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Abstract
Background: Genome-wide association studies (GWAS) using single nucleotide polymorphism
(SNP) markers provide opportunities to detect epistatic SNPs associated with quantitative traits
and to detect the exact mode of an epistasis effect. Computational difficulty is the main bottleneck
for epistasis testing in large scale GWAS.

Results: The EPISNPmpi and EPISNP computer programs were developed for testing single-locus
and epistatic SNP effects on quantitative traits in GWAS, including tests of three single-locus effects
for each SNP (SNP genotypic effect, additive and dominance effects) and five epistasis effects for
each pair of SNPs (two-locus interaction, additive × additive, additive × dominance, dominance ×
additive, and dominance × dominance) based on the extended Kempthorne model. EPISNPmpi is
the parallel computing program for epistasis testing in large scale GWAS and achieved excellent
scalability for large scale analysis and portability for various parallel computing platforms. EPISNP is
the serial computing program based on the EPISNPmpi code for epistasis testing in small scale
GWAS using commonly available operating systems and computer hardware. Three serial
computing utility programs were developed for graphical viewing of test results and epistasis
networks, and for estimating CPU time and disk space requirements.

Conclusion: The EPISNPmpi parallel computing program provides an effective computing tool for
epistasis testing in large scale GWAS, and the epiSNP serial computing programs are convenient
tools for epistasis analysis in small scale GWAS using commonly available computer hardware.

Background
The large number of SNPs available provides opportuni-
ties for detecting DNA variations associated with complex
traits through GWAS using SNP markers. This is because
an increased number of SNPs increases the chance that
some SNPs may be DNA variations affecting phenotypes
(direct SNP effects) or results in increased linkage disequi-

librium (LD) with DNA variations that have direct effects
on the phenotypes (indirect SNP effects). With high
throughput SNP genotyping technology, SNP genotyping
of a large number of individuals is becoming increasingly
practical. Such large scale SNP genotyping increases the
effectiveness of SNP association studies and provides an
unprecedented opportunity to study complex genetic
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effects such as epistasis. The significance of epistasis (gene
interaction) in complex or quantitative traits has been
well recognized [1-5]. Large epistasis networks showing
complex interactions among genes have been reported [6-
8]. Fisher's partition [9] of the nine genotypic values of
two bi-allelic loci into single gene effects (additive and
dominance effects) and an epistasis effect assuming
Hardy-Weinberg equilibrium (HWE) and linkage equilib-
rium (LE) laid the foundation of a quantitative genetics
approach to study epistasis. Also assuming HWE and LE,
Cockerham [10] and Kempthorne [11] partitioned
Fisher's epistasis effect into four components using two
different methods: additive × additive (A × A), additive ×
dominance (A × D), dominance × additive (D × A), and
dominance × dominance (D × D) epistasis effects with the
genetic interpretation of allele × allele, allele × genotype,
genotype × allele, and genotype × genotype interactions
respectively. This partitioning can be used as a tool for
identifying the exact mode of a gene interaction effect.
Kempthorne's partitioning of genotypic values has been
extended to allow Hardy-Weinberg disequilibrium
(HWD) and linkage disequilibrium (LD) so that Kemp-
thorne's method could be used to test single-locus and
epistasis effects in populations where HWD and LD may
exist [12]. With genome-wide detection of epistasis
effects, epistasis networks affecting a quantitative trait
could be established. Computational difficulty is the
main bottleneck for epistasis testing in large scale GWAS
due to the large number of SNP combinations. The
number of SNP combinations (M) is M = N(N - 1)/2 for
testing two SNPs at a time, and is M = N(N - 1)(N - 2)/6
for testing three SNPs at a time, where N = number of
SNPs. The computational difficulty of epistasis testing in
large scale GWAS can be an open scale computing chal-
lenge that could exhaust the capabilities of any supercom-
puter in existence today. For example, pairwise epistasis
testing of 1,000,000 SNPs would require 5 years using our
EPISNP program and a single processor of the 2.66 GHz
SGI Altix XE 1300 Linux cluster system at the Minnesota
Supercomputer Institute, and this computing time could
increase to 1.5 million years by adding just one SNP to the
pairwise analysis (Table 1). With parallel computing, pair-
wise epistasis testing for any large scale GWAS currently in
existence is possible. Large scale three-SNP epistasis test-
ing may not be computationally feasible at this time. The
parallel and serial computing software developed in this

research is intended to provide computational tools for
pairwise epistasis testing in GWAS on various parallel and
serial computing platforms with the capability of pairwise
epistasis testing for any large GWAS currently in existence.

Methods
The statistical methods implemented by the parallel and
serial computing tools for detecting single-locus and
epistasis effects include a general linear model for testing
the marker effects of each SNP and each SNP pair, and
include the extended Kempthorne model for testing addi-
tive and dominance effects of each SNP and for testing A
× A, A × D, D × A, and D × D epistasis effects of each SNP
pair. A two-step least squares analysis [13] is used to
implement the statistical tests. The first step corrects the
phenotypic values for systematic effects such as gender
and age. This step estimates fixed non-genetic effects and
then removes the estimated fixed non-genetic effects from
the original phenotypic observations to obtain the cor-
rected phenotypic values (or residual values). The second
step conducts epistasis and single-locus tests using the cor-
rected phenotypic values as the phenotypic observations.
This two-step analysis estimates and removes systematic
effects only once and hence has considerable computa-
tional advantage when the number of SNPs is large. The
single-locus analysis tests three genetic effects: the SNP
genotypic effect, additive effect, and dominance effect.
The statistical model for testing single-locus effects is y = μ
+ SNP + e, where y = corrected phenotypic value, μ = com-
mon mean, SNP = the single-locus SNP genotypic effect,
and e = random residual. The single-locus SNP genotypic
effect was partitioned into additive and dominance
effects. The single-locus genotypic effect answers the ques-
tion whether the SNP had an effect on the phenotype
whereas additive or dominance effect identifies the mode
of the SNP effect. The statistical model for testing epistasis
effects is y = μ + SNP1 + SNP2 + SNP1*SNP2 + e, where
SNP1 and SNP2 are the two single-locus genotypic effects,
and SNP1*SNP2 is the two-locus interaction effect (I-
effect). The two-locus interaction effect was partitioned
into four individual epistasis effects using the extended
Kempthorne model that allows HWD and LD: A × A, A ×
D, D × A, and D × D epistasis effects. The two-locus inter-
action effect answers the question whether the two SNPs
had an interaction effect whereas an individual epistasis
effect (A × A, A × D, D × A, or D × D) identifies the mode

Table 1: Estimated single-processor computing time on the SGI Altix XE 1300 Linux cluster system with 2.66 GHz Intel Clovertown 
processor, and the total number of tests for two-locus and three-locus analysis.

Number of SNPs (N) Two-locus analysis Three-locus analysis

500,000 Computing time (T) T ≈ 1.2 years T ≈ 200,000 years
Number of tests (M) M = (1.25) 1011 M = (2.08) 1016

1,000,000 Computing time (T) T ≈ 5 years T ≈ 1.5 million years
Number of tests (M) M = (5.0) 1011 M = (1.67) 1017
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of the interaction. The significance tests of the single-locus
SNP effect and the two-locus interaction effect used an F-
test. A t-test was used to test the significance of additive,
dominance and epistasis effect using the following for-
mula

where Lx = contrast to estimate the genetic effect, s2 = (y -
X)' (y - X) (n - k) = estimated residual variance,  = the least
squares estimates of the SNP genotypic effects, and si = a
function of marginal and conditional allelic and geno-
typic frequencies for estimating genetic effect i, which is
either additive, dominance or an epistasis effect, and
where n = number of observations and k = rank of X [12].
For testing epistasis effects involving the X chromosome
in mammals (or Z chromosome in birds), only females
(or males in birds) can be included in the analysis. For
epistasis analysis involving SNPs in pseudoautosomal
regions, the analysis is the same as for autosomal SNPs.
These epistasis testing methods were implemented in a
parallel computing program intended for larges scale
GWAS and in a serial computing program intended for
small scale GWAS that could be analyzed on commonly
available computer hardware.

Minimizing the processor memory required is critical to
developing an efficient and successful parallel computing
program because each individual processor has a limited
amount of memory available. For example, each core of
the quad-core processor on the SGI Altix XE 1300 Linux
cluster system with 2.66 GHz Intel Clovertown processors
(Calhoun) at the Minnesota Supercomputer Institute has
a limit of 2 GB of memory. Therefore, the parallel code
should use as little processor memory as possible to
achieve scalability for large scale analysis that will other-

wise require large processor memory. A two dimensional
SNP data distribution scheme (Table 2) among processor
cores was designed to minimize the memory requirement
of each processor. To assign SNPs to each processor core,
the N SNPs are evenly divided into m subsets with n SNPs
in each subset such that the total number of processor
cores (p) to be used is p = m(m+1)/2. For simplicity, n =
N/m is assumed to be an integer. In the case N/m is not an
integer, the leftover SNPs are assigned to an extra core. In
Table 2, each diagonal processor core receives one subset
of n SNPs and computes [3n + 5n(n - 1)/2] tests, and each
off-diagonal processor core receives two subsets of SNPs
(2n SNPs) and computes 5n2 pairwise tests. Therefore,
only (2n)/(mn) = 2/m of the N SNPs are stored in each
off-diagonal processor core, and only 1/m of the N SNPs
are stored in each diagonal processor core defined in
Table 2. As the number of processor cores (p) increases,
the number of SNP subsets (m) increases and the memory
required for each processor core decreases. Therefore, the
increased memory requirement per processor core for
large scale SNP analysis can be reduced by increasing the
number of processor cores used. The parallel computing
code was optimized to minimize inter-processor commu-
nications and was crafted for portability to various paral-
lel and serial computing platforms. Testing results showed
that the parallel computing code achieved excellent spee-
dup and scalability and achieved excellent portability, as
to be discussed below.

Results
A parallel computing program named EPISNPmpi and a
serial computing program named EPISNP were developed
for genome-wide pairwise epistasis testing. Three serial
computing utility programs were developed to estimate
computing time, to produce graphical chromosome view
of significant single-locus results, and to produce graphi-
cal display of epistasis network.
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Table 2: Example of distributing N SNPs to m(m+1)/2 processor cores (Pi, i = 1, m(m+1)/2) for the case where N/m is an integer, 
where m = N/n = number of subsets of SNPs with each subset having n SNPs (m and n are assumed integers).

Subset 1:
SNP1 ... SNPn

Subset 2:
SNPn+1... SNP2n

... ... Subset m:
SNPn(m-1)+1 ... SNPN

P1 P2 ... ... Pm Subset 1:
SNP1 ... SNPn

Pm+1 ... ... P2m-1 Subset 2:
SNPn+1... SNP2n

... ... ... ... ... ...

Pm(m+1)/2 Subset m:
SNPn(m-1)+1 ... SNPN

Each diagonal core receives one subset of n SNPs and computes [3n + 5n(n - 1)/2] tests, and each off-diagonal core receives two subsets of total 2n 
SNPs and computes 5n2 tests.
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The EPISNPmpi and EPISNP programs
The EPISNPmpi and EPISNP programs provide two sets of
SNP tests: single-locus analysis and pairwise analysis. The
single-locus analysis tests three effects of each SNP: SNP
genotypic effect (M), additive (A) and dominance (D)
effects. The pairwise analysis tests five effects of each pair
of SNPs: The I-effect, A × A, A × D, D × A, and D × D. Three
input files in text format are required, the phenotype file,
the SNP genotype file, and the parameter file. The pheno-
type file contains observations of the quantitative trait(s),
family ID, individual ID, individual gender, and non-
genetic fixed effects such as smoking status and age of
each individual. The SNP genotype file contains family
ID, individual ID, individual gender, and SNP genotypes,
and should be one file for each chromosome. The param-
eter file with file name parameter.dat provides various
user-specified controls for the EPISNPmpi and EPISNP
programs to have the flexibility to be generally applicable.
These controls include the number of quantitative traits to
be analyzed, user specified number of chromosomes,
code for the sex chromosome, formats for SNP genotypes
and missing values, and user specified number of fixed
non-genetic factors to be included in the statistical model,
where a fixed non-genetic factor can be an indicator vari-
able or continuous variable (covariable). Both EPIS-
NPmpi and EPISNP programs are applicable to
populations with HWD and LD.

The speedup and scalability [14,15] of the EPISNPmpi
parallel program were evaluated for two supercomputer
systems: a 2.6 GHz AMD Opteron IBM BladeCenter Linux
cluster (Blade) and the Calhoun system. In parallel com-
puting, speedup refers to how much a parallel algorithm
is faster than a corresponding sequential algorithm and is
defined as Sk = T1/Tk, where k = number of processors, T1
= the execution time of the sequential algorithm with one
processor-core, and Tk = the execution time of the parallel
algorithm with k processor-cores. Linear or ideal speedup
is achieved when Sk = k. Scalability refers to the stability of
average performance of a parallel program as the number
of processors increases. Ideal scalability is achieved when
the efficiency of k processors (Ek) is Ek = Sk/k = 1. Figure 1
shows the observed and predicted computing time using
15–528 processor cores, where each processor consists of
four cores. The predicted computing time was calculated
using the following formula assuming an ideal speedup or
scalability

tk = t1/k (1)

where k = number of processor cores, tk = computing time
using k processor cores, and t1 = computing time using
one processor core. In Figure 1, the computing times were
normalized to the computing time on 15 processor-cores
because the minimal number of cores used was 15.

Results in Figure 1 showed that the observed computing
time and the predicted computing time assuming ideal
speedup and scalability matched very well, indicating that
the EPISNPmpi coding achieved excellent speedup and
scalability. Based on the observed run times of 0.20 and
19.3 hours for 50,000 and 500,000 SNPs respectively
using 528 cores of the Calhoun system, the estimated
computing time for pairwise epistasis tests is approxi-
mately an increasing quadratic function of the number of
SNPs. Let N = the number of SNPs and N0 = a smaller
number of SNPs with a known computing time (t0) for
running EPISNPmpi such that N = N0 (x). Then, the com-
puting time required for analyzing N SNPs (tN) is approx-
imately

tN = (t0)(x2) (2)

The run time of 19.3 hours for 500,000 SNPs using 528
cores showed that pairwise epistasis testing for GWAS
with about 500,000 SNPs could be completed in one day
using about 25% of the 2048 cores of the Calhoun system.
Based on this computing time and equations (1–2), the
predicted time for pairwise epistasis testing among
1,000,000 SNPs using all 2048 cores of the Calhoun sys-
tem would require about 20 hours to complete. This pre-
diction indicates that EPISNPmpi is capable of
completing pairwise epistasis analysis in one day for any
large scale GWAS currently in existence, noting that the
numbers of SNPs used in current large scale GWAS are in
the range of 500,000 ~ 940,000, as represented by NIH's
GAIN projects [16]. Sample size, or the number of indi-
viduals, affects the computing time as well, but the
increase in computing time due to increased sample size
is minor. The EPISNPmpi code is highly portable to vari-
ous computing platforms and has been ported to all
supercomputer systems at the Minnesota Supercomputer
Institute and to several popular serial computing plat-
forms.

The EPISNP program is designed for epistasis analysis in
small-scale GWAS on commonly available computer
hardware. For example, an analysis of 5700 SNP markers
took about 18 hours to complete on a PC with a single 3.8
GHz Pentium 4 processor.

The EPISNPmpi and EPISNP programs each produces two
output files of the most significant results of single-locus
tests and two output files of the most significant results of
pairwise epistasis tests. The output file for significant
epistasis results currently displays the names and chromo-
some locations of the two SNPs in each SNP pair with sig-
nificant I-effect (interaction between the two loci), A × A,
A × D, D × A, or D × D effect, significance level (p-value),
and ordered estimates of individual effects that are useful
for identifying the best and worst gene combinations
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affecting a phenotype [17]. The second output file of sin-
gle-locus tests is used as the input file of the EPISNPPLOT
program and the second output file of pairwise epistasis
tests is used as the input file of the EPINET program.

Three serial computing utility programs
The EPISNPPLOT program plots the chromosome view
figures, where each figure shows the significance of each
of the three single SNP effects and the sample size for all
SNPs on each chromosome (Figure 2). The program pro-
duces chromosome view figures for all chromosomes by
one command using an output file from EPISNPmpi or
EPISNP as the input file. These chromosome views help
identify chromosome regions with various degrees of sig-
nificant effects and markers that did not have sufficient

information to yield significant effects. By default, the
EPISNPPLOT program draws chromosome view figures in
the original marker order as in the input file. The user has
the option to sort the input data by the marker signifi-
cance, additive significance, dominance significance, or
the number of observations. In Figure 2, the figure on the
left is an example of a chromosome view based on the
original marker order, and the figure on the right is an
example of a chromosome view in ascending order of sig-
nificant dominance effects. The EPINET program draws
figures of epistasis networks of SNPs with significant
epistasis effects at four user specified p-values. The pro-
gram requires two input files: the parameter file to specify
four significance levels (p values) for selecting loci in the
epistasis networks, and the effect file that contains epista-

Observed and predicted run times of the EPISNPmpi program on Minnesota Supercomputing Institute's 2.6 GHz IBM Blade-Center Linux cluster (Blade) and the SGI Altix XE 1300 Linux cluster system with 2.66 GHz Intel Clovertown processor (Cal-houn)Figure 1
Observed and predicted run times of the EPISNPmpi program on Minnesota Supercomputing Institute's 2.6 
GHz IBM BladeCenter Linux cluster (Blade) and the SGI Altix XE 1300 Linux cluster system with 2.66 GHz 
Intel Clovertown processor (Calhoun). The observed run times (circles representing Blade and squares representing Cal-
houn) matched well with the predicted run times under ideal speedup and scalability (solid line representing Blade and dotted 
line representing Calhoun). Analyses in this figure used a hypothetical GWAS data set with 50,000 SNPs and 2000 individuals.
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sis testing results from EPISNPmpi or EPISNP. The default
input is to use 'effects.dat' as the input file and to print the
10 largest networks (Figure 3). Alternatively, the user can
specify the file name on the command line. If the input
file is specified, the number of networks to print can also
be specified. The EPINET program uses four user specified
node colors to represent the four significance levels
defined by the corresponding p-values, and five program
defined line colors to denote the five types of epistasis
effects (Figure 3). The CPUHD estimates CPU time
required to complete the data analysis using the EPISNP
program and the total storage space required to store the
output files. This is helpful for planning an epistasis anal-
ysis. For example, a potentially excessively long running
time can be avoided by running CPUHD first. Detailed
instructions for using EPISNPmpi, EPISNP and the three
utility programs described below are available in two user
manuals [17,18].

Commodity cluster-based processing of EPISNPmpi
EPISNPmpi has been developed and tested on many
modern high-performance computers and supercomputer
systems. Price-to-performance ratio of the computing sys-
tem can be an important consideration in practice. To uti-
lize commonly available computer hardware for high
performance computing, EPISNPmpi has been imple-
mented to run on commodity cluster or on an inexpensive

network of workstations using MPICH message passing
libraries. MPICH is a portable implementation of MPI, a
standard for message-passing for distributed-memory
applications, and is freely available at http://
www.mcs.anl.gov/mpi/mpich1/download.html.

Discussions
Computational difficulty is the main bottleneck of epista-
sis testing in large scale GWAS. The computing tools we
have developed help address the computational difficulty
in epistasis analysis in large scale GWAS. The computing
speed can be further improved if a more powerful compu-
ter system is used. However, serious computational chal-
lenges still exist in at least three areas: 1) Increased
number of SNPs used in GWAS, 2) Integration of GWAS
and a gene expression study, and 3) Joint epistasis testing
for three or more SNPs at a time. The human genome has
about 10 million SNPs. Although an exhaustive analysis
of all human SNPs is not yet a reality, the number of SNPs
used in GWAS is clearly rapidly increasing. Since the com-
puting time for epistasis testing increases approximately
as a quadratic function of the number of SNPs, computing
difficulty will rapidly increase as the number of SNPs
increases. Integration of large scale GWAS and a gene
expression study using the same individuals poses
another serious computational challenge. In this case, the
computing time required is multiplied by the number of

Examples of chromosome view of single-locus significance and sample size produced by the EPISNPPLOT program that draws chromosome views for all chromosomes by one commandFigure 2
Examples of chromosome view of single-locus significance and sample size produced by the EPISNPPLOT pro-
gram that draws chromosome views for all chromosomes by one command. The figure on the left is an example of 
chromosome view based on the original marker order, and the figure on the right is an example of chromosome view in 
ascending order of significant dominance effects.

0.00

1.09

2.19

3.28

4.38

5.47

6.56

7.66

8.75

9.85

10.94

0

59

118

177

236

295

354

413

472

531

590

M
ar

0
M

ar
3

M
ar

6
M

ar
9

M
ar

12

M
ar

15

M
ar

18

M
ar

21

M
ar

24

M
ar

27

M
ar

30

M
ar

33

M
ar

36

M
ar

39

M
ar

42

M
ar

45

M
ar

48

S
ig

ni
fic

an
ce

 =
 lo

g1
0(

1/
p) N

um
ber of Individuals

Marker

Overall Significance
Additive Significance
Dominance Significance
Number of Individuals

0.00

1.60

3.21

4.81

6.41

8.02

9.62

11.22

12.82

14.43

16.03

0

59

118

177

236

295

354

413

472

531

590

M
ar

73
1

M
ar

46
5

M
ar

85
3

M
ar

88
2

M
ar

96
0

M
ar

65
5

M
ar

97
3

M
ar

38

M
ar

12
3

M
ar

4

M
ar

66
0

M
ar

51

M
ar

81
9

S
ig

ni
fic

an
ce

 =
 lo

g1
0(

1/
p) N

um
ber of Individuals

Marker

Overall Significance
Additive Significance
Dominance Significance
Number of Individuals
Page 6 of 9
(page number not for citation purposes)

http://www.mcs.anl.gov/mpi/mpich1/download.html
http://www.mcs.anl.gov/mpi/mpich1/download.html


BMC Bioinformatics 2008, 9:315 http://www.biomedcentral.com/1471-2105/9/315
genes, where gene expression intensity of each gene is
treated as one phenotype [19]. The joint epistasis testing
for three or more SNPs could be the ultimate computing
challenge. As shown in Table 1, adding just one SNP to the
pairwise epistasis test for 1,000,000 SNPs could require 1/
3 million times as much computing time. A tempting
solution would be to test epistasis effects for a subset of
SNPs with significant single-locus effects. However, this is
not a good idea because requiring significant main effects
for epistasis testing could miss many or even all signifi-
cant epistasis effects with stringent p-values to declare sig-
nificance. For example, the significant epistasis effects
with p < 10-7 for 5700 SNPs covering all 23 human chro-
mosomes reported in Ma et al. [20] did not involve any
SNPs with significant single-locus at p < 10-4. Therefore,
requiring significant single-locus effects at p < 10-4 would
have missed all the ten significant epistasis effects at p <
10-7 among the 5700 SNPs. The EPISNPmpi and EPISNP
programs provide capabilities for testing all possible pair-
wise epistasis effects. However, the use of these programs
should be considered as only one step in GWAS analysis.
Considerable work still may be required for digesting the
test results.

Conclusion
The EPISNPmpi parallel computing program provides a
computing tool capable of completing pairwise epistasis
tests in large scale GWAS in a timely manner using a
supercomputer system. The serial computing programs
can be useful and convenient tools for epistasis analysis in
small scale GWAS using commonly available computer
hardware. EPISNPmpi is a portable program which not
only exploits the capability of supercomputers but also
runs on inexpensive loosely coupled cluster systems.

Availability and requirements
Project name: Parallel and serial computing for genome-
wide SNP analysis

Project homepage: http://animalgene.umn.edu/

Operation systems:

1. EPISNPmpi http://animalgene.umn.edu/episnpmpi/
index.html:

Examples of SNP epistasis network of a phenotype produced by the EPINET program that by default draws the 10 largest epistasis networks from the input test resultsFigure 3
Examples of SNP epistasis network of a phenotype produced by the EPINET program that by default draws 
the 10 largest epistasis networks from the input test results. Line color: black = I-effect, red = A × A, purple = A × D, 
blue = D × A, green = D × D. Node color: red: p < 10-8, cyan: p < 10-7, green: p < 10-6, yellow: p < 10-5.

                                                            
Page 7 of 9
(page number not for citation purposes)

http://animalgene.umn.edu/
http://animalgene.umn.edu/episnpmpi/index.html
http://animalgene.umn.edu/episnpmpi/index.html


BMC Bioinformatics 2008, 9:315 http://www.biomedcentral.com/1471-2105/9/315
EPISNPmpi is the parallel computing program for testing
single-locus and pairwise epistasis effects and is available
for running on the majority of parallel computer systems.
The following are the currently supported processors type,
MPI libraries, compilers and corresponding binaries (see
Table 3):

2. epiSNP http://animalgene.umn.edu/episnp/
index.html:

The epiSNP package consists of four serial computing pro-
grams, EPISNP, CPUHD, EPISNPPLOT, and EPINET.
EPISNP is the serial computing program for testing single-
locus and pairwise epistasis effects. The following are the
currently supported operation systems, processors types,
and compilers used to generate binaries (see Table 4):

In the above binaries, epiSNP_2.0_Windows.zip contains
all the four programs (EPINET, CPUHD, EPISNPPLOT,
EPINET), while each of the other .gz file contains EPISNP
and CPUHD only.

Other requirements: None.

License: None.

Any restrictions to use by non-academics: None.

Abbreviations
GWAS: genome-wide association study; SNP: single
nucleotide polymorphism; LE: linkage equilibrium; LD:
linkage disequilibrium; HWE: Hardy-Weinberg equilib-
rium; HWD: Hardy-Weinberg disequilibrium; I-effect:
two-locus interaction effect; A × A: additive × additive
epistasis effect; A × D: additive × dominance epistasis
effect; D × A: dominance × additive epistasis effect; D × D:
dominance × dominance epistasis effect; Blade: 2.6 GHz
IBM BladeCenter Linux cluster at the Minnesota Super-
computer Institute; Calhoun: the SGI Altix XE 1300 Linux
cluster system with 2.66 GHz Intel Clovertown processor
at the Minnesota Supercomputer Institute.
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EPISNP and CPUHD programs. HBR directed the devel-
opment of the parallel computing coding and directed the
work of porting the parallel computing code to various
parallel and serial computing platforms including com-
modity cluster processing, and did a portion of the coding
of the EPISNPmpi program. DD is the author of the EPIS-
NPPLOT program. JRG is the author of the EPINET pro-
gram. YD coordinated this research, designed most
functions of the computing tools, and is the lead writer of
the manuscript. All authors read and approved this man-
uscript.

Table 3: Currently supported processors type, MPI libraries, compilers and corresponding binaries

MPI library Compiler Processor Binary

Voltaire MPI Intel Intel EPISNPmpi_2.0_Voltaire_intel_intel.tar.gz
Voltaire MPI Intel AMD EPISNPmpi_2.0_Voltaire_intel_AMD.tar.gz
Voltaire MPI Intel Intel (EM64T) EPISNPmpi_2.0_Voltaire_suse_EM64T.tar.gz
PathMPI Pathscale AMD EPISNPmpi_2.0_Pathscale_suse_AMD.tar.gz
IntelMPI Intel AMD EPISNPmpi_2.0_intelMPI.suse_AMD.tar.gz
OpenMPI Intel Intel (EM64T) EPISNPmpi_2.0_OpenMPI_suse_EM64T.tar.gz
IBM MPI Intel Power4 EPISNPmpi_2.0_IBM_AIX_pwr.tar.gz
MPT Intel Itanium EPISNPmpi_2.0_SGI-Altix_SUSE_itanium.tar.gz

Table 4: Currently supported operation systems, processors types, and compilers used to generate binaries

Operation system Compiler Processor Binary

Widows Intel Intel/AMD epiSNP_2.0_Widows.zip
Irix SGI MIPS epiSNP_2.0_SGI_Irix_Mips.tar.gz
Linux (SUSE) Intel AMD epiSNP_2.0_intel_suse_AMD.tar.gz
Linux (SUSE) Intel Intel (EM64T) epiSNP_2.0_intel_suse_EM64T.tar.gz
Linux Portland Intel (32bit) epiSNP_2.0_Linux_Portland_Intel.tar.gz
Linux (SUSE) Pathscale AMD epiSNP_2.0_Pathscale_suse_AMD.tar.gz
Unix (AIX) XLF Power4 epiSNP_2.0_xlf_AIX_power.tar.gz
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