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Abstract
Background: We propose a statistically principled baseline correction method, derived from a
parametric smoothing model. It uses a score function to describe the key features of baseline
distortion and constructs an optimal baseline curve to maximize it. The parameters are determined
automatically by using LOWESS (locally weighted scatterplot smoothing) regression to estimate
the noise variance.

Results: We tested this method on 1D NMR spectra with different forms of baseline distortions,
and demonstrated that it is effective for both regular 1D NMR spectra and metabolomics spectra
with over-crowded peaks.

Conclusion: Compared with the automatic baseline correction function in XWINNMR 3.5, the
penalized smoothing method provides more accurate baseline correction for high-signal density
metabolomics spectra.

Background
Baseline distortions in 1D NMR spectra are mainly caused
by the corruption of the first few data points in FID (free
induction decay). These corrupted data points add low
frequency modulations in the Fourier-transformed spec-
trum, and thus formed the distorted baseline. Correction
of these distortions is a necessary step in NMR spectra data
processing because they offset the intensity values and
result in inaccuracy in peak assignment and quantifica-
tion. These errors could be critical in the study of metabo-
lomics, which involves many small but statistically
significant peaks that are sensitive to baseline distortions.
Incorrect quantification of these peaks may result in fail-
ures in detection of important metabolites or identifying
potential biomarkers.

Existing automatic baseline distortion correction methods
fall into two categories: time domain correction and fre-
quency domain correction [1-9]. Time domain correction
methods reconstruct the corrupted data points in FID to
reduce the low frequency modulation [6-8]. Frequency
domain correction methods construct baseline curves in
the spectra directly, and subtract these baseline curves to
remove the distortion [1-5]. These methods have been
implemented in commercial software and hand-written
programs for NMR data processing. Usually a combina-
tion of both time and frequency domain methods are
applied to achieve better correction. In comparison, time
domain methods provide general correction for FID and
frequency domain methods provide more detailed correc-
tion on the spectrum itself. For processing a specific kind
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of NMR spectra, such as metabolomics spectra, frequency
domain methods are easier to tailor for different needs.

In this article, we present a novel frequency domain base-
line correction method for processing 1D spectra for
metabolomics profiling. 1D proton NMR spectroscopy
has been widely applied in metabolomics profiling
because it can simultaneously measure many metabolites
that lie above the detection limit. These metabolomics
spectra usually have many crowded peaks such that noise
regions are broken into smaller pieces and are more diffi-
cult to identify accurately. The term noise regions refer to
the regions in the spectrum that only contain noise. In
some part of the spectra, severely overlapping peaks form
long gaps between noise regions and are a cause of numer-
ical sensitivity in baseline construction. Traditional fre-
quency domain methods detect noise regions and
construct the baseline curve by interpolating among iden-
tified noise regions. These methods rely heavily on robust
noise region identification, and therefore may not achieve
optimal baseline correction in metabolomics spectra. For
example, Golotvin et al [5] proposed identifying noise
points by comparing the intensity range of a small neigh-
borhood with the standard deviation of noise regions,
which is estimated by dividing the spectrum into 32 sec-
tions and taking the minimum value of standard devia-
tions of these sections. We observed that this method
occasionally identifies the low signal points in metabo-
lomics spectra as noise because they may overlap with
each other and have reduced standard deviation, and as a
result these signal points will be offset to zero after base-
line correction. Noise standard deviation estimation is
also theoretically biased to be smaller than the true value
in a statistical view, and leads to additional inaccuracy in
detection of noise data points.

As an alternative to the existing noise detection and inter-
polation approaches, we developed a new baseline correc-
tion method based on a penalized parametric smoothing
model. This method fits a curve following the bottom
envelope of the spectrum and doesn't need explicit iden-
tification of the noise data points. The primary motivation
is that we model the baseline as a smooth curve of arbi-
trary form that goes through the noise region instead of
linked pieces of selected noise points. We describe key fea-
tures of this model by a score function and construct the
optimal baseline curve corresponding to the function
maximum. In addition, we present a more accurate esti-
mation of noise variance by LOWESS (locally weighted
scatterplot smoothing) regression and use it to determine
the model parameters.

Methods
Suppose a 1D NMR spectrum is represented by the set of
ordered pairs {xi, yi}, where xi is the abscissa in ppm units

and yi is the ordinate, representing the height of the spec-
trum as a Fourier-transformed RF decay curve. The funda-
mental model behind our method is that the spectrum
can be represented as

where bi is the baseline, μi is the true signal, and ηi and εi
are random errors normally distributed with mean 0 and
variance 1, generally autocorrelated, a type of model that
fits a wide variety of measurement data (Rocke and Loren-
zato 1995 [10]; Rocke and Durbin 2001 [11]). An esti-
mated baseline should be 1) smooth, but not necessarily
flat; and 2) run through the middle of the data in seg-
ments where there is no signal. Based the on these fea-
tures, we construct the following score function:

And  is the Heaviside step

function.

b = {bi} is a set of points that represents a certain baseline.
The optimal baseline curve b0 should maximize the score
function F(b).

b0 = arg max F(b) (3)

F(b) has three components. The first term  is the

sum of all baseline points. We want to maximize it subject

to the smoothness penalty  and

the negativity penalty . The

smoothness penalty is a discrete form of integral of
squares of second-order derivatives, which is small for lin-
ear segments and large for small curvature radius. The neg-
ativity penalty is designed to be nonzero only when the
baseline point is above the data point, by using the Heav-
iside step function g(bi - yi). It counteracts the uptrend of

the first term and force the baseline to run through the
middle of the data. By maximizing this function the base-
line is pushed up to the spectrum but not exceeding the
zero-signal level, and forced to be as smooth as possible
to link peak regions.
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The negative penalty parameter B is determined by the
condition that the baseline should run through the center
of the noise region. Take the simplest case of a spectrum

with only normally distributed noise with variance σ2 and
mean 0. The baseline should also be a horizontal line at y
= b, so the summation term in the score function

. The smoothing term 

= 0 because the baseline should be horizontal and has no
curvature. The expectation value of negativity term could
be calculated based on the probability density function
(PDF) of the noise P(y).

Where  is the PDF of normal

distribution with variance σ2 and mean 0. The boundary

of the integral (-∞, b) in equation (4) is determined by

explicitly plug in the step function .

Hence the expected value of the score function <F(b) >
becomes:

The estimated baseline should be at the zero intensity
level, which means the score function reaches its maxi-
mum at b = 0.

This gives us the theoretical value of B

So the negativity penalty parameter B is determined by the

noise standard deviation σ. We define the constant

 so that B is in the form of . By

dividing by σ, the negativity penalty

 will have the same order of the

intensity as in the first linear summation term  in the

score function, which guarantees that the maximal point
of the score function remain invariant if the spectrum is
multiplied by a scalar, so that the corresponding baseline
curve will not be affected. For the same reason, the
smoothing penalty parameter, denoted by A in the score

function (2), should also take the form of  to

guarantee invariance in spectrum scaling, where A* is a
constant and C is a coefficient related with the resolution
of the spectra and will be discussed later.

For example, if we multiply the spectrum {xi, yi} by a sca-
lar k, we get a new spectrum {xi, kyi}. The noise standard
deviation of the scaled spectrum, denoted by σ', is also k
times the original noise standard deviation σ: σ' = kσ.

The score function for the original spectrum is:

And the score function for the scaled spectrum is:

The estimated baseline for scaled spectrum should also be
also k times of the original spectrum baseline, thus b' = kb,
or equivalently, bi

' = kbi. Substitute into equation (8), we
have

So F(b') = F(kb) = kF(b), which means the score function
is in an invariant form for scaling. Multiplying the spec-
trum by a constant does not affect finding the optimal
baseline by maximizing this score function.

In addition, the smoothness penalty should be robust to
the abscissa resolution. For example, if we take half the
data points (with odd indices) of the original spectrum so
that the chemical shift interval is doubled, the baseline
curve should not be affected. This suggests the coefficient

C in  is related with the abscissa resolution dx.

Recall the smoothing term is the sum of squared second
order derivatives of {bi}, rewrite it in the generic form of
discrete representation of second order derivative:
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Therefore C has an inverse quadruple relation with the
resolution dx of the abscissa. For a given spectrum, dx is
inverse proportional to the number of data points n:

, which means C could take the value of n4.

where A* is a constant that is independent of the spec-
trum. By comparing different spectra, we choose an
empirically reasonable value of A* to be A* = 5 × 10-9.

Based on the above analysis, the score function takes the
follow form

where A* = 5 × 10-9, B* ≈ 1.25, σ is the standard deviation
of noise and n is the total number of data points. The
baseline curve is insensitive to small changes of A and B,
unless the orders of magnitude are changed.

The estimation of the noise standard deviation σ is based
on the model in equation (1), The variance of a certain
part of spectrum is derived as the following

It indicates that the signal variance Var(y) increases with

the mean value of signal intensity μ. We can estimate the

noise variance  by fitting equation (11) on the signal

variances and mean intensities sampled from the spec-
trum. We divide the spectrum into small regions and com-
pute the variance and mean intensity within each regions.
Figure 1 plots the variances versus mean values with
region size of 32 data points, corresponding to 0.012 ppm
in chemical shifts. We use LOWESS (locally weighted scat-
terplot smoothing) regression to fit equation (11). The
red line in Figure 1 represents the fitted regression line. It
has a quadratic form as expressed in equation (11).

Since  when μ ≈ 0, the noise var-

iance  is approximately equal to the signal variance

Var(y) for small mean values. We take the predicted value
of Var(y) at zero mean intensity in the LOWESS regression

to be our estimate of , and the standard deviation of

the noise σ is the square root of the noise variance

After determining the parameters, we maximize the func-
tion F(b) to find the baseline b0, according to equation

(3). Mathematically, we solve  to find the maxi-

mum of F(b). This partial derivative equation expands as
a linear system with the solution to be b0. The numerical

implementation of solving this linear system is attached
in the appendix.

Results and discussion
Based on this penalized smoothing model, we test the
baseline correction method on simple 1D NMR spectra
and complex metabolomics spectra.

Figure 2 demonstrates this method corrects the baseline
distortion of a simple 1D 1H NMR reference spectrum of
DSS (2,2-Dimethyl-2-silapentane-5-sulfonic acid) with n
= 65536 data points. The estimated noise standard devia-

tion is σ = 8335.9. According to previous discussion of
parameter determination, the parameters are set to

 and . Figure 2A

shows the original spectrum with apparent baseline dis-
tortions. This distorted baseline is detected by the penal-
ized smoothing method in Figure 2B. In Figure 2C, this
baseline curve is subtracted from the spectrum and the
distortion is corrected. The optimal baseline found by our
baseline model fits well with the distortion curve. The
small peak at 2ppm in the spectrum is correctly presented
after baseline subtraction.

We test this method in more complicated metabolomics
spectra collected from tissue samples of red abalone. The
data are from a study of environmental stresses on the
development of a bacterial infection among red abalones
(Haliotis rufescens) [12,13]. The dataset include 65 1D pro-
ton NMR spectra with 65536 data points in each spec-
trum. In our test the penalized smoothing method
correctly detected and removed the distorted baseline for
all 65 spectra. Figure 3 shows the baseline correction
result on one example of testing spectra using the penal-
ized smoothing method. In Figure 3A, the peaks of metab-
olites aggregate together and form continuous peak
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regions. Lack of noise points in these regions generates big
gaps in baseline construction. As demonstrated in Figure
3B and Figure 3C, the baseline distortion is correctly
detected and removed. In these gaps, the baseline curve is
constructed following the smoothing constraints in the
penalized smoothing model. The penalized smoothing
method does not require explicit identification of noise
region identification and therefore avoids constructing
the baseline by interpolation, which is sensitive to the
identification of noise points, especially in the region with
high peak densities where noise points is difficult to detect
accurately.

We compared the penalized smoothing method with
commercial software in Figure 4 and Figure 5. We applied
the penalized smoothing method and the automatic base-
line correction function in XWIN-NMR software (version
3.5) carried by the Bruker AVANCE 600 NMR facility to
the same spectrum with baseline distortion, and plot the
baseline corrected spectrum in Figure 4. The red lines rep-
resent the ideal horizontal baseline at zero intensity level.
Both methods are capable of removing large distortions of
the baseline and setting the corrected baseline to near the
zero intensity level. The corrected baseline by the penal-
ized smoothing method (Figure 4A) fits well with the
ideal horizontal baseline in red. In Figure 4B, the cor-

LOWESS smoothing for variances estimationFigure 1
LOWESS smoothing for variances estimation. Variances versus mean intensities sampled bins of 1D NMR metabo-
lomics spectra. The bin size was set to 32 data points, corresponding to 0.012 ppm in chemical shift. The fitted LOWESS 
regression curve was plotted in red, and the flat region of the LOWESS curve represents the estimated noise variance.
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Baseline correction by penalized parametric smoothing methodFigure 2
Baseline correction by penalized parametric smoothing method. (A) Original 1D proton NMR spectrum of DSS ref-
erence with distorted baseline. (B) Detected baseline curve by penalized parametric smoothing method. (C) Corrected spec-
trum after baseline subtraction.
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Baseline correction for metabolomics spectrum by penalized parametric smoothing methodFigure 3
Baseline correction for metabolomics spectrum by penalized parametric smoothing method. (A) Original spec-
trum with distorted baseline. (B) Detected baseline curve by penalized parametric smoothing method. (C) Corrected spec-
trum after baseline subtraction.
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rected baseline by XWINNMR has apparently larger devi-
ation from the zero intensity level.

In Figure 5 we show a region from 6.5 ppm to 9.5 ppm of
original spectrum to illustrate the difference of baselines
detected by penalized smoothing methods (in red) and
XWINNMR 3.5 (in black). The penalized smoothing base-
line is closer to the center of noise regions and therefore
detects the offsets of signals more accurately. This leads to
a more accurate identification and quantification of sig-
nals in the corrected spectrum, especially for the small
peaks at 7.08 ppm, 8.35 ppm and 8.94 ppm in Figure 5.

For all 65 testing spectra, the penalized smoothing
method shows significant improvement in presenting low
intensity peaks in 47 spectra, corresponding to a percent-
age of 69%. To achieve comparable baseline correction
quality in these spectra, XWINNMR 3.5 needs manually
marking of the noise points or regions for baseline inter-
polation, which is time consuming for batch processing
and is dependent on the experience of the software users.
The penalized smoothing method is fully automatic and
user independent.

Comparison of penalized smoothing method and XWIN-NMR 3.5Figure 4
Comparison of penalized smoothing method and XWIN-NMR 3.5. (A) Spectrum corrected by penalized parametric 
smoothing method. (B) Spectrum corrected by automatic baseline correction function in XWIN-NMR 3.5. The red lines repre-
sent the zero intensity level.
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Conclusion
We propose an alternative baseline correction method
based on a penalized smoothing model. This method
constructs the baseline by maximizing a score function
(eq 2) that evaluates how well the baseline fits the spec-
trum. The model parameters A and B in score function are
determined by the noise variance of the spectrum, σ2,
which can be automatically estimated by LOWESS regres-
sion. This method does not require explicit identification
of noise data points for baseline interpolation, or assump-
tion of fixed forms of baseline curves, i.e. polynomials etc.
Instead, it uses a general smoothing term to fit flexible
forms of baseline distortion.

We applied this method to 1D NMR spectra with baseline
distortion, and demonstrate it is effective for both regular
1D NMR spectra and metabolomics spectra with over-
crowded peaks. The numerical implementation is fast and
stable on common personal computers. This method pro-
vides an alternative to the existing noise detection and
interpolation approaches in baseline correction, espe-
cially for spectra with many crowded peaks, such as in
NMR metabolomics profiling, where noise points are

more difficult to identify accurately. Compared with the
widely used XWINNMR software, the method provided
more accurate baseline correction on 47 out of 65 of our
testing metabolomics spectra. With a few modifications,
this penalized smoothing baseline correction approach is
also applicable to 2D NMR spectra. The numerical imple-
mentation and optimization for 2D baseline correction
could be one topic in further study.

Appendix

We solve  to find the maximum of score function

F(b), which leads to linear system of order n. (n is the
number of data points in b).

Db = m

D is the Hessian matrix of F(b), i.e. , and m is

a vector. In detail, the entries of D and m have the follow-
ing entries:

∂
∂ =F
b

0

Dij
F

bi b j
= ∂
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2

Comparison of baseline distortion detection by penalized smoothing methods and XWIN-NMR 3.5Figure 5
Comparison of baseline distortion detection by penalized smoothing methods and XWIN-NMR 3.5. This is an 
expanded region of the spectrum in Figure 4 before baseline correction. Baseline curves are detected by penalized parametric 
method (red) and XWIN 3.5 automatic baseline correction function (black).
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The boundary points may lack the neighbor points in the
above formulas, and need to be treated separately. The
non-existent terms in these equations are omitted:

We use an iterated procedure to solve Db = m because the
entries of D and m are dependent on b, and need to be
updated in each iteration until it converges. This proce-
dure is described in the following steps:

1) Set the initial value of baseline points b to be zeros.

2) determine D and m based on current values of b

3) solve Db = m for b

4) stop if the relative change of b is smaller than a thresh-
old, otherwise go to step 2)

The Hessian matrix D is highly sparse, with all the non-
zero elements in a symmetric band along the main diago-
nal. This kind of matrix structure can be solved very effi-
ciently. In addition, the matrix is positive semi-definite,
which guarantees the convergence of the iteration, so it is
not sensitive to the initial value of b. We use MATLAB to
implement the above algorithm and the code is available
upon request.

Acknowledgements
The research reported in this paper was supported by grants from National 
Institute of Environmental Health Sciences, National Institutes of Health 
(P42-ES04699), from the Ecotoxicology Lead Campus Program (ELCP) of 
Toxic Substances Research and Teaching Program of the University of Cal-
ifornia., from the National Cancer Institute (P30-CA093373-04), from the 
UC Davis Health System, from the National Human Genome Research 
Institute (R01-HG003352), from the Air Force Office of Scientific Research 
(FA9550-07-1-0146) and from the Department of Energy (DE-FG02-
07ER64341).

References
1. Bartels C, Güntert P, Wüthrich K: A new automatic baseline cor-

rection method for multidimensional NMR spectra with
strong solvent signals.  J Magn Reson Ser A 1995, 117:330-333.

2. Brown D: Improved Baseline Recognition and Modeling of FT
NMR Spectra.  J Magn Reson Ser A 1995, 114:268-270.

3. Saffrich R, Beneicke W, Neidig K, Kalbitzer H: Baseline correction
in n-dimensional NMR spectra by sectionally linear interpo-
lation.  J Magn Reson Ser B 1993, 101:304-308.

4. Rouh A, Delsuc M, Bertrand G, Lallemand J: Baseline correction of
FT NMR Spectra: An Approach in terms of classification.  J
Magn Reson Ser A 1993, 102:357-359.

5. Golotvin S, Williams A: Improved Baseline Recognition and
Modeling of FT NMR Spectra.  J Magn Reson 2000, 146:122-125.

6. Halamek J, Vondra V, Kasal M: The elimination of baseline dis-
tortions induced by audio filters.  J Magn Reson Ser A 1994,
110:194-197.

7. Marion D, Bax A: Baseline distortion in real-fourier-transform
NMR-spectra.  J Magn Reson 1988, 79:352-356.

8. Heuer A, Haeberlen U: A new method for suppressing baseline
distortions in FT NMR.  J Magn Reson 1989, 85:79-94.

9. Lunga G, Pogni R, Basosi R: A Simple Method for Baseline Cor-
rection in EPR Spectroscopy.  J Magn Reson Ser A 1994,
108:65-70.

10. Rocke D, Lorenzato S: A Two-Component Model for Measure-
ment Error in Analytical Chemistry.  Technometrics 1995,
37:176-184.

11. Durbin B, Hardin J, Hawkins D, Rocke D: A Variance-Stabilizing
Transformation for Gene Expression Microarray Data.  Bioin-
formatics 2002, 18 Suppl 1:S105-110.

12. Rosenblum E, Tjeerdema R, Viant M: Effects of Temperature on
Host-Pathogen-Drug Interactions in Red Abalone, Haliotis
rufescens, Determined by 1H NMR Metabolomics.  Env Sci
Technol 2006, 40:7077-7084.

13. Rosenblum E, Viant M, Braid B, Moore J, Friedman C, Tjeerdema R:
Characterizing the Metabolic Actions of Natural Stresses in
the California Red Abalone, Haliotis rufescens using 1H NMR
Metabolomics.  Metabolomics 2005, 1:199-209.

m
By b y

b y

D
F

bi

A B

A

b y

b

i
i i i

i i

ii
i i

=
−

−
⎧
⎨
⎩

>
≤

= ∂

∂
=

+⎧
⎨
⎩

>

2 1

1

2

2
12 2

12

,
;

,

, ii i

i i i i i i i i

y

D D
F

bi bi
A D D

F
bi b

≤

= = ∂
∂ ∂ ±

= − = = ∂
∂ ∂± ± ± ±

;

;, , , ,1 1 2 2

2

1
8

2

ii
A

±
=

2
2 .

D D
A B

A

b y

b y

D D
A B

A

nn
i i

i i

n n

11

22 1 1

2 2

2

10 2

10

= =
+⎧

⎨
⎩

>
≤

= =
+⎧

⎨
⎩

− −

,

,
;

,

,,
bb y

b y

D D D D A

i i

i i

n n n n

>
≤

= = = = −− −

;

., ,12 21 1 1 4
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10968964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10968964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169537
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Results and discussion
	Conclusion
	Appendix
	Acknowledgements
	References

