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Abstract
Background: Both microarrays and quantitative real-time PCR are convenient tools for studying
the transcriptional levels of genes. The former is preferable for large scale studies while the latter
is a more targeted technique. Because of platform-dependent systematic effects, simple
comparisons or merging of datasets obtained by these technologies are difficult, even though they
may often be desirable. These difficulties are exacerbated if there is only partial overlap between
the experimental conditions and genes probed in the two datasets.

Results: We show here that the generalized singular value decomposition provides a practical tool
for merging a small, targeted dataset obtained by quantitative real-time PCR of specific genes with
a much larger microarray dataset. The technique permits, for the first time, the identification of
genes present in only one dataset co-expressed with a target gene present exclusively in the other
dataset, even when experimental conditions for the two datasets are not identical. With the rapidly
increasing number of publically available large scale microarray datasets the latter is frequently the
case. The method enables us to discover putative candidate genes involved in the biosynthesis of
the (1,3;1,4)-β-D-glucan polysaccharide found in plant cell walls.

Conclusion: We show that the generalized singular value decomposition provides a viable tool
for a combined analysis of two gene expression datasets with only partial overlap of both gene sets
and experimental conditions. We illustrate how the decomposition can be optimized self-
consistently by using a judicious choice of genes to define it. The ability of the technique to
seamlessly define a concept of "co-expression" across both datasets provides an avenue for
meaningful data integration. We believe that it will prove to be particularly useful for exploiting
large, publicly available, microarray datasets for species with unsequenced genomes by
complementing them with more limited in-house expression measurements.

Background
Historical background
Measurements and comparisons of transcriptional activi-
ties of genes provide important information on the bio-

logical state of a cell. For example, enhanced transcription
of a gene of unknown function in response to an imposed
stress may be used to infer a possible biological function
for the gene or, conversely, altered activity of a gene of
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known function may serve as a useful diagnostic indicator
of the biological state. Several methods for measuring
transcriptional activities of genes are in common use, such
as those based on two-colour [1] and genechip [2,3]
microarrays, serial analysis of gene expression [4], MPSS
and other sequencing technologies [5,6] or on the real-
time quantitative polymerase chain reaction (Q-PCR) [7].
Frequently, complementary data from several of these
technologies are available for a particular biological sys-
tem or process. This raises the question of how to perform
a meaningful comparison and/or integration of transcrip-
tional datasets from multiple sources.

Numerous approaches to transcriptomic data integration
have been developed in recent years. For example, if the
data originates from several sources using the same or
similar platforms, a direct integration of expression values
may be feasible [8,9]. For genes in common among the
individual studies this can lead to increased significance
of results upon integration simply by virtue of greater sta-
tistics. At the other extreme, if the platforms are dissimilar
(e.g. two-colour cDNA and one-channel oligonucleotide
arrays) then simple comparisons of expression values
become meaningless. In this case a 'meta-analysis' of sum-
mary statistics such as fold-changes, p-values, ranks or
effect sizes rather than expression values is more appropri-
ate [10-16]. Choi [11,13] used this type of approach to
compare two tumour-datasets, explicitly taking into
account interstudy variation. Subsequently this approach
was developed further in order to move beyond gene-by-
gene analysis by constructing co-expression networks
[17]. In a comprehensive work, Rhodes et al. used data
from up to 40 published studies to identify common tran-
scriptional signatures in diverse cancer microarray data-
sets [18,19]. More recently, Bayesian approaches for
estimating model parameters within comparative analy-
ses have been proposed (see, for example, [12,20] and ref-
erences therein).

For the most part the above studies are concerned with
improved diagnostic power through the integration of
data, for example by decreasing p-values indicating differ-
ential expression of sets of genes desired as prognostic sig-
natures for the detection of cancer. We are interested in
quite a different line of inquiry, namely discovery of gene-
function through co-expression across datasets. So, on the
one hand we would like to work directly with expression
values but, on the other hand, the expression data of inter-
est are obtained from two very diverse platforms, in our
case an Affymetrix array and a Q-PCR tissue set. Apart
from obvious differences on the experimental side, the
datasets obtained from these two platforms are them-
selves quite heterogeneous. In contrast to most integrative
microarray studies, there is only a small overlap in gene
content between our two datasets with only a few genes in
common: a microarray dataset usually contains expres-

sion information for 103–105 genes while a Q-PCR dataset
typically consists of corresponding information for at
most a hundred genes. As described in detail below, vari-
ous other aspects of these datasets conspire to complicate
a combined analysis even further. We do note, however,
that both datasets correspond to measurements of abso-
lute rather than relative gene expression.

Experimental background
The organism we consider is barley (Hordeum vulgare L),
where transcriptional information is often used to guide
hypotheses about gene function and cellular processes
because the regulation and function of only a small frac-
tion of its genome is understood. The microarray data for
this species, obtained with Affymetrix's Barley1 chip [21],
is available through the barley reference experiment [22]
(the data itself can be found at PlexDB [23]), which covers
15 different tissues and developmental stages. This dataset
contains data from two barley cultivars; we make use of
only one of these, namely 'Morex'. The barley microarray
dataset is potentially useful for gene discovery because of
a total of approx. 21400 non-redundant probesets on the
Barley1 chip, the function of about 16500 genes cannot
be reliably surmised from sequence comparisons with
genes of known function in other species. However, it is a
'closed' dataset in the sense that the genes interrogated by
the chip comprise a fixed fraction, perhaps half, of the
genes in the genome [21] and this selection of genes is
determined at the time of the design of the chip. Further-
more, because the probes on the chip were mostly
designed from information available in the public EST
databases, there is an inbuilt bias toward genes expressed
at a significant level in at least one tissue, while genes tran-
scribed at low levels are often missing from the chip.

The Q-PCR based dataset, on the other hand, was taken
from a series of 11 barley tissues, from the cultivar 'Sloop'.
This dataset contains expression data for almost 80 genes
that are mostly related to the synthesis or modification of
cell wall polysaccharides. A number of these genes are
only transcribed at relatively low levels and so it is not sur-
prising that, while some of them are represented on the
Barley1 chip, quite a few are unique to the Q-PCR dataset.
The Q-PCR technique is more suited for detailed, targeted
studies of genes of particular interest and, in contrast to
the microarray dataset, it can be considered to be an
'open' dataset: it can easily be enlarged through the design
of additional primers. For details on this Q-PCR data we
refer to the Methods section as well as to the additional
material [see Additional file 1]. The relationship between
the genes and tissues probed in the two datasets is sum-
marized in Figure 1.

The experimental question
The central question that we would like to address here is
the following: suppose one has identified a gene of inter-
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est that participates in a particular biological process and
that one has collected Q-PCR data for the gene, but it is
not a member of the set of genes represented on the
microarray. For the reasons discussed above, this is fre-
quently the case for species, such as most plant species,
whose full genome has not been sequenced. We want to
discover potential candidate genes involved in the same
biological process as this gene of interest through a co-
expression analysis, however a Q-PCR dataset consists, by
its very nature, of expression data for only a very limited
number of genes, so the value of carrying out this sort of
analysis for this dataset alone is rather limited. On the
other hand, microarray datasets contain expression infor-
mation for a very large number of genes and would be ide-
ally suited for the task.

For this reason we would like to use the extensive tran-
script data from the microarray to discover potential can-
didate genes involved in the same biological process as
the original gene of interest. Co-transcription of these
other genes identified from the microarray can then be
verified in follow-up Q-PCR experiments. The stumbling
block is, of course, that one needs to make a meaningful
comparison between the actual expression profiles
obtained from one dataset with those of the other. The
difficulties with this include the following:

a) Each platform has inherent systematic errors that result
in measurements that, while presumably correlated in
some way to the actual mRNA concentrations, are dis-
torted representations thereof. Intensive studies of this

The microarray and Q-PCR datasetsFigure 1
The microarray and Q-PCR datasets. The potential overlap of the microarray and Q-PCR datasets is depicted here. 
'Region A' generically refers to the overlap between the datasets, 'Region B' to the part unique to the microarray and 'Region 
C' to that part unique to the Q-PCR series. It is clear from the context whether references to these regions in the main text 
refer to genes (top panel) or tissues probed (bottom panel). While up to 59 genes are simultaneously probed by both plat-
forms, one would not necessarily expect their expression profiles to be identical in every case: differential contributions from 
(unknown) paralogs and/or closely related gene family members, as well as alternative splicing, can lead to distortions because 
the probes on the microarray and the primers used for the Q-PCR generally target different regions of a gene. Similarly, some 
tissues are probed simultaneously using both platforms, while others can be found in only one of the datasets. For a few tissues 
the overlap is hard to determine due to possible differences in developmental stage (shown in brackets; dgs = day old germi-
nating seedling, dap = days after pollination, dba = days before anthesis, s = 10 cm seedling, ba = before anthesis). Further 
details about the tissues probed with the microarray may be found in Ref. [22], while details about those included in the Q-
PCR series can be found in Ref. [48].

Transcripts probed by
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issue have been undertaken over the years, particularly
between various microarray platforms [24-30]. It is fair to
say that no clear consensus has emerged [31], with corre-
lations between platforms ranging from 'poor' [26] to
'strong' [28]. Analogously, comparisons of fold-changes
between microarray and Q-PCR measurements have dem-
onstrated similar systematic, platform-dependent biases
[32].

It appears likely that a significant source of differences
across platforms is simply due to differential hybridiza-
tion to platform-specific probes. This can arise because in
general the probes on each platform can be expected to be
sensitive to their own particular admixtures of alternative
splice forms [33-36] and/or gene family members with
similar sequence [35]. If a complete genome is available
these admixtures can be identified, at least in principle,
facilitating correct matching of probes between platforms
[33,36]. For barley, however, the complete complement
of genes, let alone splice forms, is not known.

b) The datasets considered here were obtained not only
from different biological samples but also from different
varieties of the same plant species.

c) The experimental conditions used to obtain one dataset
correspond only partially with the experimental condi-
tions used in obtaining the second dataset (see Fig. 1).
Some of the experimental conditions are unique to one
dataset, some to the other and some are common to both.
Specifically, the experimental variables here consist of an
assortment of tissues, some of which are unique to the
genechip data (e.g. mesocotyl and embryo), some unique
to the Q-PCR tissue series (e.g. scutellum and stem) and
some are found in both datasets (e.g. caryopsis and root),
although even in the latter case the age of the tissues
probed is different.

d) As described above, the gene content of the two data-
sets is only partially overlapping and, in contrast to com-
parative microarray studies, highly asymmetric in size.

The computational task
In short, our aim is twofold:

a) we want to establish a meaningful framework for quan-
tifying the similarities and differences in the overlap of the
two datasets (region A, Fig. 1) and

b) we want to use this mathematical framework to draw
inferences about the non-overlapping parts of the data-
sets. In particular, we want to identify candidate genes
probed only by the microarray (i.e. genes in region B) that
are 'co-expressed' with genes probed only in the Q-PCR
dataset (i.e. genes in region C).

The Generalized Singular Value Decomposition
At first sight, the latter aim in particular poses a formida-
ble, even impossible, challenge and, indeed, we are una-
ware of any existing methodology that would be suitable
for realizing this goal. However, the datasets do contain
some overlapping information (region A) and in this
paper we show how to exploit this fact to achieve both
tasks by using the matrix decomposition known as the
generalized singular value decomposition (GSVD) [37-
39].

The situation described is somewhat analogous to one
that arises in the comparison of transcriptomes from two
species [40]. In that case, certain genes rather than experi-
mental conditions may be involved in processes common
to the two organisms, while others may be involved in
processes unique to either one or the other organism. The
number of genes probed in the one species is in general
different to that probed in the other and, of course, the
ubiquitous systematic artefacts are present here as well.
The latter problem has been addressed, using the GSVD,
by Alter et al. [40] in a comparison of the cell cycle in
humans and yeast. While here we are dealing with the
orthogonal problem, it does have some similarity to the
one considered in the pioneering study of Alter et al. and
so a number of the conceptual ideas of the approach have
already been introduced [40]. Here we concentrate on
additional developments essential for the application of
this novel matrix decomposition in its present setting.

More recently, Berger et al. [41] have used the GSVD
approach to combine transcriptomic and copy number
data obtained from genome-wide breast cancer studies.
The aim in that work was similar to ours in that these
authors set out to combine datasets collected from the
same species from different experimental platforms. How-
ever, their approach is equivalent to that of Alter et al. in
that the link between the two datasets was provided
through coinciding experimental conditions – namely,
identical time points in the cell cycle in Ref. [40] and iden-
tical cell lines in Ref. [41]. Because, as discussed above, the
merging of transcriptomic datasets in general involves dif-
fering experimental conditions in the two datasets, the
approach of Alter et al. and Berger et al. does not suffice for
the problem addressed here. In addition, for the identifi-
cation of candidate genes, we want to extend the use of the
GSVD beyond a simple comparison of expression profiles
of genes in common to the two datasets. In what follows
we describe how to modify the approach to meet the more
complex requirements of the present setting.

Results
In this section we describe the application of the GSVD
approach to a comparison of the two transcript datasets.
The discussion is restricted to issues arising in a compari-
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son of microarray and Q-PCR data, although it is straight-
forward to generalize it to other applications such as
comparisons between genechip and two-colour arrays.
The method is subsequently tested by comparing tran-
scriptional profiles of genes common to the two datasets.
Finally, the technique is applied by searching the microar-
ray dataset for co-ordinately expressed genes for which
only Q-PCR data are available. This leads to a testable bio-
logical hypothesis, implicating a particular glycosyl trans-
ferase in cell wall biosynthesis.

Algorithm: Multiple gene-expression platforms and the 
generalized singular value decomposition
The well-known singular value decomposition of the N ×
M dimensional matrix e,

e = u · ε · vT (1)

has become a popular tool in the analysis of large-scale
gene expression datasets [42] because it can be used to
reorganize thousands of individual gene expression pro-
files, as measured by transcript abundance, into a small
number of linearly independent processes involving line-
arly independent combinations of genes. The matrix e
contains rows of 'gene-expression vectors' en, 1 ≤ n ≤ N,
with each component enm indicating the level of transcrip-
tion of gene n in array m, 1 ≤ m ≤ M. In keeping with the
nomenclature used by Alter et al. [42], we refer to the set
of all gene expression values collected for a particular
environmental condition as an 'array', even for the Q-PCR
data; in our particular case one could, of course, simply
refer to these as individual 'tissues'. As illustrated in the
online Additional Material [see Additional file 2], it is use-
ful to think of the N × N matrix u and the M × M matrix v
as rotation matrices (hence uT·u = I and vT·v = I), rotating
the original orthonormal coordinate systems spanned by
individual genes and arrays to new coordinate systems
[43]. Strictly speaking these matrices, being orthogonal,
may involve reflections as well as rotations. A reflection
corresponds to a change in the handedness of the new
coordinate system, but the handedness is immaterial
within the context of the present discussion. In the follow-
ing, therefore, we take it as understood that our use of the
term 'rotations' may include reflections as well.

The matrix ε contains the expression patterns as viewed
from the new, rotated, coordinate systems and by con-
struction it is very simple in that only its diagonal entries
are non-zero. Singular value decompositions may of
course be carried out individually for two datasets
(labelled p and q), i.e. e(p) = u(p)·ε(p)·v(p)T and e(q) =
u(q)·ε(q)·v(q)T, where the expression of the same set of
genes has been measured in different sets of experiments.
However, it is not possible to subsequently compare the
expression matrices ε(p) and ε(q) directly, because the sepa-

rate rotations u(p) and u(q) of the coordinate systems
spanned by the genes have removed the information that
there is a connection between genes in the two experi-
ments. A simultaneous diagonalization may be achieved,
however, through the use of the GSVD, defined by

e(i) = y·ε(i) ·v(i)T   i = p, q (2)

The N × N dimensional matrix y again parameterizes the
connection between the original and transformed genes,
termed 'genelets' by Alter et al. [40], but now it is the same
for both decompositions p and q. While this retains the
desired common coordinate system for the genelet space,
the price to pay is that the new 'genelet' axes are no longer
orthogonal, that is, the matrix y is no longer purely a rota-
tion/reflection matrix (hence yT·y ≠ I). This geometrical
interpretation of the SVD and GSVD is illustrated in the
mathematical appendix contained in the online Addi-
tional Material [see Additional file 2].

The M(i) × M(i) dimensional matrices v(i) define rotations
from spaces spanned by arrays to spaces spanned by
'arraylets'. These rotations are necessarily different in the
two datasets because the sets of experimental variables (in
our case, the individual tissues) are unique to each data-
set. As before, the N × M(i) dimensional matrices ε(i) only
have non-vanishing entries εnm 

(i) if n = m, so each genelet
is only expressed in its corresponding arraylet. By conven-
tion the singular values εnm 

(i)are positive, decrease with
increasing n in ε(p) and increase with increasing n in ε(q)

[39,40].

The GSVD defined by Eq. 2 should be contrasted to that
used in [40]. In that work, the GSVD was defined through
e(i) = u(i)·ε (i)·x -1, where u(i)were rotation matrices con-
necting the gene and genelet co-ordinate systems while
the non-orthogonal M × M matrix x -1 was the matrix con-
necting array and arraylet co-ordinate systems. The reason
for the difference between this definition and our Equa-
tion (2) is clear: in [40], the connection between the two
datasets is made through coinciding experimental condi-
tions, i.e. time-points in the cell cycle, while in the present
case the connection between the datasets is imposed
through coinciding genes. Hence in the former case a
common transformation x-1 from arrays to arraylets was
required, while in the latter a common transformation y
from genes to genelets is appropriate. Notwithstanding
these differences in detail, transposition of e(i) allows the
same algorithm employed in [40] to be used for perform-
ing the decomposition in Eq. 2. Furthermore, as in [40],
we use the angles

q
e

e

p
k

kk
p

kk
q

= −−tan
( )

( )
1

4
(3)
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as a measure of the relative contribution of the kth arraylet
and genelets to the first and second dataset. Those
arraylets for which this angle is close to zero characterize
processes that are common to the two datasets, while
those arraylets for which θk is close to π/4 or -π/4 charac-
terize processes exclusive to the first or second datasets,
respectively. The crucial observation is, therefore, that a
sensible comparison between the datasets that avoids
platform dependent biases should involve only those
processes for which θ k≈0.

The proof of the GSVD in [37,40], and the corresponding
algorithms implementing this decomposition, relies on
the inequality N ≤ min(M(p), M(q)). Given that particularly
microarray datasets typically contain many more genes
than arrays, i.e. N >> M(i), this implies that only a subset
of probed genes may be used in Eq. 2. This is in contrast
to the decomposition used by Alter et al. [40], where the
inequality required the number of genes to be larger than
the number of arrays, which is usually the case. While in
principle the GSVD can be generalized to arbitrary N, M(p)

and M(q) [38], only those genes in common between the
two datasets (region A of Fig. 1) are represented in Eq. 2.
Because part of our aim is to make use of gene expression
profiles contained in only one or the other of the two
datasets (regions B & C), we require further conceptual
extensions to the analysis carried out in [40].

The definition of the subspace in common to both datasets
The GSVD retains its utility in spite of these complications
because it provides the transformations from the 'array'-
space to 'arraylet'-space, i.e. v(p) and v(q), and at the same
time identifies arraylets, for which θk≈0, spanning the sub-
space of relevance to a comparison between the two data-
sets. It, therefore, provides a mathematical mapping from
expression profiles in two disparate spaces, spanned by
arrays, to a common space, spanned by arraylets. Ulti-
mately, it is this feature of the GSVD which allows one
make comparisons of expression profiles for genes con-
tained in only one or the other datasets (i.e. genes in
regions B and C).

The transformation between arrays and arraylets needs to
be defined through the use of a suitable subset of genes
common to both datasets (i.e. from region A; we shall
refer to these as 'gene-pairs'). This subset defines arraylets
characterizing common processes in the two datasets, rel-
evant to this subset of genes. If one tabulates the expres-
sion of the complete set of genes in both datasets in the
matrices e(p) 

full and e(q) 
full, one may write the expression of

all genes (i.e. regions A, B and C) in the arraylets defined
by the GSVD as

Here (ε(i))-1 is the pseudo-inverse of ε(i) [39]. This equation
is the key result that we use in the present study.

The matrices y(i)
n, full contain the expression profiles of all

genes in the two datasets. Each column contains the
expression information for a particular arraylet and the
relative contribution the arraylet k receives from each
dataset is characterized by its angle θk . Expression profiles
of different genes (rows) in y(i) 

n, full may be directly com-
pared, irrespective of whether they originate from regions
A, B or C in Fig. 1.

Those genes actually used to define the GSVD will have
identical expression profiles in the matrices y(i)

full, i.e.,
y(p)

n, full = y(q)
n, full. Those genes contained in both datasets

but not used to define the GSVD should have similar, but
generally not identical, expression profiles y(p)

n, full and
y(q)

n, full in the subspace (i.e. columns) characterized by
θk≈0. The degree to which these expression profiles corre-
late within this space provides a convenient measure of
the utility of the GSVD and the suitability of those genes
used to define it. Finally, expression profiles in the sub-
space characterized by θ k≈0 for genes present in only one
or the other dataset alone (regions B and C) can also be
compared, allowing the identification of putatively co-
regulated genes.

These features suggest an iterative approach, illustrated in
Fig. 2, for using the GSVD in a search for co-expressed
genes across the two datasets. This approach is described
in detail in the following sections.

Testing the GSVD defined by random subsets of genes
We begin by illustrating the procedure using, at this stage,
a random selection of gene-pairs from the overlapping
region A in Figure 1 to define a GSVD of our microarray
and Q-PCR data. The purpose here is twofold: firstly, we
want to check that, as one would expect from the preced-
ing discussion, the expression profiles of the remaining
gene-pairs from region A indeed show greater co-expres-
sion in the subspace spanned by the central arraylets than
those spanned by peripheral arraylets. Secondly, this illus-
tration provides a vehicle for introducing the particular
measure that we shall adopt for quantifying "co-expres-
sion". This measure will be used in the subsequent analy-
sis.

We use a random selection of 10 gene-pairs in the defini-
tion of the GSVD. The size of this set is dictated by the
requirement N ≤ min(M(p), M(q)) discussed above, i.e. in
our case we need N ≤ 11. We have used one gene-pair less
than this because, for convenience, the datasets have been
standardized by centering each gene's transcription pro-
file and scaling its variance across the tissues to unity. The
centering results in one column in each matrix becoming

y e v i p qfull
i

full
i i i( ) ( ) ( ) ( ).( ) ,= ⋅ =−e 1 (4)
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linearly dependent on the other 10. Finally, in keeping
with standard practice, we have worked with the log2 of the
expression intensities.

The random set of 10 genes used for the GSVD is indicated
by asterisks in the table available in the online Additional
Material [see Additional file 1]. The resulting range of
angles θ k is shown in Fig. 3. It is evident from this figure
that arraylets k = 5, k = 6 and k = 7 contribute a similar
amount to both datasets, while arraylets k ≤ 4 increasingly
dominate in the microarray dataset and arraylets k ≥ 8
increasingly dominate in the Q-PCR dataset. One would
expect, therefore, to have the greatest success in making an
identification of genes between the two datasets if the
overlapping subspace included the central arraylets k = 5,
k = 6 and k = 7.

There is of course arbitrariness in how one actually defines
the "identification of genes". A convenient procedure

adopted here consists of calculating, for each microarray

gene  in turn [see Additional File 1], the Euclidean dis-

tance d within the central arraylets for all Q-PCR gene

transcripts ( ), i.e. for each p we calculated dc.a.( ,

) for all q. We chose to define a "successful match" to

be one where the appropriate gene from the Q-PCR data-
set (p = q) is one of the seven 'closest' to the microarray

gene, i.e. rank(dc.a.( , ) ≤ 7). While the absolute

number of "successes" is naturally sensitive to this arbi-
trary choice of the cut-off, comparisons between them are
less so.

The results from this illustrative exercise are shown in
Table 1. In this instance the greatest success is achieved
using either arraylets 4 to 8, 5 to 9 or 3 to 9. In these cases
17 out of 49 genes are successfully matched. The success
rate decreases, as one would expect, if non-central
arraylets are chosen. For example, using the Q-PCR dom-
inated arraylets 8–10, only 10 genes are successfully
matched. Similarly, using the microarray dominated
arraylets 1–3 only 4 genes are matched. Successful
matches may of course occur purely by chance, with a
binomial probability distribution given by Pr(j, J; x = s/S)
= J!/[j! (J-j)!] xj(1-x)J-j, where Pr(j, J; x) is the probability of
having j successes in J = 49 trials by randomly picking s =
7 genes from a list of S = 59. The p-values associated with
this null-hypothesis are shown in brackets in Table 1. The
rate of success achieved by matching gene expression in
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Mp Qq

Using the GSVD to identify candidate co-expressing genesFigure 2
Using the GSVD to identify candidate co-expressing 
genes. This schematic flowchart shows the procedures used 
to identify a) an overlapping region between the two datasets 
as well as b) candidate genes probed by the microarray co-
expressing with genes of interest from the Q-PCR dataset. 
Regions A, B and C refer to those defined in Fig. 1. In order 
to reduce the number of false positives we have repeated the 
entire procedure a number of times and only examine in 
detail genes that co-express consistently among these 
repeats.
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θk result from a GSVD defined by the genes marked by aster-
isks in the Table in the online Additional Material [see Addi-
tional file 1].
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the central arraylets of the GSVD is clearly far greater than
one would expect by chance, with typical p-values in the
range of 10-5 to 10-3. This success rate decreases, as
expected, to around background levels (i.e. p-value of
order 1) in the peripheral arraylets.

Naturally, the results shown in Table 1 depend on the par-
ticular set of gene-pairs used to define the GSVD and,
indeed, considerable fluctuations around these numbers
may be observed when choosing a different set of genes to
define the GSVD. In view of this one may well ask to what
extent the results in Table 1 are 'typical'. We have investi-
gated this by using the fact that random fluctuations may
be averaged out by performing large numbers of GSVD's,
defined by randomly chosen sets of 10 gene-pairs. The
results of a series of 1000 GSVDs defined in this way are

shown in Fig. 4, indicating that the general trends
observed in Table 1 are robust: The greatest success in
matching Q-PCR and microarray profiles is achieved in
the central arraylets with an average of around 14 positive
matches. Also shown in Fig. 4 are the p-values associated
with the null-hypothesis for a single GSVD (see Table 1)
as well as, shaded dark, an additional check that the
results are not being over-interpreted. Here the expression
profiles in the microarray data not used in defining the
GSVD were randomized, thus destroying all remaining
inherent biological connections between the two datasets,
before performing the matching procedure. Similar results
are obtained if the microarray expression profiles are ran-
domized before defining the GSVDs (data not shown).
For all but the smallest k these results are consistent with
the average expected background, Js/S ≈ 5.81.

We conclude, therefore, that co-expression of known
gene-pairs is indeed strongest, and highly significant (p-
value < 10-3), in the subspace spanned by the central
arraylets. On the other hand, in peripheral arraylets co-
expression of known gene-pairs occurs at background lev-
els. This provides strong empirical evidence that search for
co-expression in the subspace spanned by the central
arraylets indeed provides a tool for identifying candidates
for co-expressed genes across the two datasets.

Improving the GSVD through a judicious choice of defining 
gene-pairs
While the discussion so far addresses the utility of the
GSVD in dealing with partially overlapping experimental
conditions in the two datasets, we shall now address the
second problem illustrated in Figure 1: because the prim-
ers used for the Q-PCR target different regions to the
probes on the microarray, there is some uncertainty in
defining the set of genes that are part of region A in the
first place. It could well be that alternative splice forms,
unknown paralogs and/or gene family members with
closely related sequence contribute differently to the sig-

Table 1: The number of correctly identified genes as a function of both subspace location and dimension

k Δk = 0 Δk = 1 Δk = 2 Δk = 3 Δk = 4

1 4 (0.85)
2 6 (0.53) 4 (0.85)
3 5 (0.71) 6 (0.53) 5 (0.71)
4 3 (0.94) 6 (0.53) 10 (5.9 × 10-2) 5 (0.71)
5 8 (0.22) 14 (1.3 × 10-3) 13 (3.8 × 10-3) 13 (3.8 × 10-3) 8 (0.22)
6 12 (1.1 × 10-2) 13 (3.8 × 10-3) 17 (2.7 × 10-5) 17 (2.7 × 10-5) 5 (0.71)
7 9 (0.12) 14 (1.3 × 10-3) 17 (2.7 × 10-5) 14 (1.3 × 10-3)
8 9 (0.12) 15 (3.9 × 10-4) 13 (3.8 × 10-3)
9 8 (0.22) 10 (5.9 × 10-2)
10 8 (0.22)

Arraylets ranging from k-Δk to k+Δk were used to define the subspace. The genes used to define the GSVD are indicated by asterisks in the online 
Additional Material [see Additional file 1]. The numbers in brackets are the corresponding p-values.

The average number of successfully identified microarray genes, using distance within three arraylets as the measure of similarity (light bars)Figure 4
The average number of successfully identified micro-
array genes, using distance within three arraylets as 
the measure of similarity (light bars). On the right hand 
axis the calculated p-values characterizing the expected 
number of false positives for a single GSVD are shown. The 
dark bars indicate the result obtained if those microarray 
genes not used in the GSVD are randomized.
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nal obtained with the two platforms. Clearly, it would not
be wise to make use of cases like this in defining the com-
mon subspace between the two experiments.

We contend that the freedom one has in selecting the set
of gene-pairs defining the GSVD allows one to test
whether or not the set contains 'contamination' of this
sort and that this freedom, therefore, provides a solution
to this problem. In particular, it should be noted that
although the results shown above are typical, some sets of
gene-pairs improve the performance of the GSVD in
matching genes in the two datasets dramatically. We have
found over a dozen sets of 10 gene-pairs that result in 35
to 39 out of 49 successful matches. While one naturally
expects some fluctuations in this success-rate it is easy to
check, using the binomial distribution discussed earlier,
that fluctuations of this magnitude and frequency go sig-
nificantly beyond what one would expect by chance
alone. Given the difficulties that have been encountered
in previous cross-platform comparisons of gene expres-
sion data [24-31], this is a notable result. A natural inter-
pretation of this success is that these sets of gene-pairs
define GSVDs that are able to cope particularly well with
systematic platform dependent artefacts, that the expres-
sion of these genes shows little or no cultivar dependence
and that differential sensitivity to alternative splice forms
etc. for these gene-pairs is not an issue.

A corollary of this line of reasoning is that expression sig-
nals of gene-pairs that are strongly affected by any of these
artefacts, when used to define the GSVD, consistently lead
to poor results. Indeed, this is found to be the case. For
example, inclusion of the barley cellulose synthase-like
gene HvCslE2 in the set of 10 genes used to define the
GSVD invariably leads to a low number of successful
matches. At the same time, direct comparison of expres-
sion profiles of HvCslE2 in both the microarray and Q-PCR
tissue series indicates that, while on the microarray expres-
sion of this gene in caryopsis both 8–10 and 14–16 days
after pollination is somewhat down-regulated as com-
pared to the average across all tissues, in the Q-PCR dataset
it is strongly up-regulated in the tissue that roughly corre-
sponds to these, namely developing grain 10–13 days after
pollination. While the origin of this apparent discrepancy
is not known, it illustrates how one can gain information
on the (in)-consistency of the expression profiles of indi-
vidual gene-pairs in the two datasets by using the GSVD. In
summary, we conclude that in addition to using subspaces
defined only by central arraylets of the GSVD, one can fur-
ther greatly improve the efficacy of the method by defining
the GSVD using sets of genes that maximize its success rate
for matching genes in common in the two datasets. This
procedure is summarized in Fig. 2.

Various strategies for selecting suitable gene-pairs may be
employed. In most cases an exhaustive brute force search
for the optimum set is not feasible: in our case this would

have entailed testing  ≈ 6 × 1010 combinations of

gene-pairs. As an alternative heuristic method one may
start with a random set of gene-pairs and progressively
swap new gene-pairs from region A into this set, keeping
those that lead to improved gene-pair matching. We
elected to implement a combination of these approaches:
first, we narrowed down the choice of suitable gene-pairs
to 20 through a heuristic search for gene-pairs that tended
to improve performance and then exhaustively tested all

selections of length 10 (i.e.  = 184,756 of them)

picked from this narrowed down set.

Discussion
Implementation of the GSVD
Finally, we turn to applying the methodology developed
in this paper to a real biological problem. We are inter-
ested in a particular gene for which Q-PCR expression
data has been collected but for which microarray informa-
tion is not available (i.e. a gene in region C of Figure 1).
This gene is a member of a barley cellulose synthase-like
gene family and is designated HvCslF3 (GenBank Acc. No.
EU267179; for details of the biological methods as well as
the numerical results of the Q-PCR experiments, see the
Methods section as well as the online Additional Material
[see Additional file 1]). It has recently been implicated in
the biosynthesis of the polysaccharide (1,3;1,4)-β-D-glu-
can, which is a major constituent of cell walls of commel-
inoid monocotyledons, including barley [44,45].
However, given the presence of two distinct linkage types
and the general structural complexity of barley and other
(1,3;1,4)-β-D-glucans, it might be anticipated that addi-
tional enzymes could be required for the biosynthesis of
the polysaccharide and for its post-synthetic modifica-
tion, either during transport to the cell wall or following
its deposition into it [46,47]. For example, in cellulose
biosynthesis, groups of at least three cellulose synthase
enzymes (HvCesA's) are thought to be required for the
formation of the active terminal rosette complex through
which cellulose microfibres are secreted into the cell wall
[48]. Furthermore, the mRNAs encoding the cellulose syn-
thase-like HvCslF proteins are often of relatively low
abundance [49] and corresponding gene sequences are
generally under-represented in EST databases. As a result,
only one representative of seven known members of the
HvCslF gene family is found on the Barley1 microarray
[48], despite the fact that the chip includes over 22,000
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contigs [21]. Thus, Q-PCR data obtained for the HvCslF3
gene was combined with the microarray data, using the
GSVD, to identify co-transcribed genes from the chip that
might provide clues to the identities of ancillary proteins
or enzymes required for (1,3;1,4)-β-D-glucan biosynthe-
sis.

A GSVD analysis was performed using a particular set of
10 gene-pairs from region A in Figure 1 (HvCesA1,
HvCesA2, HvLimit-Dextrinase Inhibitor, HvCesA4, HvGlyT5,
HvCesA8, HvUXS3, HvCslC4, HvEndogluII, HvGSL3). This
set was chosen because it resulted in a large number (39/
49) of matches for the remaining gene-pairs in region A
("matches" being defined as gene-pairs sufficiently close
in Euclidean distance in the subspace spanned by the cen-
tral arraylets 5 to 7, as described in detail earlier on).
Using Equation (4), this GSVD provides the mapping
from the space spanned by arrays to the space spanned by
arraylets for the remaining genes in regions B and C of Fig-
ure 1. Transcripts from the microarray (i.e. from region B)
co-ordinately transcribed with the HvCslF3 gene (from
region C), within the subspace spanned by the central
arraylets, could then be identified.

It is illustrative to compare this co-expression in the space
spanned by arraylets to the expression profiles obtained

directly from the microarray. In Fig. 5A we show a heat-
map of 200 transcript abundances obtained with the
microarray, ordered so that those co-expressing most
closely with HvCslF3 in the central arraylets are at the top
of the plot. The co-expression in the central arraylets is
clearly visible. On the other hand, little or no co-expres-
sion in the peripheral arraylets characterising expression
in non-overlapping parts of the datasets is apparent. For
comparison, the corresponding expression profiles in the
original space spanned by the arrays of the microarray
experiment are shown in Fig. 5B. Some overall trends are
apparent: expression in anther, caryopsis and endosperm
tends to be low for these genes, while expression in root-
like tissues and coleoptile tends to be high. More interest-
ing, however, is the variation in expression among these
genes. Co-expression in central arraylets should be
reflected in stronger co-expression in tissues that are in
common between the two platforms than those tissues
that are not. As a measure of this variation we have listed,
along the top of Fig. 5B, the standard deviation of expres-
sion among these 200 genes, scaled by the corresponding
quantity for the whole dataset. We see that a selection of
genes based on co-expression within central arraylets has
resulted in a gene-set that is most tightly co-expressed in
anther, caryopsis (5 dap), crown, inflorescence, pistil and
radicle, but co-expressed less than average in caryopsis (8–

Relation between co-expression within the central arraylets to co-expression in the microarray dataFigure 5
Relation between co-expression within the central arraylets to co-expression in the microarray data. Panel A 
shows gene expression as measured in the arraylets defined by the GSVD using a set of genes described in the main text (green 
– low expression, red – high expression). Only the 200 transcripts whose expression profile in the central arraylets 5–7 
(boxed) is closest to that of HvCslF3 (as measured by Euclidean distance) are shown. The expression profiles for the same 
genes, in the space spanned by arrays, are shown in panel B. Approximate co-expression can be seen for some tissues (e.g. 
expression in anther, caryopsis and endosperm tends to be low, while expression in root, radicle and coloeptile tends to be 
higher). At the top of panel B we indicate, for each tissue, the standard deviation of expression values among the genes shown 
on the plot, scaled with the corresponding quantity for the whole dataset; i.e. values larger (smaller) than one indicate larger 
(smaller) variability than average. As expected (see text), variability in expression is smallest in those tissues represented in 
both datasets.
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10 & 14–16 dap) and mesocotyl. Comparing with Figure
1 we see that the former tissues are mostly those probed
by both tissue series, while the latter are among those
probed by the microarray alone. It appears therefore that,
as expected, the central arraylets of the GSVD are indeed
associated with those tissues for which there is some over-
lap between the two series.

Naturally, there are many 'co-expressed' genes and, in
principle, one could perform follow-up analyses on all of
those that are sufficiently co-expressed with HvCslF3
within the subspace under consideration. At this stage, we
have focussed our attention only on those genes that, in
addition to being co-expressed, are also already suspected
to participate in cell wall synthesis on the basis of their
annotation. A list of 20 of these genes, with the highest
scores for co-expression with HvCslF3, is shown in Table
2.

Furthermore, one may wonder to what degree the results
in Table 2 reflect the choice of 10 genes used to define the
GSVD in the first place. Another choice for this set of
genes may well lead to some changes to the list of putative
co-expressors listed in Table 2. In other words, it may well
be that subsequent analyses could expose some of these
candidate genes as being false positives. In order to reduce
this number of false positives we elected to repeat the pro-
cedure shown in Fig. 2 a number of times, each time using

another set of 10 genes to define the GSVD. Each of these
sets (16 in total) was chosen because it resulted in a simi-
larly large number of matches of pairs of genes in com-
mon in the datasets as the first one. It was comforting to
find that there are quite a number of genes in the lists of
co-expressors that are insensitive to the choice of gene-
pairs used to define the GSVD: we found that in all cases
Contig11619 (annotated as a ceramide glucosyltrans-
ferase) is co-transcribed with HvCslF3, in 15 out of 16
GSVD analyses Contig14830 (annotated as a putative glu-
cosyltransferase), Contig15434 (the cellulose-synthase-
like gene HvCslA4) and Contig18825 (the cellulose-syn-
thase-like gene HvCslC1) were co-expressed and, in 14 out
of 16 analyses Contig16931 (annotated as a galactoside 2-
α-L-fucosyltransferase), was co-expressed. While our sub-
sequent analysis concentrated on these genes it could well
be that other transcripts in Table 2 (or, for that matter,
other transcripts not annotated as cell wall related) may
also be worthy of further investigation.

Confirmation of co-expression using Q-PCR
In order to confirm the apparent co-regulation of HvCslF3
with this selection of genes probed by the microarray,
primers were constructed so that their transcript abun-
dance in the 11 barley tissues of the Q-PCR dataset could
be checked directly using Q-PCR. The resulting expression
profile of the most consistently co-expressed candidate
(correlation coefficient 0.72), the putative ceramide gluc-

Table 2: Microarray probesets with profiles closest to the Q-PCR profile for the cellulose synthase-like gene HvCslF3.

Barley1 probeset Dist. Annotation (E-value)

Contig12242 0.17 UDP-glucose:sterol Gt [As] (1 × 10-67)
Contig14077 0.40 putative glycosyltransferase [Hv]; (1 × 10-160)
HVSMEa0015K08r2 0.42 putative XTH [Os] (3 × 10-13)
HV06O09u 0.46 putative glucosyltransferase [Os] (1 × 10-35)
Contig11619 0.48 ceramide glucosyltransferase [Ga] (8 × 10-51)
Contig6602 0.52 putative glycoprotein 3-α-L Ft [Hv] (0)
Contig14830 0.55 putative glucosyltransferase [Os] (1 × 10-113)
HE01I24u 0.57 xyloglucan endo-1,4-β-D-Gl [Hv] (6 × 10-27)
Contig11983 0.64 galactosyltransferase family [At] (1 × 10-113)
HV12D17u 0.70 putative GDP-fucose protein-Ft [Os](2 × 10-52)
Rbags19k14 0.74 putative glucosyltransferase [Os] (2 × 10-20)
Contig2958 0.74 XTH [Hv] (1 × 10-170)
Contig18221 0.75 XYLT [At] (1 × 10-111)
Contig23070 0.76 GALT family-like protein [Os] (3 × 10-70)
HVSMEl0008B06r2 0.76 putative GT family [Os] (5 × 10-28)
HVSMEl0013E16r2_s 0.77 putative xyloglucan Ft [At] (8 × 10-10)
Contig14826 0.78 putative glucosyltransferase [Os] (6 × 10-58)
Contig15434 0.79 glycogenin GT [Os] (4 × 10-53)
Contig15291 0.80 putative glucosyltransferase [Os] (7 × 10-48)
Contig5876 0.81 putative glucosyl transferase [Os] (0)

The distance in the second column is the Euclidean distance in the subspace spanned by arraylets 5–7 of the GSVD defined by 10 genes in common 
between the two datasets (HvCesA1, HvCesA2, HvLimit-Dextrinase Inhibitor, HvCesA4, HvGlyT5, HvCesA8, HvUXS3, HvCslC4, HvEndogluII, HvGSL3).
Abreviations: As – Avena sativa; At -Arabidopsis thaliana; Ga – Gossypium arboretum; Hv – Hordeum vulgare; Os – Oryza sativa; Ft – 
fucosyltransferase; GALT – galactosyltransferase; Gl – glucanase; Gt – glucosyltransferase; XTH -xyloglucan endo-transglycosylase; XYLT – beta-
(12)-xylosyltransferase.
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osyltransferase Contig11619, is shown in red in Figure 6A
alongside the corresponding expression profile of
HvCslF3 (black), confirming that the GSVD procedure has
indeed correctly identified a hitherto unknown co-
expressed gene to this cellulose synthase-like gene. Similar
cross-checks were carried out for Contig14830 (corr. coeff.
0.29), Contig16931 (0.68), Contig15434 (0.75) and
Contig18825 (0.71), the latter two being already present in
the Q-PCR dataset (i.e. region A). The expression profiles
for these genes are also shown in Fig. 6A. As can be seen,
all but Contig14830 show significant co-expression with
HvCslF3 in the tissues probed by the Q-PCR dataset.

It is noteworthy that the co-expression of HvCslF3 with
Contig11619 breaks down in scutellum. This is a tissue
that is part of the Q-PCR dataset but not the microarray
dataset. Quite correctly, therefore, the central arraylets
that were searched for co-expressed genes were insensitive
to the expression level in this tissue (the analogous behav-
iour for tissues probed in the microarray dataset but not
the Q-PCR dataset has already been noted in Figure 5B).
While the origin of the lack of co-expression is not known
at present it should be noted that in a further series of Q-
PCR based measurements, using coleoptiles at different
stages of development (R. A. Burton, unpublished data),
close coordinate transcription of the HvCslF3 and cera-
mide glucosyl transferase persisted (Figure 6B). Similarly,
the apparent lack of co-expression of the Q-PCR derived
profiles of Contig14830 and HvCslF3 is most noticeable in
those tissues where the Q-PCR series indicates significant
sub-tissue dependence (leaf-tip vs. leaf-base, root-tip vs.

root midzone), sub-tissues that were not probed individ-
ually in the microarray experiment.

Conclusion
In summary, we have applied the generalized singular
value decomposition to the combined analysis of two
expression datasets that are only partially overlapping in
both gene content as well as experimental conditions.
This adapts and significantly extends the use of the GSVD
beyond its original use in gene expression analysis,
namely a comparative study of cell cycles of two species
where the experimental conditions were identical. The
extension makes use of a selection procedure that adjusts
the set of genes used to define the GSVD in order to max-
imize expression-profile matching of known gene-pairs in
the two datasets. In this way, one effectively uses the infor-
mation contained in the expression data itself (rather than
probe-matching to a reference sequence) to eliminate
gene-pairs whose expression signal may be affected by dif-
ferential sensitivity to alternative splice forms and/or
other gene family members. Furthermore, we have dem-
onstrated that the resulting decomposition provides an
effective framework for conducting searches for candidate
genes in one dataset that are likely to co-express with
genes contained only in the other dataset.

The methodology developed here has provided testable
leads for the identification of genes that might be co-ordi-
nately transcribed with the HvCslF3 gene. Indeed, the
association of the most consistently co-expressed candi-
date, the ceramide glucosyl transferase, with HvCslF3 is

Confirmation of co-expression of HvCslF3 and candidate genesFigure 6
Confirmation of co-expression of HvCslF3 and candidate genes. In panel A the Q-PCR expression profiles of the cellu-
lose synthase-like gene HvCslF3 and the candidate genes identified in this study are compared. Expression profiles have been 
standardized as described in the text. As can be seen, the genes indeed co-express in the tissues probed in both the Q-PCR 
and microarray datasets. Panel B shows an additional comparison of Q-PCR coleoptile time course expression profiles of 
HvCslF3 and Contig11619. The two genes appear to remain roughly co-expressed in this time-course as well.
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quite plausible. It might form part of the cellular machin-
ery necessary for the biosynthesis of cell wall (1,3;1,4)-β-
D-glucans. Ceramide mono- and oligoglucosides are
members of the glycosphingolipid group of plant plasma
membrane components that are believed to separate later-
ally to form specialized microdomains in the membrane
[50,51]. These so-called 'lipid rafts' are believed to recruit
groups of proteins, including GPI-anchored proteins and
integral membrane proteins, that assemble in localized
areas for specialized membrane processes [52]. Further-
more, it has recently been shown that GPI-anchored pro-
teins are required for cell wall biosynthesis and
morphogenesis in Arabidopsis [53] and it has earlier been
suggested that glycolipids or steryl glycosides might act as
intermediates in the biosynthesis of wall polysaccharides
[54].

The GSVD procedure described here has allowed the com-
bination of Q-PCR and microarray transcript datasets and,
through this integration, the development of testable
hypotheses as to which genes might be involved in spe-
cific cellular processes. More generally, the procedure dra-
matically extends the utility of a limited dataset of Q-PCR
analyses, for a small number of genes of interest, through
combination with much larger microarray datasets. The
GSVD analysis should be of similar value in combining
other types of transcript datasets in any biological system
for which microarray, MPSS or other large transcript data-
sets are available.

Methods
Real Time Quantitative-PCR
Barley tissues were prepared, RNA extracted and cDNA
synthesized as detailed in Burton et al. [48]. The amount
of cDNA required to perform the experiments described
here meant that two aliquots of cDNAs were prepared and
combined for all tissues, using the same RNA prepara-
tions.

Stock solutions of the PCR product for the preparation of
a dilution series were prepared from the cDNAs and puri-
fied and quantified by HPLC [48]. A dilution series cover-
ing seven orders of magnitude was prepared from 109

copies/μl stock solution [48]. Three replicates each of
seven standard concentrations were included with every
Q-PCR experiment together with a minimum of three 'no
template' controls. Some Q-PCR experiments were assem-
bled by hand and others were assembled using a CAS-
1200 liquid handling robot. Three replicate PCRs for each
of the cDNAs were included in every analysis.

Reactions were performed in an RG 3000 Rotor-Gene Real
Time Thermal Cycler as follows; 15 min at 95°C followed
by 45 cycles of 20 s at 95°C, 30 s at 55°C, 30 s at 72°C
and 15 s at an optimized acquisition temperature. A melt

curve was obtained for the final product by heating from
70°C to 99°C. The optimal cycle threshold (CT) was
determined from the dilution series using the Rotor-Gene
V6 software, and the raw expression data were derived.
The mean expression levels and standard deviations for
each set of four replicates for each cDNA were calculated
and were normalized using the procedure described in
Burton et al. [48].

Microarray Data
Sequences for the Q-PCR products of all primers used in
this study were made available to us by members of our
laboratory. These sequences were compared with the
Affymetrix Barley1 genechip sequences using the Blast-n
algorithm [55]. Matched sequences were defined by
demanding an E-value better than 10-38 and a percent-
identity better than 93%. The precise value of these cut-
offs is not crucial: increasing the stringency to E-value <
10-50 and P.I. > 95% eliminates only 2 matched sequence
pairs. In a small number of cases the matching was ambig-
uous in that several different genechip sequences with
similar E-values were found. These cases were not
included in the matched set. The results are summarized
in the online Additional Material [see Additional file 1].
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