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Abstract

Background: Recent discoveries of a large variety of important roles for non-coding RNAs
(ncRNAs) have been reported by numerous researchers. In order to analyze ncRNAs by kernel
methods including support vector machines, we propose stem kernels as an extension of string
kernels for measuring the similarities between two RNA sequences from the viewpoint of
secondary structures. However, applying stem kernels directly to large data sets of ncRNAs is
impractical due to their computational complexity.

Results: We have developed a new technique based on directed acyclic graphs (DAGs) derived
from base-pairing probability matrices of RNA sequences that significantly increases the
computation speed of stem kernels. Furthermore, we propose profile-profile stem kernels for
multiple alignments of RNA sequences which utilize base-pairing probability matrices for multiple
alignments instead of those for individual sequences. Our kernels outperformed the existing
methods with respect to the detection of known ncRNAs and kernel hierarchical clustering.

Conclusion: Stem kernels can be utilized as a reliable similarity measure of structural RNAs, and
can be used in various kernel-based applications.

Background

Recent discoveries of a large variety of important roles for
non-coding RNAs (ncRNAs), including gene regulation or
maturation of mRNAs, TRNAs and tRNAs, have been
reported by many researchers. Most functional ncRNAs
form secondary structures related to their functions, and
secondary structures without pseudoknots can be mod-
eled by stochastic context-free grammars (SCFGs) [1,2].
Therefore, several computational methods based on
SCFGs have been developed for modeling and analyzing

functional ncRNA sequences [3-14]. These grammatical
methods work very well if the secondary structures of the
target ncRNAs are modeled successfully. However, it is dif-
ficult to build such stochastic models since it is necessary
to construct complicated models, to prepare the number
of training sequences, and/or to obtain prior knowledge
for some families containing non-uniform and/or non-
homologous sequences such as snoRNA families. Thus,
we need more robust methods for performing structural
ncRNA analysis. On the other hand, support vector
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machines (SVMs) and other kernel methods are being
actively studied, and have been proposed for solving vari-
ous problems in many research fields, including bioinfor-
matics [15]. These methods are more robust than other
existing methods, and we therefore considered using ker-
nel methods including SVMs instead of the grammatical
methods to analyze functional ncRNAs.

Several kernels for ncRNA sequences have been developed
so far [16-19]. Kin et al. have proposed marginalized
count kernels for RNA sequences [16]. Their kernels calcu-
late marginalized count vectors of base-pair features
under SCFGs trained with a given dataset, and compute
the inner products. Therefore, marginalized count kernels
inherit the drawback of the grammatical methods. Washi-
etl et al. have developed a program called RNAz, which
detects structurally conserved regions from multiple align-
ments by using SVMs [17]. RNAz employs the averaged z-
score of the minimum free energy (MFE) for each
sequence and structure conservation index (SCI). Assum-
ing that MFE for the common secondary structure is close
to that for each sequence if a given multiple alignment is
structurally conserved, SCI is defined as the rate of MFE
for the common secondary structure to the averaged MFE
for each sequence. These features allow for the detection
of structurally conserved regions. However, since these
features cannot measure the structural similarities
between RNA sequences, it is difficult to apply them to
other aspects of structural RNA analysis, such as detecting
particular families. Several works which involve some
helpful features specific to given target families (e.g. miR-
NAs and snoRNAs) have been proposed [18,19]. These
family-specific methods perform well in detecting their
target families. However, in order to apply this strategy to
other families, it is necessary to develop new features for
every family.

For the purpose of analyzing ncRNAs using kernel meth-
ods including support vector machines, we have proposed
stem kernels, which extend the string kernels to measure
the similarities between two RNA sequences from the
viewpoint of secondary structures [20]. The feature space
of the stem kernels is defined by enumerating all possible
common base pairs and stem structures of arbitrary
lengths. However, since the computational time and
memory size required for the naive implementation of
stem kernels are of the order of O(n*), where n is the
length of the inputted RNA sequence, applying stem ker-
nels directly to large data sets of ncRNAs is impractical.

Therefore, we develop a new technique based on directed
acyclic graphs (DAGs) derived from base-pairing proba-
bility matrices of RNA sequences, which significantly
reduces the computational time of stem kernels. The time
and space complexity of this method are approximately of
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the order of O(n2). Furthermore, we propose profile-pro-
file stem kernels for multiple alignments of RNA
sequences, which utilize base-pairing probability matrices
for multiple alignments instead of those for individual
sequences.

Methods

In this section, we propose new kernels for analyzing
ncRNAs. First, an outline of our previous work is pro-
vided, after which the proposed new technique based on
directed acyclic graphs (DAGs) derived from base-pairing
probability matrices of RNA sequences is described.
Finally, the proposed kernels are extended to kernels for
multiple alignments of RNA sequences by utilizing aver-
aged base-pairing probability matrices.

Naive stem kernel algorithms

Before proposing the new method, we briefly describe
stem kernels which have been proposed as an extension of
the string kernels for measuring the similarities between
two RNA sequences from the viewpoint of secondary
structures [20]. The feature space of the stem kernels is
defined by enumerating all possible common base pairs
and stem structures of arbitrary lengths. The stem kernel
calculates the inner product of common stem structure
counts. In other words, the more stem structures two RNA
sequences have in common, the more similar they are.
However, the time needed for the explicit enumeration of
all substructures obviously grows exponentially, which
renders this method infeasible for long sequences. We
have therefore developed an algorithm for calculating
stem kernels which is based on the dynamic programming
technique. For an RNA sequence x = x,x, ... x, (x,€ {A, C,
G, U}), we denote a contiguous subsequence x; ... x, by x
[j, k], and the length of x by |x|. The empty sequence is
indicated by e. For a base a, the complementary base is
denoted as a . For a string x and a base a, xa denotes the
concatenation of x and a. For two RNA sequences x and x/,
the stem kernel K is defined recursively as follows:

K(e,x)=K(x,e)=1, forVx,x’,
K(xa,x')=K(x,x') + Z

_— T
x),=a i<j s.t. x;=a,xj=a

K(x[k+1,|x|],x[i+1,j-1]).

(1)

Both the time and the memory required for the calcula-
tion K(x, x') are of the order of O(|x|2|x'|2), which renders
this method impractical for applying to large data sets of
ncRNAs.
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(c) directed acyclic graph (d) dynamic programming for DAG kernels

Figure |

Averaged base-paring probability matrices and DAG kernels using the dynamic programming technique ena-
ble us to calculate profile-profile stem kernels for multiple alignments of RNA sequences. (a) Given a pair of mul-
tiple alignments, (b) Calculate the base-paring probability matrices for each sequence in the multiple alignments and average
these base-pairing probabilities with respect to the columns of each alignment. (c) Build a DAG for the averaged base-pairing
probability matrix, where each vertex corresponds to a base pair whose probability is above a predefined threshold. (d) Calcu-

late a kernel value for a pair of DAGs for the multiple alignments by using the DAG kernel and the dynamic programming tech-
nique.
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Stem kernels with DAG representation

Here, we develop a new technique based on directed acy-
clic graphs (DAGs) derived from base-pairing probability
matrices of RNA sequences, which significantly reduces
the time needed for computing stem kernels. Figure 1 con-
tains a diagram illustrating the calculation of the new ker-
nels.

First, for each RNA sequence x = x,x, ... x,, we calculate a

base-pairing probability matrix P* using the McCaskill
algorithm [21]. We denote the base-pairing probability of

(x ;) by P, which is defined as:

1y’

P =Elly|x]= Y ply %)) 2

reY(x)

where Y (x) is an ensemble of all possible secondary
structures of x, p(y|x) is the posterior probability of y given
x, and [;(y) is an indicator function, which equals 1 if the
i-th and the j-th nucleotides form a base-pair in y or 0 oth-
erwise. We employ the Vienna RNA package [22] for com-
puting these expected counts (2) using the McCaskill
algorithm.

Subsequently, we build a DAG for the base-pairing prob-
ability matrix, where each vertex corresponds to a base
pair whose probability is above a predefined threshold p*.
Let G, = (V,, E,) be the DAG for an RNA sequence x, where

V, and E, are vertices and edges in the DAG G,, respec-

tively. For each v;= (k, I) € V,, (x;, x;) is a likely base pair,

in other words, P;j >p" . Each e;€ Exis an edge from ver-

tex v; to vertex v;.

For vertices v;= (k, I) and v;. = (k', I'), we can define a partial
order, v; < v, if and only if k <k' and I > I'. An edge e;; con-
nects vertices v;and v; if and only if v; < v; and there exists
no ;€ Vysuch thatv; < v, < ;.

Finally, we calculate a kernel value between two DAGs
representing RNA structure information through the DAG
kernel using a dynamic programming technique. The ver-
tices in the DAG can be numbered in a topological order
such that for every edge ¢;; i <j is satisfied, in other words,
there are no directed paths from v; to v;if i <j. Thus, we can
apply the dynamic programming technique as follows:

http://www.biomedcentral.com/1471-2105/9/318

K(Gy,Gy) = (i, i)

v€100t(Gy ) vyer00t(Gy)

Ky (5 v7) + 8,(1) + 8,(v)

Ky (03, 0)+ 8,00 Y 8(eq)r (1) + 8,(v)

j>i

@] stj>if > 1)
@ st.f>1)

K, (03 0) + 8,(0:) + 8,(v) D 8ol )r(in ) (@ s:t.j>1)

r(i,i’) = Vs
Kuvive) Y Kelegoeq)r( )

j>i i

+8,(1:) D 8ele (i) + 8, (v7) D gles)r(i, ) (otherwise)

j>i j>i

3)

where 100t(G) is a set of vertices which have no incoming
edges, K, and K, are kernel functions for vertices and edges,
respectively, and g,and g, are gap penalties for vertices and
edges, respectively. K calculates the sum of kernel values
for all pairs of possible substructures of G, and G, .. Each of
these kernel values is composed of the product of the sub-
kernels K, K,, g,and g,. Therefore, K is a convolution ker-
nel and is positive semi-definite if K, and K, are also
positive semi-definite [23].

The time and the memory required for the computation of
K are of the order of O(c2|V,||V,|) and O(|V,||V,]),
respectively, where ¢ is the maximum out-degree of G, and
G, We can control |V,| using the predefined threshold for
base pairs, p*. When p* = 0, V, contains all possible base
pairs, i.e., |V,| = n(n - 1)/2. When p* > 0, since each base
can take part in V, at most 1/p* times, |V,| is proportional
to n of the length of the RNA sequence x. Since in many
cases ¢ << |V,|, the time and the memory required for this
algorithm are approximately of the order of O(n2) for suf-
ficiently large values of p*.

Several choices of sub-kernels K, K,, g,and g,in Eq. (3) are
available. In order to connect the DAG-based stem kernels
to the naive stem kernels calculated from Eq. (1), we first
define simple sub-kernels as follows:

1 [ Fe=xand (x,x) = (%), X7)
K,(v,v)= forv=(k1)e V, andv' = (K,I')e V

0 (otherwise)

(4)

K. (e¢) = 1 (eeE, z.md eecE,) (5)
0 (otherwise)

g =1 Yve VUV, (6)

g(e)=1, Vee E,UE,. (7)

When p* — 0, the DAG-based stem kernels calculated
form Eq. (3) with the above sub-kernels approach the
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naive stem kernels calculated from Eq. (1) since both Egs.
(1) and (3) designate recursive traversal to all substruc-
tures of x and x' in the sense of the partial order <, and
when p* = 0, the substructures of x and x' for both kernels
which contribute kernel values are identical to each other
due to these sub-kernels. More sophisticated kernels can
be constructed using substitution scoring matrices, as well
as local alignment kernels [24]:

K,(v,v) = EXP( PPy - o - S(x, xp, Xy, X’l’))

(forv=(k1)e V, andv' = (K, I)e V,),

(8)
n(e)+n(e’) / ,
Kpey={1" e B mdde b )
0 (otherwise)
g(W) =74 VYve V,uV, (10)
g(e) =7, Vee E,UE,, (11)

where S(x;, x,, %, x7) is a substitution scoring function
from a base pair (x, x;,) to a base pair (x,x7), > 0isa

weight parameter for base pairs, > 0 is the decoy factor
for loop regions, and n(e) is the number of nucleotides in
the loop region enclosed by base pairs at both ends of an
edge e.

In our experiments, we employed the RIBOSUM 80-65 [9]
for S, and p* =0.01, &= 0.1, y= 0.4, which were optimized
by cross-validation tests. In order to prevent sequence
length bias, we normalize our kernels K as follows:

K(Gx,Gx)

K'(G,,Gy) = )
o \/K(GXIGX)K(Gx'rGX')

Stem kernels can be applied only to RNA secondary struc-
tures. However, primary sequences are still important for
calculating the similarities between a pair of RNA
sequences. Therefore, in order to take into account both
primary sequences and secondary structures, we combine
our stem kernels with the local alignment kernels by add-
ing them.

Profile-profile stem kernels

If multiple alignments of homologous RNA sequences are
available, we can calculate their base-paring probability
matrices more precisely by taking the averaged sum of
individual base-pairing probability matrices in accord-
ance with the given multiple alignment [25]. The algo-
rithm of the DAG-based stem kernels for a pair of RNA
sequences can be extended to that for a pair of multiple
alignments of RNA sequences using averaged base-pairing
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probability matrices. Since the method of the averaged
base-paring probability matrices has been proven to be
accurate and robust by Kiryu et al. [25], we can expect this
method to improve the proposed stem kernel method. We
call these profile-profile stem kernels.

We denote the i-th column of a multiple alignment A by
A;, a nucleotide in A, of the j-th sequence by a;, and the
number of aligned sequences in A by num(A). We can cal-
culate the averaged base-pairing probability matrix of a
given multiple alignment A as follows:

A 1 ’
Py =—— E Py,
num(A) ot

P = {P;‘(,k)p(l) (for either of x;, and x; are not gaps)

0 (otherwise),

where x' is the sequence x with all gaps removed and p(k)
is an index on x' of the k-th column of A. After construct-

ing Pk‘?, we can build DAGs, and the kernel K, for col-
umns can be calculated by replacing the substitution
function S in Eq. (9) with

1 num(A) num(A’)

S(A Ay Ay, AY) = ——
(A Ay Ay, AT) num(A)mm(A) &

, ;o
Say, ay, . ayy)
i'=1
;o , ,
, ;o S(ayi ayy, ey ary) (any of ay;, ay, ajy, and ayy are not gaps)
S'api, ay, e, dyy) = .
0 (otherewise).

Results and Discussion

In this section, we present some of the results of our exper-
iments in order to confirm the validity of our method as
well as a discussion of those results.

Discrimination with SVMs and other kernel machines

We performed several experiments in which SVMs based
on our kernel attempted to detect known ncRNA families.
The accuracy was assessed using the specificity (SP) and
the sensitivity (SN), which are defined as follows:

po TN g TP
TN+FP TP+FN

where TP is the number of correctly predicted positives, FP
is the number of incorrectly predicted positives, TN is the
number of correctly predicted negatives, and FN is the
number of incorrectly predicted negatives. Furthermore,
the area under the receiver operating characteristic (ROC)
curve, i.e., the ROC score, was also used for evaluation.
The ROC curve plots the true positive rates (= SN) as a
function of the false positive rates (= 1 - SP) for varying
decision thresholds of a classifier.

In our first experiment, the discrimination ability and the
execution time of the stem kernels were tested on our pre-
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vious dataset used in [20], which includes five RNA fami-
lies: tRNAs, miRNAs (precursor), 5S rRNAs, H/ACA
snoRNAs, and C/D snoRNAs. We chose 100 sequences in
each RNA family from the Rfam database [26] as positive
samples such that the pairwise identity was not above
80% for any pair of sequences, and 100 randomly shuf-
fled sequences with the same dinucleotide composition as
the positives were generated as negative samples for each
family. The discrimination performance was evaluated
using 10-fold cross validation. In order to determine an
appropriate cutoff threshold for the base-pairing proba-
bilities p*, we performed the experiments for various val-
ues of p* € {0.1, 0.01, 0.001, 0.0001}. Figure 2 shows the
accuracy and the calculation time for each threshold.
Since the accuracy for p* = 0.01 was slightly better than
that for the other values, and the calculation time in this
case was acceptable for practical use, we fixed p* = 0.01 as
the default cutoff threshold of the base-pairing probabili-
ties. Then, we compared the DAG-based stem kernels with
the naive stem kernels. The experimental results shown in
Table 1 indicate that the DAG-based kernels are signifi-
cantly faster than the naive kernels owing to the approxi-
mation by a predefined threshold of the base-pairing
probability. Furthermore, in spite of using an approxima-
tion, the DAG-based kernels are slightly more accurate
than the naive kernels due to the convolution with the
local alignment kernels and the removal of low-likeli-
hood base pairs which may create noise.

Next, we performed the experiment on a large dataset
including multiple alignments, which was used to train
RNAz [17]. This dataset includes 12 ncRNA families of
7,169 original alignments, extracted from the Rfam data-
base [26], with the exception of the single-recognition
particle (SRP) RNA and RNAseP, which were extracted
from [27,28]. Each alignment consists of two to ten
sequences aligned by CLUSTAL-W [29], and the mean
pairwise identities are between 50% and 100%. The data-
set also includes 7,169 negatives, which were generated
from the original alignments by shuffling the columns,
where the conservation rate on each column was pre-
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served [30]. In this experiment, for each RNA family,
SVMs trained the model which distinguishes the original
alignments of a target RNA family from all other original
and shuffled alignments in the dataset. We compared the
profile-profile stem kernels with the local alignment ker-
nels [24], which only consider primary sequences of
RNAs. Subsequently, we extended the local alignment ker-
nels using the same technique as in the case of the profile-
profile stem kernels in order to account for multiple align-
ments.

The discrimination performance of both kernels was eval-
uated with 10-fold cross-validation. Table 2 presents the
experimental results for this dataset. The stem kernels
attained nearly perfect discrimination for all families in
this dataset, while the local alignment kernels failed to
discriminate some families. The performance with respect
to tmRNA and RNAse P in terms of sensitivity was espe-
cially low. Furthermore, the stem kernels collected a
smaller number of support vectors in comparison with
the local alignment kernels due to the robustness of the
stem kernels with respect to secondary structures. This is a
desirable feature since the prediction process of SVMs
requires only support vectors for the calculation of kernel
values against an input sequence.

In addition, we employed another kernel machine instead
of SVM, called support vector data description (SVDD)
[31], which calculates a spherically shaped boundary
around a dataset so as to increase the robustness against
outliers without the need for negative examples. In other
words, SVDD does not need to generate artificial negative
examples. Many applications of SVMs to biological prob-
lems require the artificial generation of negative examples
such as shuffled positive sequences. However, since most
artificial negatives can be easily distinguished from posi-
tives in many cases, the generation of artificial negative
examples is a crucial problem to attaining practical predic-
tion performance [32]. In this regard, SVDD can avoid this
problem by using only positive examples. We applied
SVDD instead of SVMs to the above dataset. Table 3 shows

Table I: Comparison of the discrimination capabilities of the naive stem kernels and the DAG-based stem kernels.

Naive stem kernels

DAG-based stem kernels

ncRNA type ROC SP SN Time (s) ROC SP SN Time (s)
tRNA 0.97 0.82 0.94 0.9 0.98 0.93 0.86 9.9 x 104

5S rRNA 0.97 0.97 0.74 5.1 1.00 1.00 0.95 22 %103
miRNA 0.88 0.65 0.88 1.6 0.86 0.88 0.69 9.7 x 104
H/ACA snoRNA 0.80 0.80 0.54 12.8 0.89 0.90 0.72 4.1 x 103
C/D snoRNA 0.78 0.55 0.79 4.7 0.87 0.91 0.71 20x 103

The dataset contains five RNA families: tRNAs, miRNAs, 55 rRNAs, H/ACA snoRNAs, and C/D snoRNAs. ncRNA type: name of the target ncRNA
family. ROC: ROC score, equal to the area under the ROC curve. SP: specificity of the discrimination of the target ncRNA family. SN: sensitivity of
the discrimination of the target ncRNA family. Time: averaged time for each kernel computation on a 2.0 GHz AMD Opteron processor.
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Calculation time and ROC scores for various cutoff
threshold values of the base-pairing probabilities. We
timed the DAG-based stem kernels in calculating a kernel
matrix for each family of the training set containing 100 posi-
tives and 100 negatives, and confirmed the accuracy of their
discrimination through the ROC scores.

the surprising discovery that there is little difference in the
accuracy of SVMs and SVDD. This result indicates that
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negative examples produced by shuffling the alignments
make a very small contribution to learning the classifiers
with our kernels. Furthermore, the number of support
vectors in SVDD decreased significantly in comparison to
SVMs.

In this section, we trained SVMs with the stem kernels to
detect particular ncRNA families. On the other hand, the
SVMs in RNAz are trained to detect any structural ncRNAs,
including unknown ncRNAs [17]. In order to demonstrate
that RNAz is capable of discovering unknown ncRNAs
with no bias toward the ncRNA families of the training
set, SVMs were trained by excluding particular families of
ncRNAs, and were used for classifying the excluded
ncRNAs and the shuffled negatives. We attempted the
same training scheme as described in [17] to investigate
the ability of the stem kernels to discover unknown
ncRNAs using the same dataset as in the experiment of
Table 2. As a result, the ROC scores in this test were 0.699
for the stem kernels, 0.582 for the local alignment kernels,
and 0.949 for RNAz. This result suggests that the ability of
stem kernels to discover unknown ncRNAs is weaker than
that of RNAz. The key feature in discovering unknown
structural ncRNAs is to detect evolutionary conserved
structures in multiple sequence alignments. The SCI used
in RNAz directly assesses the structure conservation in
multiple alignments, and it contributes to the ability of
detecting unknown structural ncRNAs. However, since the
SCI cannot measure the structural similarities between
RNA sequences, it is difficult to apply it to other aspects of
structural RNA analysis, such as detecting particular fami-
lies. On the other hand, the stem kernels evaluate com-

Table 2: Non-coding RNA detection using SVMs in comparing the stem kernels with the local alignment kernels.

Stem kernels

Local alignment kernels

ncRNA type Rfam Accession N ROC SP SN nSV ROC SP SN nSV

5S ribosomal RNA RF00001 449 1.000 1.000 0.996 164.9 (1.3) 1.000 1.000 0.996 4013.0 (31.1)
U2 spliceosomal RNA RF00004 566 0.999 1.000 0.993 631.2 (4.9) 0.999 1.000 0.986 41175 (31.9)
tRNA RF00005 495 0.998 1.000 0.998 234.8 (1.8) 1.000 1.000 0.998 4287.2 (33.2)
Hammerhead ribozyme IlI RF00008 588 1.000 1.000 0.997 221.2 (1.7) 1.000 1.000 0.997 2452.1 (19.0)
U3 snoRNA RF00012 471 1.000 1.000 0.996 266.2 (2.1) 0.998 1.000 0.870 4665.3 (36.2)
U5 spliceosomal RNA RF00020 510 1.000 1.000 0.996 525.5 (4.1) 1.000 1.000 0.994 4060.0 (31.5)
tmRNA RF00023 730 1.000 1.000 0.997 685.8 (5.3) 0975 1.000 0.037 4677.7 (36.2)
Group Il intron RF00029 604 1.000 1.000 0.993 482.7 (3.7) 1.000 1.000 0.990 4217.3 (32.7)

mir-10 RF00104 620 1.000 1.000 0.998 59.5 (0.5) 1.000 1.000 0.998 159.6 (1.2)
U70 snoRNA RF00156 608 0.999 1.000 0.990 195.0 (1.5) 0.999 1.000 0.992 3811.8 (29.5)
RNAse P - 656 1.000 1.000 0.991 490.6 (3.8) 0.905 1.000 0.0I8 4729.2 (36.6)
SRP RNA - 872 1.000 1.000 0.995 441.5 (3.4) 0.908 1.000 0.900 4373.9 (33.9)
Total 7169 1.000 1.000 0.995 43989 (229) 0977 1.000 0.788 45564.6 (29.5)

ncRNA type: name of the target ncRNA family. Rfam Accession: accession number of the target ncRNA family in Rfam. N: number of alignments.
ROC: ROC score, equal to the area under the ROC curve. SP: specificity of the discrimination of the target ncRNA family. SN: sensitivity of the

discrimination of the target ncRNA family. nSV: number of support vectors collected in the training processes and their rates against the numbers
of the training alignments within parentheses.
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Table 3: Non-coding RNA detection using SVDD in comparing the stem kernels with the local alignment kernels.

Stem kernels Local alignment kernels

ncRNA type Rfam Accession N ROC SP SN nSV ROC SP SN nSV
5S ribosomal RNA RF00001I 449 1.000 1.000 0.940 27.8 (6.9) 1.000 1.000 0.886 48.4 (12.0)
U2 spliceosomal RNA RF00004 566 0997 0999 0912 51.8(10.2) 0999 1.000 0.844 92.0 (18.1)
tRNA RF00005 495 0983 0.948 0.939 26.8 (6.0) 0.999 0999 0.853 67.0 (15.0)
Hammerhead ribozyme llI RF00008 588 1.000 0998 0971 142 (2.7) 1.000 1.000 0.968 19.3 (3.6)
U3 snoRNA RF00012 471 1.000 1.000 0915 36.3 (8.6) 0.959 1.000 0.775 95.5 (22.5)
US spliceosomal RNA RF00020 510 0.999 0.998 0.939 30.3 (6.6) 1.000 1.000 0.882 57.2(12.5)
tmRNA RF00023 730 1.000 1.000 0881 83.1(l26) 0757 1.000 0.037 636.5 (96.9)
Group Il intron RF00029 604 0996 0989 0.942 309 (5.7) 0.999 1.000 0.922 48.7 (9.0)
mir-10 RFO0104 620 1.000 1.000 0.977 13.3 (24) 1.000 1.000 0.984 10.7 (1.9)
U70 snoRNA RFO0156 608 0.998 0.996 0.952 25.5 (4.7) 1.000 1.000 0.95I 29.0 (5.3)
RNAse P - 656 0998 1.000 0.887 66.2(11.2) 0.629 1.000 0.006 587.5 (99.5)
SRP RNA - 872 1.000 1.000 0.939 54.4 (6.9) 0.994 1.000 0.88I 95.3 (12.1)
Total 7169 0998 0995 0932 460.6(7.1) 0938 1.000 0.729 1787.1 (27.7)

ncRNA type: name of the target ncRNA family. Rfam Accession: accession number of the target ncRNA family in Rfam. N: number of alignments.
ROC: ROC score, equal to the area under the ROC curve. SP: specificity of the discrimination of the target ncRNA family. SN: sensitivity of the
discrimination of the target ncRNA family. nSV: number of support vectors collected in the training processes and their rates against the numbers

of the training alignments within parentheses.

mon stem structures between two multiple alignments, in
other words, the stem kernels are not the measure of the
structure conservation, but rather are the measure of the
structural similarity between ncRNAs. Therefore, the stem
kernels can be applied to various kernel methods includ-
ing not only SVMs but also kernel principal component
analysis (KPCA), kernel canonical correlation analysis
(KCCA), and so on [15].

Remote homology search

Furthermore, we conducted a remote homology search of
ncRNAs using SVMs with our kernel. Our kernel method
was compared with INFERNAL [7] based on profile
SCFGs. INFERNAL has been recommended for RNA hom-
ology search by the benchmark of currently available RNA
homology search tools called BRAliBase III [33]. This
benchmark dataset contains tRNAs, 55 rRNAs and U5
spliceosomal RNAs, which have relatively conserved
sequences and/or secondary structures, whereby both
INFERNAL and our kernel can easily detect homologs
(data not shown).

Therefore, we performed a more practical remote hom-
ology search on the dataset shown in Table 4, which
includes 47 sequences of H/ACA snoRNAs and 41
sequences of C/D snoRNAs in C. elegans from the litera-
ture [34]. These mean pairwise identities are too low to be
discovered by existing methods. For each family, non-
homologs were generated by shuffling every sequence 10
times. The shuffling processes preserved dinucleotide fre-

quencies. Twenty query sets of 5 and 10 sequences were
sampled from each family, respectively. Using these query
sets, we attempted to search for homologs among all of
the original and the shuffled sequences.

For INFERNAL, each query was aligned by CLUSTAL-W
[29], folded by RNAalifold [35], and converted into a cov-
ariance model (CM). The CM searched for homologous
sequences in the dataset, calculating a bit score for each
sequence. A ROC curve can be plotted using the bit scores
as decision values.

For the stem kernel, every sequence for each query was
shuffled 10 times in order to generate negative samples.
Then, the SVM with the stem kernel learned the discrimi-
nation model from the query and the negatives. The
model searched for homologous sequences in the dataset,
calculating an SVM class probability for each sequence. A
ROC curve can be plotted in this case using SVM class
probabilities as decision values.

Table 4: Summary of the dataset for the experiment of the
remote homology search.

ncRNA type N Length %id
H/ACA snoRNA 47 145.1 29%
C/D snoRNA 41 84.6 30%

ncRNA type: name of the target ncRNA family. N: number of
sequences in the dataset of the target ncRNA family. length: average
length of the sequences. %id: mean pairwise identity of the dataset.
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Figures 3 and 4 display the ROC curves of the homology
searches of H/ACA snoRNAs and C/D snoRNAs by INFER-
NAL and SVMs with the stem kernels. The stem kernel
produced more precise results than INFERNAL with
respect to searching the target families for homologs. In
particular, in the H/ACA snoRNAs experiment, the stem
kernel was capable of detecting them accurately even with
queries of 5 sequences. However, the accurate identifica-
tion of C/D snoRNAs was problematic for both methods,
which can be attributed to the poor secondary structures
of C/D snoRNAs. In fact, the identification of C/D snoR-
NAs is difficult for many structure-based methods.

Note that the sequences in the datasets shown in Table 4
are remotely homologous to each other, which makes it
difficult for RNAalifold to calculate common secondary
structures from alignments produced by CLUSTAL-W.
INFERNAL searches the common secondary structure of
the query sequences for a given sequence, and thus the
CM search fails if no acceptable covariance model for the
query sequences can be generated. Although using struc-
tural alignments for ncRNAs might improve the hom-
ology search with INFERNAL, it is not certain that given
query sequences have common secondary structures. In
such cases, it is difficult for any alignment programs to
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Q
0
@A
[}
g g-
[+
2
B
o
[=%
o T
2 ©
o
S A
—— Stem Kernel (5 segs)
--- Stem Kernel (10 seqgs)
— Infernal (5 segs)
o | - Infernal (10 seqs)
<]
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
false positive rate
Figure 3

ROC curves of the remote homology searches of H/
ACA snoRNA:s in C. elegans from [34]in comparing
our kernels with that of INFERNAL. For every 20 query
sets of 5 (or 10) sequences, we search for homologous
sequences among all of the original and the shuffled
sequences.
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Figure 4

ROC curves of the remote homology searches of C/D
snoRNA:s in C. elegans from [34]in comparing our ker-
nels with that of INFERNAL. For each of 20 query sets
of 5 (or 10) sequences, we search for homologous sequences
among all of the original sequences and the shuffled
sequences.

produce robust alignments with acceptable common sec-
ondary structures. In fact, the secondary structures of
snoRNAs used in our experiments are highly diverse so
that we often did not obtain suitable multiple alignments
for building CMs even if using structural alignment pro-
grams (data not shown). In contrast, SVMs calculate ker-
nel values, i.e., pairwise similarities, between every pair of
examples, and learn the weight parameters for each exam-
ple in order to maximize the margin between the positives
and the negatives. After this, the trained SVMs predict the
classification of a new example based on the weighted
sum of kernel values of the new example and all the train-
ing examples. In other words, SVMs make a decision
about the classification based on the majority voting prin-
ciple with respect to the optimized weights. This approach
minimizes the risk of mispredictions and makes decisions
which are more robust than those of the methods which
use only one representative such as a common secondary
structure of the query sequences, that is, SVMs with our
kernel require no common secondary structures of the
query sequences, and can make robust predictions in per-
forming remote homology search of structural ncRNAs.
This approach, however, requires a number of kernel
computations for each sequence to be analyzed, propor-
tional to the number of support vectors collected in train-
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ing SVMs. Therefore, the prediction process should take a
long computation time if the training process could not
reduce the number of support vectors.

Kernel hierarchical clustering

We attempted to attain a kernel hierarchical clustering
using the weighted pair group method algorithm
(WPGMA) with the stem kernels for the same dataset as
[36], extracted from the Rfam database [26], which con-
tains 503 ncRNA families and a total of 3,901 sequences
that have no more than 80% sequence identity and do not
exceed 400 nt in length. Figure 5 shows the resulting den-
drogram of the dataset, indicating some typical families,
where sequences of the same family are likely to be con-
tained in the same cluster (see also Additional files 1 &2.
We evaluated the degree of agreement between the
obtained clusters and the Rfam classification by convert-
ing the problem of cluster comparison into a binary clas-
sification problem in the same way as described in [36]:
For every clustering cutoff threshold of the distance on the
dendrogram, let the number of true positives (TP) be the

http://www.biomedcentral.com/1471-2105/9/318

number of sequence pairs in the same cluster which
belong to the same family of Rfam. Analogously, let the
number of false positives (FP) be the number of sequence
pairs in the same cluster which belong to different fami-
lies, the number of false negatives (FN) be the number of
sequence pairs from the same family which lie in different
clusters, and the number of true negatives (TN) be the
number of sequence pairs from different families which
lie in different clusters. The ROC curve plots the true pos-
itive rates as a function of the false positive rates for differ-
ent clustering thresholds. Figure 6 shows the ROC curves
for our kernel and LocARNA [36]. LocARNA produced
hierarchical clusters whose ROC score was 0.781, while
our kernel produced a score of 0.894.

LocARNA and the DAG-based stem kernels are similar to
each other in their approximation technique, in which the
base pairs whose base-pairing probability is below a pre-
defined threshold are disregarded. One of the most
important differences between the above two methods is
that LocARNA calculates a score for only the best scoring

Figure 5

The dendrogram resulting from applying our kernel and WPGMA to the dataset. Some clusters containing typical
families are indicated, such as 5S rRNA, tRNA, miRNA and RNaseP. This dendrogram was produced from Additional file |
which is a newick format file calculated by our kernel and WPGMA. A magnifiable version of this dendrogram is available as

Additional file 2.
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Figure 6

ROC curves of the degree of agreement between the clus-
tering and the Rfam families in comparing our kernels with
LocARNA.

secondary structure with bifurcations, while stem kernels
sum all scores over an ensemble of common stem struc-
tures, including any suboptimal structures. In other
words, stem kernels can be regarded as a variant of
Sankoff algorithm [37], which calculates the partition
function without any bifurcations. This feature of stem
kernels determines their robustness with respect to meas-
uring structural similarities.

Conclusion

We have developed a new technique for analyzing struc-
tural RNA sequences using kernel methods. This tech-
nique is based on directed acyclic graphs (DAGs) derived
from base-pairing probability matrices of RNA sequences,
and significantly reduces the computation time for stem
kernels. Our method considers only likely base pairs
whose base-pairing probability is above a predefined
threshold. The kernel values are calculated using DAG ker-
nels, where each DAG is produced from these likely base
pairs. Furthermore, we have proposed profile-profile stem
kernels for multiple alignments of RNA sequences, which
utilize the averaged base-pairing probability matrices of
multiple alignments of RNA sequences.

Our kernels outperformed the existing methods for detec-
tion of known ncRNAs by using SVMs and kernel hierar-
chical clustering. In the experiments where SVMs were
used, the stem kernels performed nearly perfect discrimi-

http://www.biomedcentral.com/1471-2105/9/318

nation in the dataset, and collected a smaller number of
support vectors in comparison with the local alignment
kernels due to the robustness of the stem kernels with
respect to secondary structures. Therefore, stem kernels
can be used for reliable similarity measurements of struc-
tural RNAs, and can be utilized in various applications
using kernel methods.

The new technique proposed in this paper significantly
increases the computation speed for stem kernels, which
is a step toward the realization of a genome-scale search of
ncRNAs using stem kernels. Since our method is capable
of detecting remote homology, it is possible to discover
new ncRNAs which cannot be detected with existing
methods.

Availability

Our implementation of the profile-profile stem kernels is
available at http://www.ncrna.org/software/stem-kernels/
under the GNU public license. It takes RNA sequences or
multiple alignments, and calculates a kernel matrix,
which can be used as an input for a popular SVM tool
called LIBSVM [38]. Furthermore, our software is capable
of parallel processing using the Message Passing Interface
(MPT) [39].
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Additional material

Additional file 1

A newick format file used for drawing Figure 5. Figure 5 was produced
from this file using the R ape package http://cran.r-project.org/web/pack
ages/ape/.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-318-S1.newi]

Additional file 2

A magnifiable version of Figure 5. Similarly to Figure 5, this figure was
produced from Additional file 1 using the R ape package, and was stored
in PDF format in order to enable magnification.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-318-S2.pdf]

Acknowledgements

This work was supported in part by a grant from "Functional RNA Project"
funded by the New Energy and Industrial Technology Development Organ-
ization (NEDO) of Japan, and was also supported in part by Grant-in-Aid

Page 11 of 12

(page number not for citation purposes)


http://cran.r-project.org/web/packages/ape/
http://cran.r-project.org/web/packages/ape/
http://www.biomedcentral.com/content/supplementary/1471-2105-9-318-S1.newi
http://www.biomedcentral.com/content/supplementary/1471-2105-9-318-S2.pdf
http://www.ncrna.org/software/stem-kernels/

BMC Bioinformatics 2008, 9:318

for Scientific Research on Priority Area "Comparative Genomics" No.
17018029 from the Ministry of Education, Culture, Sports, Science and
Technology of Japan. We thank Dr. S. Washietl and Dr. I. L. Hofacker for
providing us with their large-scale dataset of multiple alignments of non-
coding RNAs. We also thank our colleagues from the RNA Informatics
Team at the Computational Biology Research Center (CBRC) for fruitful
discussions.

References

I.  Eddy SR: Non-coding RNA genes and the modern RNA world.
Nat Rev Genet 2001, 2(12):919-929.

2. Searls DB: The language of genes. Nature 2002,
420(6912):211-217.

3.  Eddy SR, Durbin R: RNA sequence analysis using covariance
models. Nucleic Acids Res 1994, 22(11):2079-2088.

4.  Sakakibara Y, Brown M, Hughey R, Mian IS, Sjclander K, Underwood
RC, Haussler D: Stochastic context-free grammars for tRNA
modeling. Nucleic Acids Res 1994, 22(23):5112-5120.

5. Knudsen B, Hein J: RNA secondary structure prediction using
stochastic context-free grammars and evolutionary history.
Bioinformatics 1999, 15(6):446-454.

6.  Rivas E, Eddy SR: Noncoding RNA gene detection using com-
parative sequence analysis. BMC Bioinformatics 2001, 2:8.

7. Eddy SR: A memory-efficient dynamic programming algo-
rithm for optimal alignment of a sequence to an RNA sec-
ondary structure. BMC Bioinformatics 2002, 3:18.

8.  Sakakibara Y: Pair hidden Markov models on tree structures.
Bioinformatics 2003, 19(Suppl 1):i232-i240.

9.  Klein R}, Eddy SR: RSEARCH: finding homologs of single struc-
tured RNA sequences. BMC Bioinformatics 2003, 4:44.

10. Sato K, Sakakibara Y: RNA secondary structural alignment with
conditional random fields.  Bioinformatics 2005, 21(Suppl
2):ii237-ii242.

I'l. Holmes I: Accelerated probabilistic inference of RNA struc-
ture evolution. BMC Bioinformatics 2005, 6:73.

12.  Dowell RD, Eddy SR: Efficient pairwise RNA structure predic-
tion and alignment using sequence alignment constraints.
BMC Bioinformatics 2006, 7:400.

13.  Pedersen JS, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K,
Lander ES, Kent J, Miller W, Haussler D: Identification and classi-
fication of conserved RNA secondary structures in the
human genome. PLoS Comput Biol 2006, 2(4):e33.

14. Do CB, Woods DA, Batzoglou S: CONTRAfold: RNA secondary
structure prediction without physics-based models. Bioinfor-
matics 2006, 22(14):€90-e98.

15.  Scholkopf B, Tsuda K, Vert JP: Kernel Methods in Computational Biology
Cambridge, MA: MIT Press; 2004.

16. Kin T, Tsuda K, Asai K: Marginalized kernels for RNA sequence
data analysis. Genome Inform 2002, 13:112-122.

17.  Washietl S, Hofacker IL, Stadler PF: Fast and reliable prediction
of noncoding RNAs. Proc Natl Acad Sci U S A 2005,
102(7):2454-2459.

18. Hertel ), Stadler PF: Hairpins in a Haystack: recognizing micro-
RNA precursors in comparative genomics data. Bioinformatics
2006, 22(14):e197-e202.

19. Hertel ), Hofacker IL, Stadler PF: SnoReport: Computational
identification of snoRNAs with unknown targets. Bioinformat-
ics 2008, 24(2):158-164.

20. Sakakibara Y, Popendorf K, Ogawa N, Asai K, Sato K: Stem kernels
for RNA sequence analyses. | Bioinform Comput Biol 2007,
5(5):1103-1122.

21. McCaskill JS: The equilibrium partition function and base pair
binding probabilities for RNA secondary structure. Biopoly-
mers 1990, 29(6=7):1105-1119.

22. Hofacker IL: Vienna RNA secondary structure server. Nucleic
Acids Res 2003, 31(13):3429-3431.

23. Haussler D: Convolution kernels on discrete structures. In
Tech. Rep. UCSC-CRL-99-10 Department of Computer Science, Uni-
versity of California at Santa Cruz; 1999.

24. Saigo H, Vert JP, Ueda N, Akutsu T: Protein homology detection
using string alignment kernels. Bioinformatics 2004,
20(11):1682-1689.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

http://www.biomedcentral.com/1471-2105/9/318

Kiryu H, Kin T, Asai K: Robust prediction of consensus second-
ary structures using averaged base pairing probability matri-
ces. Bioinformatics 2007, 23(4):434-441.

Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman
A: Rfam: annotating non-coding RNAs in complete genomes.
Nucleic Acids Res 2005:D121-D124.

Rosenblad MA, Gorodkin ], Knudsen B, Zwieb C, Samuelsson T:
SRPDB: Signal Recognition Particle Database. Nucleic Acids
Res 2003, 31:363-364.

Brown JW: The Ribonuclease P Database. Nucleic Acids Res 1999,
27:314.

Thompson D, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994,
22(22):4673-4680.

Washietl S, Hofacker IL: Consensus folding of aligned sequences
as a new measure for the detection of functional RNAs by
comparative genomics. | Mol Biol 2004, 342:19-30.

Tax DM, Duin RP: Support vector data description. Machine
Learning 2004, 54:45-66.

Babak T, Blencowe BJ, Hughes TR: Considerations in the identifi-
cation of functional RNA structural elements in genomic
alignments. BMC Bioinformatics 2007, 8:33.

Freyhult EK, Bollback JP, Gardner PP: Exploring genomic dark
matter: a critical assessment of the performance of hom-
ology search methods on noncoding RNA. Genome Res 2007,
17:117-125.

Deng W, Zhu X, Skogerbz G, Zhao Y, Fu Z, Wang Y, He H, Cai L,
Sun H, Liu C, Li B, Bai B, Wang }, Jia D, Sun S, He H, Cui Y, Wang Y,
Bu D, Chen R: Organization of the Caenorhabditis elegans
small non-coding transcriptome: genomic features, biogen-
esis, and expression. Genome Res 2006, 16:20-29.

Hofacker IL, Fekete M, Stadler PF: Secondary structure predic-
tion for aligned RNA sequences. | Mol Biol 2002,
319(5):1059-1066.

Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R: Inferring non-
coding RNA families and classes by means of genome-scale
structure-based clustering. PLoS Comput Biol 2007, 3(4):e65.
Sankoff D: Simultaneous solution of the RNA folding, align-
ment and protosequence problems. SIAM Journal on Applied
Mathematics 1985, 45(5):810-825.

Fan RE, Chen PH, Lin CJ: Working set selection using second
order information for training support vector machines. Jour-
nal of Machine Learning Research 2005, 6:1889-1918 [http:/
www.csie.ntu.edu.tw/~cjlin/libsvm/].

Pacheco P: Parallel Programming with MPI Morgan Kaufmann; 1996.

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11733745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12432405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8029015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8029015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7800507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7800507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11801179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11801179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12095421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12095421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12095421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14499004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14499004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16204111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16204111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16952317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16952317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16628248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16628248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16628248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14571380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14571380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15665081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15665081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17895272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17895272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17933013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17933013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1695107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1695107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17182698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17182698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17182698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9847214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17263882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17263882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17263882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17151342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17151342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17151342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16344563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16344563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16344563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17432929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17432929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17432929
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Naive stem kernel algorithms
	Stem kernels with DAG representation
	Profile-profile stem kernels

	Results and Discussion
	Discrimination with SVMs and other kernel machines
	Remote homology search
	Kernel hierarchical clustering

	Conclusion
	Availability
	Authors' contributions
	Additional material
	Acknowledgements
	References

