, and
thereby trivially gives the result 1. The probability of a
product beyond the threshold is

The integration over z can be performed by recognizing

that the θ function is 1 only for  and 0 otherwise.

Given this probability p, we can calculate the theoretical
distribution for the selected subsets:
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Runtime for evaluation of all significant domainsFigure 11
Runtime for evaluation of all significant domains. 
Comparison of complexity between random model and the-
oretical model. The complexity of the theoretical model is 
significantly smaller. The slope of the logarithmic regression 
is 1.90 for the random model and 1.83 for the theoretical 
model.

Comparison of the two-step approach with our algorithm for GO:0009269 = response_to_desiccationFigure 10
Comparison of the two-step approach with our algo-
rithm for GO:0009269 = response_to_desiccation. 
Expander's [9] biclustering algorithm Samba followed by 
enrichment analysis Tango is used as exemplary two-step 
approach and compared with our single-step approach. Each 
arrow represents one gene in the cps gene cluster. The genes 
of the GO:0009269 = response_to_desiccation that were 
identified as significant are highlighted. Genes that were 
returned by both algorithm are highlighted in red, additional 
genes that were found by our algorithm are printed in blue 
and genes that were found only by the comparison algorithm 
are in green.

cps operon

wcaM wcaL wcaK wzxC wcaJ cpsG cpsB wcaI fcl gmd wcaF wcaD wcaC wcaA wzc wzb wza

wcaH wcaE               wcaB
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Fig. 12 shows the histograms of the theoretical distribu-
tion, resampled distribution (random subsets) and the
observed distribution (biopolymer metabolism) for one
of the three discussed functions. The resampled distribu-
tion is slightly more stretched than the theoretical one,
which can be attributed to correlations among the experi-
ments that are not considered in the theoretical model.
Fig. 11 shows that the complexity of the algorithm is sig-
nificantly decreased, although it is still roughly quadratic.

Using the theoretical model, the algorithm of Table 1 can
be modified as shown in Table 7.

Conclusion
We have introduced an algorithm that permits relating
protein functions to gene expression data. It allows us to
identify functions that are common in proteins whose
genes are regulated similarly across the spectrum of two-
component systems. Our analysis led to the development
of biological hypotheses that suggest further experimenta-
tion. Initial experiments confirmed one of the hypotheses.

Methods
The data set used for this study was constructed by
Oshima and coworkers [16]. They examined mRNA levels
in 36 two-component deletion mutants and compared
them to those of wild-type bacteria. Growth conditions
were kept constant between experiments. The data were

Table 7: Distribution-based Algorithm

Data: genes; /* expression values */
Data: functions /* for each function */
Result: significance, tailGenes; /* vector of zeros */
1 normGenes = normalize(genes);
2 hist = zeros(1, nPts);
3 foreach f ∈ function do
4 subset = findPoints(normGenes,f);
5 foreach x ∈ subset do
6 dens = NumberOfNeighbors(x);
7 hist(dens)++;
8 if NunmberOf(genes) greater than a threshold then
9 randHist = findTheoreticalHistogram(1, nPts, normGenes);
10 else
11 randHist = findRandomHistogram(1, nPts, normGenes);
12 significance(f) = chiSquaredGoodnessOfFit(hist, randHist);
13 tailGenes(f) = findTailGenes(hist, randHist);
14 return significance, tailGenes

Table 6: Comparison of variance of gene expression level

Function Variance for tail genes Variance for group Variance overall

Product similarity Subspace algorithm [30]

Column-wise Row-wise

cellular biosynthesis 0.028 0.023 0.018 0.025 0.027
macromolecule catabolism 0.055 0.044 not significant 0.033
carbohydrate metabolism 0.039 0.025 0.017 0.029
cellular macromolecule metabolism 0.030 0.022 0.023 0.025
macromolecule biosynthesis 0.030 0.022 0.020 0.025
biopolymer metabolism 0.030 0.023 0.018 0.025
response to desiccation 0.029 0.020 not significant 0.027
ABC transporter not significant 0.028 not significant 0.026

Column 1: Function name from GO annotation.
Column 2: The average expression level of genes in the tail for the product-based similarity. using column-wise z-normalization.
Column 3: The average expression level of genes in the tail for the product-based similarity. using row-wise z-normalization.
Column 4: The average expression level of genes in the tail for the subspace-based similarity.
Column 5: The average expression level of genes with the function.
Column 6: The average expression level of genes in the whole data set.
Page 16 of 19
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:294 http://www.biomedcentral.com/1471-2105/9/294
expressed as expression ratios, dividing the expression
level of each gene in the mutant by that of the wild-type.
The mutant collection covers all of the two-component
systems that E. coli possesses. In cases where kinase and
response regulator are encoded by genes that form one
operon, this two-component system only yields one
mutant. In other cases, kinase and response regulator
genes are far apart on the chromosome and then there are
two mutants to cover these two genes.

As a first processing step, the data were converted to log
expression ratios by taking a log10. We then applied the z-
normalization that is required by the algorithm itself.
About 14% of the data points are missing in the whole
data set. This can happen because not all genes are
expressed under all conditions. We replaced the missing
values with a log ratio of 0, since 0 does not contribute to
the similarity using the product measure. As a next step,
we eliminated genes that were not differentially expressed,
i.e. we only kept those genes that had an absolute log
expression ratio of at least log10(2) for at least one of the
two-component systems. 2570 genes satisfied this crite-
rion and were used for the remainder of the analysis.

As function data we used the GO and PF annotations from
previously published work [61], and a threshold was
applied that requires an annotation to be held by at least
15 genes, leaving us with 13 functions. A standard χ2 test
was used on the histograms after the following preproc-
essing: Bins at both ends of the distribution were merged
until the expected number was at least 5. If the intermedi-
ate bins had an expected number smaller than 5, then
pairs of bins were merged until no more bins had an
expected number smaller than 5. A function was consid-
ered as significantly related to the expression data if the χ2

goodness-of-fit test yielded a p-value ≤ 0.05. The algo-
rithm was implemented in C++, compiled by C++Builder
6.0.

A quantitative biofilm assay was used to test one of the
hypotheses that our algorithm had generated. This assay
involved the measurement of ATP, an energy molecule
whose concentration is considered consistent across vari-
ous growth conditions [62], in a bioluminescence reac-
tion. The assay was performed as previously described
[53] with 12 wells per strain on a 96 well plate. Triplicate
experiments were performed, average and standard devia-
tion are presented. The bacterial strains used were
BW25311 [63,64], as well as their isogenic basSR, ntrBC,
and uvrY mutants [65]. These strains are the same strains
that the data (Tables 4 and 5) had been derived from. Bio-
films were formed in tryptone broth (1% tryptone, 0.5%
NaCl) at 37°C for 40 h.
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