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Abstract

Background: The identification of groups of co-regulated genes and their transcription factors,
called transcriptional modules, has been a focus of many studies about biological systems. While
methods have been developed to derive numerous modules from genome-wide data, individual
links between regulatory proteins and target genes still need experimental verification. In this work,
we aim to prioritize regulator-target links within transcriptional modules based on three types of
large-scale data sources.

Results: Starting with putative transcriptional modules from ChIP-chip data, we first derive
modules in which target genes show both expression and function coherence. The most reliable
regulatory links between transcription factors and target genes are established by identifying
intersection of target genes in coherent modules for each enriched functional category. Using a
combination of genome-wide yeast data in normal growth conditions and two different reference
datasets, we show that our method predicts regulatory interactions with significantly higher
predictive power than ChlIP-chip binding data alone. A comparison with results from other studies
highlights that our approach provides a reliable and complementary set of regulatory interactions.
Based on our results, we can also identify functionally interacting target genes, for instance, a group
of co-regulated proteins related to cell wall synthesis. Furthermore, we report novel conserved
binding sites of a glycoprotein-encoding gene, CIS3, regulated by Swi6-Swi4 and Ndd|-Fkh2-Mcm|
complexes.

Conclusion: We provide a simple method to prioritize individual TF-gene interactions from large-
scale transcriptional modules. In comparison with other published works, we predict a
complementary set of regulatory interactions which yields a similar or higher prediction accuracy
at the expense of sensitivity. Therefore, our method can serve as an alternative approach to
prioritization for further experimental studies.

Background modules, by integrating heterogeneous data sources such
There have been many studies about groups of genes and  as chromatin immunoprecipitation on microarray (ChIP-
their transcription factors (TFs), called transcriptional  chip), gene expression data and cis-regulatory motifs [1-
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8]. ChIP-chip data alone do not possess functional regula-
tory information and gene expression data alone do not
contain physical binding information. Data integration
tries to compensate for such limitations of a single type of
data source alone. This process can often generate more
complete biological hypotheses than those from each data
source separately. A particularly important issue in biol-
ogy is to discriminate regulatory binding of TFs from mere
physical binding events. One way to tackle this problem is
to integrate functional data such as gene expression with
physical binding data such as ChIP-chip [1,9].

Modules are believed to be a fundamental organizational
unit of cellular networks [10,11]. Transcriptional modules
are one type of such modules related to gene regulatory
networks of TFs and target genes. The computational stud-
ies mentioned above aimed at the identification of such
modules as independent or inter-connected functional
units in regulatory networks. Experimentalists face the
challenge to verify predicted modules in their functional
contexts at the level of all individual links. This is currently
impossible as the number of regulatory links in modules
predicted from large-scale data analysis is in the order of
thousands. In this work, we aim to prioritize regulatory
interactions in transcriptional modules as an attempt to
overcome this issue.

Our approach starts with putative transcriptional modules
(PTMs) derived from genome-wide ChIP-chip data (Step
1 in Figure 1). These PTMs are defined by all possible
combinations (or subsets) of regulators and their respec-
tive bound genes at a given ChIP-chip p-value threshold
[1,12]. Then our algorithm identifies a subset of PTMs
which are (1) coherent in expression profiles of target
genes and at the same time (2) enriched in functional cat-
egories (Step 2 in Figure 1). That is, both gene expression
and functional annotation data are used to extract func-
tional signals after binding signals are retrieved from
ChIP-chip data. We use the terms, 'functional' and 'regu-
latory', interchangeably when we discuss TF binding
throughout this study. All links between TFs and target
genes in the identified subset of PTMs, called coherent
modules, are considered candidate functional links. The
goal is then to narrow down those candidate functional
links to core functional links. Our key strategy is to focus
on intersections of coherent modules for all enriched
functional categories (Step 3 in Figure 1). This short list of
TF-gene pairs is our predicted functional pairs and conse-
quently has priority over the others in coherent modules
for further mechanistic analysis or experimental valida-
tion.

Our method is applied to ChIP-chip data by Lee et al. [13],
gene expression data by Spellman et al. [14], and MIPS
functional category data [15]. We evaluate our method in
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terms of the number of true functional links between TFs
and target genes among our predictions with respect to
two reference datasets (one from literature and the other
from conserved binding motifs). We also compare our
method with two previous algorithms, GRAM [1] and
MA-Networker [9], which integrated two of our data
sources, ChIP-chip and gene expression data. Finally, we
investigate our predictions in more detail and focus on
those predicted TF-gene pairs whose expression profiles
are highly correlated with each other. This further enables
us to suggest functional interaction among gene products
and novel conserved binding sites for those pairs.

Results

Putative transcriptional modules

We generated a total of 584 putative transcriptional mod-
ules (PTMs) by taking all non-empty subsets of 106 TFs
from ChIP-chip data by Lee et al. with a binding p-value
threshold 0.001 (see Methods; Stepl in Figure 1). We
imposed a constraint of the minimum number of target
genes in all modules being 5 for the purpose of statistical
assessment in our subsequent analysis. The list of PTMs
was examined in subsequent analysis by incorporating
gene expression and functional annotation data.

Prioritization of TF-gene functional links from coherent
modules

In contrast to earlier works on identification of transcrip-
tional modules themselves, we seek to identify only the
most reliable TF-gene functional links from those mod-
ules. To this end, we first identify coherent modules from
PTMs using expression and functional annotation data
(Step2 in Figure 1; see Methods). We have two p-value
threshold parameters to define coherent modules: one for
expression coherence (7,) and the other for function
coherence (7). Given two threshold parameters, we pre-
dict regulatory TF-gene pairs from functional intersection
of identified coherent modules (see Methods). We varied
the parameters by taking all combinations of four signifi-
cant thresholds: 0.001, 0.005, 0.01, and 0.05. Then, posi-
tive predictive values (PPVs) were calculated with respect
to the combined reference of the literature and conserved
motif references (a total of 3962 TF-gene pairs; see Meth-
ods). In this work, we report all results based on z,=0.005
and 7;= 0.05, which gives the highest PPV among the 16
combinations (see Additional file 1). With this combina-
tion of p-value thresholds, we obtained 89 coherent mod-
ules with a total of 47 coherent functional categories (out
of the total 557 modules tested). 20 out of the 47 enriched
functions are shared by at least two of 42 coherent mod-
ules with common target genes, i.e., coherent linker genes.
This functional intersection resulted in 66 coherent linker
genes and 18 associated TFs, yielding 177 TF-gene func-
tional pairs as represented in Figure 2 (see Additional file
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Step 1 : Putative transcriptional modules

ChIP-chip data matrix
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Figure |

Overview of our method. In Step |, we generate all possible putative transcriptional modules (PTMs) from ChlIP-chip data
as described in Methods section. Here we show a toy example of ChlP-chip binary data matrix and corresponding 4 PTMs, M|
to M4. Each module contains a set of transcription factors (triangles) and a set of target genes (circles) connected by links
between all of them (bicliques; see Eq. (1)). The genes in M2 and M3 are numbered for an illustration purpose below. In Step 2,
we identify coherent modules among all PTMs using gene expression and functional annotation data. Only those PTMs which sat-
isfy Eq. (5) are selected as coherent modules. In the given example in the figure, M| and M4 are meant to be non-coherent and
hence discarded altogether. Colours of genes in both coherent modules, M2 and M3, symbolize different functions. 'Blue' and
'red' functions are meant to be coherent (enriched) in the respective modules. Notice that the 'red' function is coherent in
both modules. The fictitious 'M'-shaped expression profiles are also shown to be coherent as well in both modules. The red
profile belongs to gene 5 which is annotated to the coherent 'red’ function. Finally, in Step 3, we identify those genes which
appear in multiple coherent modules with any common coherent functions. This is illustrated in Step2 by the gene 5 which
belong to both coherent modules. The gene is annotated to the common coherent 'red' function in both modules. The union of
regulators in M2 and M3 is predicted to functionally regulate the gene in this illustration. We term such genes 'coherent linker
genes'. Notice that gene 6 belonging to both modules is not a coherent linker gene because its annotated 'yellow' function is
not coherent in the modules. See the text for more details.
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Figure 2

Summary of our final predictions. This network diagram is a graphical representation of our final predicted 177 TF-gene
functional pairs between |8 TFs and 66 target genes (coherent linker genes). Dashed links show 24 literature-verified pairs.
Links with white arrow heads represent 85 pairs with conserved motifs. Green and red links show additional information
about expression correlation between TF-encoding genes and their target genes: high positive (Pearson coefficients > 0.661)
and negative correlation (Pearson coefficients < -0.628) respectively. For example, the predicted functional pair of Rapl and
TEFI (on the bottom right) is confirmed with respect to literature and conserved motifs. In addition, the pair shows high
expression correlation between them. We use this additional information for detailed case studies by considering those pairs
as high confident among all our predictions (see subsection 4 in Results). See Additional File 2 for better visibility of this figure
and Additional File 3 for a list of TF-gene pairs together with Pearson coefficients. Generated by Cytoscape [36] and yED graph

editor [37].

2 for better visibility). Notice that coherent modules
themselves are not the focus of our analysis.

Evaluation

Validation

We first confirmed the validity of our method by assessing
our predicted TF-gene functional pairs in view of the
ChIP-chip data we started with (removing all uncharacter-
ized genes for this validation; see Methods). We calculated
the two performance measures, positive predictive value
(PPV) and sensitivity (SNST), with respect to literature
and conserved motif reference datasets (see Methods). As
shown in Table 1, we obtained higher PPVs at the expense
of lower SNSTs, which is to be expected as we aim at pri-
oritization of regulatory links for individual experimental
validation.

We also investigated whether coherent modules them-
selves or functional intersection alone could have given us

better performance than our combined strategy (see
Methods). First, taking all pairs in coherent modules with-
out functional intersection does not yield higher PPVs at
the expense of SNSTs for both reference sets (column 'CM'
in Table 1), indicating that functional intersection is an
important step. Second, we took TF-gene pairs from func-
tional intersection of the initial PTMs from the ChIP-chip
data (584 modules in total) without applying the expres-
sion coherence test. This functional intersection from the
initial PTMs yields higher PPV than our predictions
(18.2% vs. 13.6%) for the literature reference but lower
PPV than ours (24.5% vs. 48%) for the conserved motif
reference (column 'FI_TM' in Table 1). This suggests that
functional intersection is the key to good performance
with respect to literature. However, using conserved
motifs as a reference, the PPV (24.5% after functional
intersection) is lower than the PPVs from either the ChIP-
chip results alone (32.7%) or coherent modules above
(35.8%) (see Table 1). On the other hand, the SNSTs after
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Table I: Comparison of performance measures. For evaluation of our method, we compared our predicted TF-gene functional pairs
(fourth column in bold, 'Our_final') with ChlP-chip results with annotated genes only (first column, 'ChIP-chip'), two prescription steps
of our method (second and third columns, 'CM' and 'FI_TM"), and two other previous algorithms (fifth and sixth columns, 'GRAM' and
'MA-Networker'). Two performance measures were calculated, PPV and SNST for two reference datasets (see Methods). CM = all TF-
gene pairs from coherent modules; FI_TM = TF-gene pairs from functional intersection among the initial putative transcriptional
modules from ChIP-chip; lit = literature reference; con_mot = conserved motif reference; N_pairs = number of TF-gene pairs; N_genes
= number of genes in the pairs; N_TFs = number of TFs in the pairs. Further comparison analysis is performed in Additional file I. See

the main text for details.

ChlIP-chip CM FI_TM Our_final GRAM MA-Networker
PPV (%)(lit; con_mot) 4.6; 32.7 6.0; 35.8 18.2; 24.5 13.6; 48 6.3; 24.6 6.5; 38.6
SNST (%)(lit; con_mot) 13.7; 40.2 42;10.5 1.7; 0.9 2.0; 2.9 7.9; 128 6.9; 16.8
N_pairs 3598 857 110 177 1518 1272
N_genes 1837 393 44 66 655 989
N_TFs 95 24 30 18 69 36

this functional intersection are lower than our predictions
for both reference sets (Table 1). Therefore, the combina-
tion of both prescriptions is important for detecting regu-
latory signals from ChIP-chip data. Further support for
validation of our method is presented in Additional file 1.

Comparison with other methods

The performance of our validated method was compared
with results from two previous algorithms, GRAM [1] and
MA-Networker [9], using the literature and conserved
motif references. Both studies used the same ChIP-chip
data by Lee et al. and different expression datasets which
they combined from diverse publications (see Methods).
We used the published results in their original papers for
comparison. The GRAM algorithm predicted 1518 TF-
gene pairs (in rich media condition) and the MA-Net-
worker 1272 pairs. 66 pairs from GRAM and 67 pairs from
MA-Networker overlap with our 177 pairs and 39 pairs
were predicted by all the three algorithms (see Additional
file 3; 469 pairs overlap in GRAM and MA-Networker).
We observe that our method has higher PPV than the two
methods and lower in SNSTs for both reference sets (col-
umns 'GRAM' and 'MA-Networker' in Table 1). On the
other hand, the two overlaps of 66 pairs and 67 pairs with
the two algorithms give rise to yet higher PPVs with
respect to the literature reference: 27% and 18% respec-
tively. For the conserved motif reference case, the overlaps
yield 50% and 45% PPVs respectively, which are similar to
our performance of 48%. Of the 39 pairs predicted by all
three algorithms, 10 pairs are found in the literature refer-
ence and 16 pairs in the conserved motif reference (25%
and 41% PPVs respectively).

To illustrate the generic applicability of our approach,
which does not depend on our definition of modules, we
applied the functional intersection to the 106 final mod-
ules of the GRAM algorithm. This may be considered as
analogous to our expression coherent modules in the
absence of incorporation of functional annotation data.
Then, PPVs were calculated and compared with those of

their final modules for the two reference sets. The func-
tional intersection yielded 23 pairs between 13 TFs and 9
genes (i.e., coherent linker genes) with higher PPVs than
their own modules; 43.5% and 30.4% for the literature
and conserved motif reference sets respectively (as com-
pared with 6.3% and 24.6% in row 'PPV' and column
'GRAM' in Table 1). This illustrates that our approach of
functional intersection may be applied to any set of mod-
ules identified in other works to yield more reliable regu-
latory links.

Finally, we present results of an additional comparison
with a recent module prediction study by Lemmens et al.
[7]. Their work integrated three types of data sources
(ChIP-chip, gene expression, and conserved motifs),
rather than two as in GRAM and MA-Networker. By apply-
ing our method to the same ChIP-chip and gene expres-
sion data [14,16] as in their study, we predicted 108
regulatory interactions and yielded 14.8% PPV with
respect to the literature reference. For a comparison, we
used their "seed modules" which contain 134 TF-gene
interactions, a comparable number of predictions to ours.
Their 134 predictions yielded 12.9% PPV with respect to
the literature reference we used. Although the prediction
accuracies are similar, there is only little overlap between
the predicted sets of regulatory interactions (9 interactions
in common, 3 of them are found in the literature refer-
ence). See Additional file 1 for more details on this com-
parison with Lemmens et al.

Examples

We now continue with detailed inspections of some of
our systematic results shown in Figure 2. It is well-known
that activity profiles of TF proteins are not necessarily
reflected in expression profiles of the corresponding genes
because of post-transcriptional and post-translational reg-
ulations of TFs [17]. We took, however, any such correla-
tion as an additional indicator of a functional relationship
among our predictions and aimed at identifying all TF-tar-
get pairs with high correlation for detailed analysis. To

Page 5 of 12

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:32

this end, we calculated Pearson coefficients for our pre-
dicted TF-gene pairs and compared them with a back-
ground distribution of Pearson coefficients for all pairs
between ~200 TFs of Harbison et al. [16] and all other
genes. By taking those observed pairs whose coefficients
fall within 5% of both tails from the distribution of all the
coefficients (the two thresholds being 0.661 and -0.628),
we obtained a list of 46 highly correlated pairs between 13
TFs and 27 target genes: 33 positively and 13 negatively
correlated pairs (Figure 2). In the following we restricted
ourselves to some of these more specific TF-gene pairs.

Functionally interacting proteins

As an application from our functional TF-gene predic-
tions, the 46 pairs with high expression correlation can
provide a basis for identifying functional interactions of
proteins. We hypothesize that those target genes regulated
by the same TF(s) with high expression correlation have
related roles in more specific biological processes than
those encapsulated by the 3rd level MIPS category. In Fig-
ure 2, we observe that some groups of genes are highly
correlated with their common TFs. They include known
examples such as the associations between Hir2 and the
six histone genes [18], and the known role of Ino4 in the
regulation of FAS1 and FAS2 [19].

As another such group of genes, our method yielded a
group of 5 genes, KRE6, EXG1, SCW4, PSA1 and HXK2,
which are highly correlated with their common regulator
Swi6 (Figure 2). All these genes share a high-level annota-
tion of 'C-compound and carbohydrate metabolism'.
There is no literature evidence for the transcriptional reg-
ulation by Swi6, but all genes were found to have binding
sites of Swi6 conserved in at least one other yeast species
[16]. Previous experimental studies show that 4 out of the
5 gene products, Kre6, Exgl, Scw4 and Psal, are related to
the cell wall synthesis and that cell wall genes are control-
led by cell cycle progression where Swi6 has a regulatory
role [20,21]. The 4 proteins are specifically implicated in
synthesis of either glucose chains (glucans) or mannose-
bound proteins (mannoproteins) which are two main
inter-connected components of the cell wall.

The remaining protein, Hxk2 (hexokinase 2), is known to
be a major upstream regulator of the glucose signalling
pathway, which also impedes on cell wall genes. Specifi-
cally, a glucan synthase subunit, Gsc2, is regulated by
Hxk2 via Snfl and Mig1 [20,22]. Hence, it is possible that
Hxk?2 is functionally related to the 4 other gene products
through glucose regulation and utilization for glucan syn-
thesis. Glucose signalling is also known to act down-
stream on the cell-cycle, although the precise mechanisms
are not yet fully understood [23]. Our result may suggest
a possible feedback onto glucose regulation through the
regulatory interaction of Swi6 with HXK2.

http://www.biomedcentral.com/1471-2105/9/32

Conserved binding sites for three regulators of CIS3

We predicted two target genes CIS3 and UTH1 regulated
by three TFs, Swi6, Fkh2 and Ndd 1. The expression profile
of CIS3 (glycoprotein-encoding gene in cell wall) is highly
correlated with all those three TFs (Pearson coefficients
are 0.856, 0.801 and 0.765, respectively), which addition-
ally supports functional regulation of the gene by the
three TFs. On the other hand, UTH1 is not well correlated
with the TFs (Pearson coefficients are between -0.1 and
0.3), hence we do not postulate a functional interaction
between CIS3 and UTH1, in contrast to the analysis in the
previous subsection. While conserved binding sites for all
the three TFs were found upstream of UTH1, Harbison et
al. [16] did not identify any conserved binding sites
upstream of CIS3.

As we predicted that the three TFs functionally regulate
CIS3, we searched for any putative binding sites of those
TFs and their conservation across species in the upstream
region of the gene. To this end, we used the matrices for
Swi6, Ndd1 and Fkh2 provided by Harbison et al. [16]
and scanned the 1 kb upstream region of CIS3 for matrix
hits above the balanced thresholds introduced by Rah-
mann et al. [24]. We set the GC content of the background
model to 50%. All putative binding sites detected are
located within 34 base pairs (Figure 3). For the investiga-
tion of conservation of the putative TFBS region, we used
the fungal sequence alignment tool in SGD [25] and
found a high degree of conservation for 4 orthologous
upstream regions (Figure 3).

It is worth noting that Ndd1-Fkh2 interactions have been
suggested to be important in regulating G2/M-specific
genes in cell cycle together with the MADS box protein,
Mcm1, forming a permanent protein-DNA complex [26].
In fact, the position specific frequency matrix of Ndd1
from the study of Harbison et al. is very similar to that of
Mcm1, so we were able to detect a binding site overlap-
ping with that of Mcm1 (Figure 3). This indicates that
Ndd1 could act as a functional co-factor, which cannot be
distinguished from Mcm1 in ChIP-chip assays and motif
scans. Similarly, Swi6 is known to have a regulatory func-
tion forming SBF or MBF complexes with Swi4 or Mbp1
respectively [27]. We found a binding site of Swi4 overlap-
ping with the binding site of Swi6 (Figure 3). As before, it
may not be possible to differentiate between the binding
properties of these two factors. These inspections show
that our method correctly predicted TFs which have a reg-
ulatory function among the components of the TF com-
plexes, even though the regulatory relationship may be
indirect. Taken together, this detailed investigation highly
supports our prediction of the functional regulatory links
between CIS3 and the three TFs.
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Figure 3

Alignment of 4 orthologous | kb promoter regions for CIS3 and TF binding sites. We show only the region (-636
to -669 upstream of the TSS) which contains conserved binding sites for all predicted regulators (Swi6é, Fkh2 and NddI). We
used the six-species alignment from SGD (including S. mikatae, S. paradoxus and S. kudriavzevii), but removed from the SGD
output S. castellii which is more distant, and S. bayanus which has a small intergenic region of only 30 nucleotides. Consensus
motifs of the TFs from Harbison et al. are shown in the box using the IUPAC code. We denote degenerate binding sites of

Swi4 and Mcm| in blue. See the main text for more details.

Discussion

Modular organization has been proposed as a fundamen-
tal principle in cellular systems and many computational
algorithms have been developed to identify such mod-
ules. In particular, transcriptional modules have been
extensively investigated using genome-wide data sources
in yeast. It is practically impossible to verify all regulatory
links identified in those modules in a single laboratory. As
an attempt to overcome this problem, we developed a
simple 3-step method to prioritize regulatory links in
modules using three types of data sources (Figure 1). First,
we defined putative transcriptional modules based on
genome-wide binding data from ChIP-chip. We then
identified coherent modules using gene expression data and
functional annotation data. Finally, and in contrast to
other works, we focused on coherent linker genes which
appear in several coherent modules by way of functional
intersection. These genes and their regulators from coher-
ent modules resulted in a list of 177 regulatory interac-
tions which have a high level of support and serve as
reliable candidates for further experimental validation.

Our analysis showed that the proposed approach
increased the positive predictive value (PPV) when com-
pared with two previously published results by Bar-Joseph
et al. and Gao et al,, at the expense of sensitivity. This
should be expected considering the fact that we integrated
one additional data source of functional annotation with
the two data sources of ChIP-chip and gene expression
which the other two algorithms used for their predictions.

One point to make, however, is that while we utilized
functional annotation data for the purpose of prediction,
they used annotation data for validation of their predic-
tion. Note also that because the validation using annota-
tion data involves over-representation or enrichment of
genes in sets of genes, it cannot serve for validation of all
predicted functional target genes. In addition, while those
works utilized gene expression data to derive coherent
modules from ChIP-chip binding data, their published
work did not focus on individual regulatory interactions.
Their predicted interactions are simply all members of sta-
tistically predicted modules themselves. In contrast, our
predictions do not exclusively aim at modules, but indi-
vidual regulatory interactions, which we obtained by
means of functional intersection. By this prioritization
approach we purposefully predicted less functional asso-
ciations (less sensitivity), but doubled PPV with respect to
the literature reference (13.6% vs. 6-7%). Although this
validates our approach, it may illustrate a limitation of the
literature reference which covers only a fraction of all
experimentally verified genes to date. Because of this lim-
itation we also compared the different methods with
respect to a more comprehensive reference set of predicted
regulatory interactions. These predicted interactions are
based on updated ChIP-chip data and sequence conserva-
tion across other yeast species. We took them as an indi-
cation for functional interactions. Using this reference set,
we achieved 48% as compared to 25-39% from the two
other works. We stress that all methods compared here
have their own specific aims and merits although they
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share the overall goal to derive functional interactions
from physical interactions (as provided by ChIP-chip). A
conservative strategy to identify functional interactions,
would combine the results from multiple algorithms. We
provide our results of such analysis in Additional file 1.

Using the updated ChIP-chip dataset by Harbison et al.
[16] also enabled us to compare our approach with a
recent algorithm (ReMoDiscovery) by Lemmens et al. [7].
Their algorithm is similar in spirit to the GRAM algorithm
but integrates three types of data sources (ChIP-chip, gene
expression, and conserved motifs) in a concurrent way.
This is different from our sequential approach, but yielded
similar prediction accuracy. Yet, in terms of predicted reg-
ulatory interactions, there was only little overlap with our
results, indicating the complementarity of these two
methods.

In general, it is difficult to directly compare the perform-
ance of different algorithms which are designed for differ-
ent purposes. Our comparison of published results
highlights the fact that different approaches have so far
been used with different aims and yield different trade-
offs between specificities and sensitivities. A more com-
prehensive evaluation study would require re-running dif-
ferent algorithms in different regions of parameter space.
Notice though that in this work we did not vary p-value
thresholds of ChIP-chip results to adjust PPV or sensitivity
as was done by Bar-Joseph et al. [1], for instance.

Another strategy to improve all methods is to incorporate
activity profiles of TFs (i.e., protein concentrations).
Experimental data of protein concentrations are currently
lacking and using mRNA expression profiles of TF-encod-
ing genes is not promising because of weak correlation as
we discussed earlier [17]. Also notice that the computa-
tional effort to infer activity profiles of TFs, as attempted
by the MA-Networker algorithm, did not result in better
performance than our simpler approach. Here we focus
on TF-gene pairs with high expression correlation (col-
oured edges in Fig. 2) only for the purpose of a detailed
analysis, but not as part of the systematic study.

Specifically, we suggested 5 functionally interacting pro-
teins in cell wall formation and a possible feedback regu-
lation of glucose utilization through Swi6. We also
predicted that the glycoprotein-encoding gene CIS3 is reg-
ulated by three cell-cycle regulators, Swi6, Ndd1 and
Fkh2. In addition, our detailed analysis revealed that the
conserved binding sites of the three factors are located
very close to each other. We further identified binding
sites of Swi4 and Mcm1 which overlap with those of Swi6
and Ndd1 respectively, suggesting formation of two com-
plexes, Swi6-Swi4 (SBF) and Ndd1-Fkh2-Mcm1. The two
complexes may interact with each other through Fkh2 on
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the basis of the identified binding sites. On the other
hand, a previous study on cell cycle by the Young labora-
tory identified CIS3 as a target of two cell cycle activators,
the SBF complex and Fkh2, but not as a target of the
Ndd1-Fkh2-Mcm1 complex. See Table 1 in [28]. Hence,
our results suggest a new regulatory link between the
Ndd1-Fkh2-Mcm1 complex and CIS3. It might also be the
case that Fkh2 recruits either the SBF complex or the two
other components of the Ndd1-Fkh2-Mcm1 complex
according to distinct cell-cycle phases.

By the design of functional intersection, our predictions
suggest multiple transcription factors for each gene. This
could be taken as a sign of combinatorial regulation. We
would like to caution, however, that the inference of com-
binatorial regulation requires further analysis, such as the
vicinity of binding sites, as in the example of CIS3, or a
clear indication that the combination of factors is
required for synergistic expression [29]. Our predicted list
of multiple transcription factors did not result from such
an analysis since we did not pursue the issue in this work.

Conclusion

Here we proposed a simple method to obtain functional
regulatory interactions from physical interactions (e.g.
from ChIP-chip data). To this end, we utilized gene
expression and functional annotation data which helped
to refine transcriptional modules and identify coherent
linker genes for prioritization. We demonstrated that our
method is able to increase the fraction of functional inter-
actions with respect to two reference datasets and comple-
mentary to other existing methods. Finally, we suggested
several novel individual interactions for further mechanis-
tic analysis and experimental validation.

Methods

Data sources

ChlP-chip data

We used genome-wide ChIP-chip data of the laboratory of
Richard Young [13]. They experimented 106 TFs in rich
media conditions. We used a binding p-value threshold
0.001 as suggested in their paper to define putative func-
tional target genes. They provided a data matrix where
each intergenic region assayed is assigned to a down-
stream neighbouring gene. From this matrix, a set of
potential target genes for each of the 106 TFs can be iden-
tified with the p-value threshold. Although this original
dataset has been supplemented by new data with more
TFs and conditions [16], we apply our method to the
older data to compare our results with other methods
which also used the same data of Lee et al. [13].

Gene expression data
It is biologically important to have independent experi-
mental datasets in which cellular conditions are compara-
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ble if one tries to integrate them for analysis. Therefore, we
selected gene expression data in view of the experimental
conditions of the ChIP-chip data we used in this study.
Only gene expression experiments were extensively done
in many diverse conditions on a genome-wide scale.
ChIP-chip experiments by Lee et al. [13] were conducted
under normal growth conditions in rich media and so we
focused on elutriation conditions (size-based synchroni-
zation) in expression data by Spellman et al. (1998). Two
other methods they used for the synchronization of cell
cycle were involved with alpha-factor pheromone treat-
ment and temperature-sensitive cdc15 mutation, which
introduced characteristic artifacts of mating and heat
shock respectively [14]. Those artefacts are not expected in
the conditions of the ChIP-chip assays. Therefore, we used
the elutriation data as the experiment was not involved
with such artifacts. The data consist of 14 time points
taken every 30 minutes for 6.5 hours.

Functional annotation data

We used the functional categories provided by the Munich
Information Center for Protein Sequences [MIPS, [15]]
upto the 31d level of the category hierarchy (classification
version 2.0). More detailed annotations were pruned at
the 3rd level, resulting in about 200 categories examined
in total. They contain upto ~750 proteins with an average
of 56, excluding the category, 'unclassified proteins',
which contains about 2000 proteins.

Reference datasets

Literature collection

The first reference set we used is 1207 TF-gene pairs com-
piled from three literature-curation sources: (1) Lee et al.'s
curation of 1049 pairs excluding computational regula-
tory motif results [13] (2) TRANSFAC database for 342
pairs [[30], version 10.4] (3) Siddharthan et al.'s curation
of 72 pairs [31]. Notice that the reference data may con-
tain TF-gene pairs where TFs act as mere DNA-binding fac-
tors rather than functional regulators.

Conserved motifs

The laboratory of Richard Young recently advanced their
ChIP-chip technology and applied it to yeast with 203 TFs
[16] (compare with 106 TFs in Lee et al. [13]). Based on
their binding data and sequence data from four yeast spe-
cies, they identified conserved binding motifs for 102 TFs
using a variety of motif detection algorithms (this was not
done in the work of Lee et al. [13]). It is widely believed
that conserved motifs across species indicate their func-
tional roles [32-34]. While the 'phylogenetic footprinting'
approach will introduce errors, it provides a more com-
prehensive picture of regulatory links than manual cura-
tion of literature. Hence, we take the dataset of conserved
motifs as a second reference set independently of the liter-
ature-based reference. We compiled 2922 TF-gene pairs
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from the motif analysis results of Harbison et al. [16]
maintained in the Saccharomyces Genome Database
(SGD) [25]. The list of 2922 pairs is derived from pre-
dicted binding sites which are conserved in at least two
Saccharomyces species, other than S. cerevisiage. Note that
this set contains more than twice as many predicted inter-
actions as the literature reference set.

Main procedure to predict regulatory TF-gene interactions
Identification of putative transcriptional modules from ChIP-chip data
Enumeration of large bicliques

Regulatory interactions between transcription factors
(TFs) and target genes can be represented as a bipartite
graph, with edges going from a set of TFs to a set of target
genes. A biclique K is a bipartite graph such that an edge
is realized from every vertex of a TF set (F) to every vertex
of a gene set (G), i.e.,

K=(F+G,E), (1)

where E is a set of all possible edges from F to G. (i.e., ||E||
= ||F|| * ||G||). Input to our method is a set of bicliques.
Our data typically are quite sparse, i.e., the number of
edges in a bipartite graph is much smaller than the size of
the entire TF set multiplied by the size of the entire gene
set. For example, in the case of the ChIP-chip data intro-
duced above, a p-value threshold of 0.001 results in a total
of 4611 regulatory interactions and 584 bicliques gener-
ated by our program described below. Generally, a bipar-
tite graph will contain a large number of bicliques. We
have implemented a simple enumeration algorithm for
large bicliques with the constraint that ||G|| >= 5 (for the
purpose of statistical assessment in our subsequent analy-
sis).

Let the set F of all factors be ordered. In the first pass of our
program, each factor is inspected whether it is connected
to 5 or more genes. These constitute the first set of (trivial)
bicliques. The idea is then to extend those bicliques to
find the bicliques with 2 factors, then with 3 factors, etc.
Now assume that a set of all bicliques with m factors has
been determined. The algorithm then runs iteratively
through all the bicliques with m factors and adds an addi-
tional factor from the ordered list of factors to each
biclique, if that factor targets 5 or more genes from the set
of genes in the biclique in question. Thereby we obtain a
new biclique with m+1 factors. The gene set of this new
biclique is the intersection of the gene set in the old
biclique and the set of target genes of the newly intro-
duced factor. Since this procedure observes the order of
factors, bicliques are not discovered repeatedly. However,
at each step the algorithm may generate a new biclique
with an identical set of genes already contained in the old
biclique, in which case we discard the old one. Notice that
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this prescription may still result in bicliques with the same
set of genes after the whole iteration has finished.

Putative transcriptional modules

Since our subsequent analysis will deal only with the gene
sets induced by the bicliques derived above, we first merge
those redundant bicliques which contain identical sets of
genes, so as to avoid any computational overhead. The
merged biclique is designed to have those transcription
factors which belong to two or more of the redundant
bicliques (i.e., TFs with multiplicity >= 2). In this way, we
generated 584 non-redundant bicliques from the ChIP-
chip data by Lee et al. [13], the maximum number of TFs
in a biclique being 7. We also call them putative transcrip-
tional modules (PTMs), and they are the input to our sub-
sequent analysis of coherent modules (see Step 1 in Figure

1).

Identification of coherent modules

Expression coherence

Given a transcriptional module and an expression dataset
we calculate Pearson correlation coefficients, r, for all
pairs of expression profiles of target genes in the module
and take the average of the absolute values of the coeffi-
cients. The reason why we take the absolute value is that
we consider both positive and negative correlations as the
signals for possible co-regulation. We define this average
value, & in general as follows,

= 3t (5 ) @

where L is the number of all pairs of N target genes in each
module and r, is the Pearson coefficient for a pair k. We
take ¢ as a statistic for the significance test of expression
coherence. For background ¢ values, we generated ran-
dom modules by sampling the same number of genes as
the module in question. We estimated a p-value of expres-
sion coherence, p,, for each observed module by the frac-
tion of the number of those random ¢&'s that are equal to
or greater than the observed & with respect to the number
(K) of randomly sampled groups, which is K = 1,000 in
this study,

h

_ "{zk|zk22,k=1,2,...,K}|| 3)
e K 4

where k is an index for random modules. Transcriptional
modules with p-values less than a threshold, 7, are
deemed expression coherent modules.

Function coherence

Given a transcriptional module and a functional category
(from MIPS), we assess enrichment of the functional cate-
gory among target genes using the standard method [35].
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Function coherence is meant to be the same as enrich-
ment of a functional category throughout this study. The
assessment of function coherence for each category was
done by calculating a hypergeometric p-value which is
defined as follows,

[Mf N—Mf}

K-1

ple_i k NS—k ’ (4)
=)

where f is a functional category, N is the number of all
genes which are annotated to at least one functional cate-
gory, Myis the number of all genes which are annotated to
the functional category f, S is the number of all target
genes in a module of interest, and Kfis the number of tar-
get genes in the concerned module which are annotated to
the given functional category f. A functional category for
each module is deemed coherent if pyis less than a pre-
scribed threshold (7). Note that we may obtain multiple
coherent functions in each module. We do not correct p-
values for multiple testing. For each module, p;is defined
for only those categories in which K;is greater than 0.

Coherent modules (CMs)

A transcriptional module is called a coherent module
(CM) if both p-values, p, and p; are less than the two
thresholds, 7, and 7; for expression and function coher-
ence test respectively (Step2 in Figure 1), i.e.,

CM = {TM = (F, G) | p,<7,and py<7}. (5)

Identification of coherent linker genes

For a given list of coherent modules (CMs), we further
focus on those functional categories which are coherent in
multiple CMs. For a particular coherent function, we iden-
tify all CMs which share that function. Then, we identify
common target genes in those CMs which are annotated to
that function. We refer to this identification step as "func-
tional intersection". Those filtered genes are called "coher-
ent linker genes" as they link CMs. It should be noted that
we require those coherent linker genes to appear in all
those CMs. In other words, they are claimed to possess the
strongest functional signal among others in CMs. Regula-
tion of coherent linker genes by associated TFs in corre-
sponding CMs constitutes our prediction of functional TF-
gene pairs (Step 3 in Figure 1).

Evaluation of the method

As performance measures, we calculated (1) positive pre-
dictive value (PPV) and (2) sensitivity (SNST) which are
defined as the number of true positives (predicted TF-gene
individual pairs that are found in a reference set) divided
by (1) the number of predicted TF-gene pairs (2) the
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number of all reference TF-gene pairs. Notice that true
negatives cannot be defined because there is no reference
for the absence of regulatory relationships between TFs
and genes. We used the above-mentioned two reference
datasets for evaluation.

Validation

For the purpose of validation of our method, we com-
pared the performance measures from our predicted TF-
gene pairs and the original ChIP-chip data we used at a
binding p-value threshold of 0.001 (4611 TF-gene pairs
between 96 TFs and 2326 genes). We removed all unchar-
acterized genes from the ChIP-chip results for the valida-
tion to avoid a possible bias of our method towards
annotated genes resulting from MIPS function data we
incorporated. This leaves us with 3598 TF-gene pairs
between 95 TFs and 1837 genes (Table 1). In addition, we
validated each of the two steps in our strategy separately,
(1) identification of coherent modules and (2) functional
intersection among modules. The two performance meas-
ures were calculated and compared with our predictions
from the combined strategy by taking (1) all TF-gene pairs
from coherent modules themselves and (2) TF-gene pairs
from functional intersection among PTMs, respectively.

Comparison

We compared our predicted TF-gene pairs with those of
the previous two algorithms: GRAM [1] and MA-Net-
worker [9], using the results provided in their original
papers. Bar-Joseph et al. used the same ChIP-chip data
along with a compiled expression dataset (over 500 con-
ditions) to produce clusters of genes and regulators. We
took TF-gene pairs in their final 106 clusters in rich media
conditions. Gao et al. also used the same ChIP-chip data
along with a compiled expression dataset (over 700 con-
ditions). Their algorithm aimed to identify functional and
non-functional target genes based on TF activity profiles
they inferred using a multivariate regression model. We
used the results of functional target genes and their TFs for
comparison.
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