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Abstract
Background: Protein structure analysis and comparison are major challenges in structural
bioinformatics. Despite the existence of many tools and algorithms, very few of them have managed
to capture the intuitive understanding of protein structures developed in structural biology,
especially in the context of rapid database searches. Such intuitions could help speed up similarity
searches and make it easier to understand the results of such analyses.

Results: We developed a TOPS++FATCAT algorithm that uses an intuitive description of the
proteins' structures as captured in the popular TOPS diagrams to limit the search space of the
aligned fragment pairs (AFPs) in the flexible alignment of protein structures performed by the
FATCAT algorithm. The TOPS++FATCAT algorithm is faster than FATCAT by more than an
order of magnitude with a minimal cost in classification and alignment accuracy. For beta-rich
proteins its accuracy is better than FATCAT, because the TOPS+ strings models contains
important information of the parallel and anti-parallel hydrogen-bond patterns between the beta-
strand SSEs (Secondary Structural Elements). We show that the TOPS++FATCAT errors, rare as
they are, can be clearly linked to oversimplifications of the TOPS diagrams and can be corrected
by the development of more precise secondary structure element definitions.

Software Availability: The benchmark analysis results and the compressed archive of the
TOPS++FATCAT program for Linux platform can be downloaded from the following web site:
http://fatcat.burnham.org/TOPS/

Conclusion: TOPS++FATCAT provides FATCAT accuracy and insights into protein structural
changes at a speed comparable to sequence alignments, opening up a possibility of interactive
protein structure similarity searches.

Background
Structural biology is one of the most successful fields of
modern biology. Over 50,000 solved protein structures
illustrate details of many specific biological processes. The
same data also provide us with information about the glo-

bal features of protein structure space and can be studied
to discover the evolutionary, physical, and mathematical
rules governing them. How many fundamentally different
protein shapes (folds) are there? How do protein struc-
tures evolve? How do new structural features appear, and

Published: 31 August 2008

BMC Bioinformatics 2008, 9:358 doi:10.1186/1471-2105-9-358

Received: 7 April 2008
Accepted: 31 August 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/358

© 2008 Veeramalai et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18759993
http://www.biomedcentral.com/1471-2105/9/358
http://creativecommons.org/licenses/by/2.0
http://fatcat.burnham.org/TOPS/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:358 http://www.biomedcentral.com/1471-2105/9/358
if they are coupled with changes in function, how does
this process occur? Such questions can be studied by clas-
sifying, comparing and analyzing known protein struc-
tures. Two different, but synergistic strategies are typically
used for this purpose. In classification systems such as
SCOP [1] or CATH [2], human intuition is used to sim-
plify the description of protein structures to a manageable
size, and a human eye, sometimes supported by auto-
mated analysis, can recognize patterns and types of struc-
tures. In the second approach, specialized comparison
algorithms, such as DALI [3], CE [4], or FATCAT [5] can
be used to calculate a distance-like metric in the protein
structure space. This in turn can be used to cluster proteins
into groups. Many such algorithms have been developed
over the past few decades and have been mostly used for
the classification of protein structures into families.

An exact solution of an alignment between two structures
is formally equivalent to a threading problem and is there-
fore NP-complete [6]. However, a practical solution can
be obtained by heuristics reducing the problem to a man-
ageable size [7]. In human classification systems, the pro-
tein is usually reduced to a set of several structural
elements, which obviously involve many arbitrary thresh-
olds. Automated algorithms have the same problem and
also suffer from inconsistencies between different numer-
ical measures of protein structure similarity [8]. Interest-
ingly, despite these problems, results of different
approaches are broadly similar. They all identify approxi-
mately a few hundred general classes of protein structures,
usually called folds [1] or topologies [2], distinguished by
how the main chain of the protein folds around itself in
the three-dimensional space. At the same time, the com-
parison of different approaches, both between and within
the two classes, shows that fold/topologies (or cluster)
definitions are somewhat fuzzy, with some proteins being
occasionally difficult to classify and joining different

groups depending on various assumptions. This lead
some to question the concept of the fold [9], but practical
application of protein structure comparison leaves little
doubt that protein structure space has some natural gran-
ularity that overlaps well with the traditional fold classifi-
cation.

Comparison and classification of protein structures is sig-
nificantly simplified by the fact that proteins have natu-
rally modular structures, being mostly composed of
locally regular structures: alpha helices and beta strands.
These two types of secondary structures constitute a little
over 50% of an average protein's length. With the average
length of a secondary structure being around 10 amino
acids, this makes it possible to describe protein structure
as an arrangement of a much smaller number of elements.
Protein structures are often visualized in a simplified
form, with the so-called ribbon diagram with secondary
structures shown as helices and arrows being the most
popular (see Figure 1). This picture can be simplified fur-
ther by showing individual secondary structure elements
as simple symbols (circles or boxes/triangles). These
depictions, called fold diagrams, originally proposed in
the 70s [10-12] are best captured by a TOPS (Topology of
Protein Structures) algorithm, which attempts to auto-
mate the process of creation of the topology cartoon [13].
While useful in protein classification, such simplified
descriptions are not used in the most popular automated
protein structure comparison algorithms such as DALI [3]
or CE [4]. Kleywegt and Jones developed a method for
finding similar motifs based on comparing distance
matrices that are constructed by representing protein as a
set of SSEs with their directional vectors and angle
between those vectors [14]. Programs that used SSEs
either for structure comparison based on hierarchical
superposition of both SSEs and atomic representation
[15] or for finding common substructures in the compar-

Different representations of the protein structure flavodoxin-fold CheY: (a) ribbon diagram; (b) TOPS style topology diagram; (c) distance; (d) contact mapFigure 1
Different representations of the protein structure flavodoxin-fold CheY: (a) ribbon diagram; (b) TOPS style 
topology diagram; (c) distance; (d) contact map.
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ison process based on subgraph isomorphism, such as
[16,17] and recent applications of the TOPS diagram
[18,19], usually struggle with translating the comparison
results from the secondary structure to the individual res-
idue level. Although the SSM method uses graph-match-
ing procedures at the SSE level followed by an interactive
3D alignment of the protein C-alpha atom [20], it lacks
the topological relationships between the SSEs, which are
essential features in identifying common scaffolds in dis-
tantly related proteins. A TOPS pattern was used to guide
the sequence alignment, for instance, to build multiple
structural alignments of the distantly related family of
beta-rich protein domains [21]. The Multiple Sequence
Alignment Tool (MSAT) automates this approach, merg-
ing it with a popular ClustalW program [22]. DALI [3], CE
[4] or FATCAT [5] introduce their own methods of decom-
posing the protein structure into smaller units, such as 7 ×
7 dense distance map fragments (DALIs) or aligned frag-
ment pairs (AFPs) (CE and FATCAT). The large number of
such fragments and the combinations of the fragments
that need to be evaluated by structure comparison pro-
grams is the main reason for the significant computa-
tional requirements of such algorithms. However, more
importantly, TOPS+ method is used here to enable a struc-
tural comparison that takes into account flexibility in pro-
tein structures and not only classifies the differences, but
also can recognize such rearrangements – which is a first
such application using the SSEs language. In this contribu-
tion, we explore the question of whether it would be pos-
sible to combine insights provided by topology diagrams
into automated protein structure alignment algorithms,
focusing on the FATCAT program developed previously in
our group.

Methods
Flexible structure alignment method FATCAT
FATCAT [5] is a unique structure alignment method that
allows for flexibility in the structures being compared. It
builds the alignment by chaining aligned fragment pairs
(AFPs) [23] together using a unified scoring function
where AFP extensions, gaps, and twists each have their

specific scores (Figure 2). Introducing a twist into the
alignment is penalized, but this penalty may be compen-
sated for by the gain in the score of the resulting align-
ment (i.e., longer alignment and/or better RMSD). Rigid
alignment can be treated as a special case, in which no
twist is allowed in chaining AFPs. FATCAT program pro-
vides alignment in both, "rigid" mode and "flexible"
(default) mode.

FATCAT, as well as most other protein structure compari-
son programs, is very slow when compared to sequence
alignments. The computing time of FATCAT is deter-
mined by the size of the collection of AFPs detected
between the two structures being compared. FATCAT is
available from a server http://fatcat.burnham.org with an
option to search in SCOP or PDB databases for similar
structures. This search typically takes between 8 to 16
hours of CPU time, and this is the main obstacle to
broader use of this option. FATCAT has been used to con-
struct a Flexible Structure Neighborhood (FSN) database
that contains pre-computed results of structure similarity
searches and it takes several weeks of CPU time to update
the FSN database. Other protein structure comparison
resources, such as DALI or CE have very similar problems.

TOPS cartoons and TOPS graph models
As discussed in the Background, TOPS cartoons capture
the simplified, fold-level description of protein structure
and at the same time can be automated [24]. The TOPS
algorithm uses structural features such as hydrogen bonds
and chirality of the beta strands to provide a scoring func-
tion to optimize the cartoon (see Figure 1(b)). In TOPS,
the secondary structural elements (SSEs) are derived from
the DSSP program [25]. Based on TOPS cartoons, a formal
graph model and graph-based definitions of protein
topology and pattern discovery and comparison methods
were developed [26,27]. The TOPS database and compar-
ison, pattern discovery and matching programs are acces-
sible from http://www.tops.leeds.ac.uk.

Novel TOPS+ and TOPS+ strings models
The TOPS model was further enhanced to incorporate fea-
tures such as protein-ligand interaction information and
more detailed secondary structural segment information.
This enhanced model is called TOPS+ model (see Figure
3a). This TOPS+ model can be described formally in a
TOPS+ strings language (Figure 3b) at a reduced linear
level. The enhanced TOPS+ strings models can be used in
fast string-based structure matching and comparison, at
the same time avoiding issues of NP-completeness associ-
ated with graph alignments.

In detail, each node (SSE segment) of the TOPS+ strings is
described by its type, orientation, PDB start number, seg-
ment length, total number of incoming (InArc) and out-

Rigid versus flexible alignment of aligned fragment pairs (AFPs)Figure 2
Rigid versus flexible alignment of aligned fragment 
pairs (AFPs).
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going (OutArc) arcs (edges), total number of ArcTypes,
and total number of ligand arcs (LigArc). The type of the
segment (SSEType) could be one of [E, e, H, h, U, u],
where, "E" and "e" represent the "up"- and "down"-ori-
ented beta strands; "H" and "h" indicate the "up"- and
"down"-oriented alpha helices; and "U" and "u" represent
ligand-bound and ligand-free loops. The InArcType can be
classified as an/a [R, L, P, A], where "R" and "L" represent
right and left chiralities; and "P" and "A" represent paral-
lel and anti-parallel hydrogen bonds, respectively. The
OutArcType is represented in a similar manner by [R', L',
P', A']. Ligand arcs are indicated by LT = AA, where LT is
the ligand type and AA is the PDB number. For example,
Figure 3(a) and 3(b) contain visual representations of
TOPS+ and TOPS+ strings models, respectively, for the
protein domain d1fnb_1. Here the triangles represent the
beta strands; the red curve represents the alpha helix; gray
ellipsoids indicate loops; and green arcs indicate hydro-
gen bonds between two beta strands, called anti-parallel
beta sheets. The length of a TOPS+ strings model is

defined by number of SSEs; thus, the length of d1fnb_1 is
19. For further details, see [28].

TOPS+ strings comparison method
TOPS+ is a comparison method that computes a distance
between TOPS+ strings models of two proteins based on
a dynamic programming approach and identifies the
longest common subsequence (LCS), consisting of the list
of the topologically equivalent SSEs between two pro-
teins. For example, Figure 3(c) shows the TOPS+ strings
alignment between Dihydropteridine reductase proteins
from rat (1dhr) and human (1hdr). The TOPS+ strings
models for 1dhr and 1hdr are represented by a linear
string-model, where a yellow triangle and red curves indi-
cate the beta strands and alpha helices in their "up" or
"down" orientations, respectively. The grey line and pur-
ple stubs represent the loop regions and the NAD ligand
interactions, respectively. Note that the ligand-interaction
information is optional and in this work we have not used
it. The incoming and outgoing arcs are depicted in the

(a) TOPS+ graph model, (b) TOPS+ strings model, and (c) TOPS+ strings matches between Dihydropteridine reductase from rat (1dhr) and human (1hdr)Figure 3
(a) TOPS+ graph model, (b) TOPS+ strings model, and (c) TOPS+ strings matches between Dihydropteridine 
reductase from rat (1dhr) and human (1hdr). All the conserved TOPS+ strings elements are shown with pink arrows. 
Dotted arrows indicate matched helices and strands, plain arrows indicate matched loops, and arrows with double lines indi-
cate matched ligand-interacting loops.
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SSEs (top and bottom of the beta strands), where red and
green arcs represent the parallel and anti-parallel hydro-
gen-bond interactions that show beta-sheet information,
while yellow and blue arcs indicate the right and left chi-
rality relationships between the SSEs. A pink arrow
between the TOPS+ strings elements indicates the con-
served SSE. The dotted arrows indicate the conserved
alpha helices and beta strands, while the plain arrows
indicate the conserved loop regions.

TOPS++FATCAT method
In this work, we want to test the general idea of pruning
the search space of the FATCAT comparison process using
topological constraints derived from the TOPS+ strings
alignment. Many of the AFPs considered in the FATCAT
alignment could be easily eliminated from the compari-
son by constraining the alignment region. Here we
explore constraints obtained from the TOPS+ strings
alignment, which identifies topologically equivalent sec-
ondary structure elements (alpha helices, beta strands,
and loops) for this purpose. Such equivalences define
blocks that restrict the alignment region; AFPs that fall
outside these regions are simply not considered (see Fig-
ure 4(b)). We introduce a parameter r to control the strict-
ness of constraints by TOPS+ strings alignments; r equals
0 if the alignment region is strictly restrained by TOPS+
strings alignment, and r is set to 1 by default in our pro-
gram to allow certain flexibility to the constrained align-
ment region (Figure 4(c)). We then can speed up the
FATCAT alignment by considering only the AFPs within
the constrained alignment area (Figure 4(d)). The rigid
structural alignment can be treated as a special case of
TOPS++FATCAT, in which no twist is allowed in chaining
AFPs. However, the TOPS++FATCAT program provides
alignment in both, "rigid" mode and "flexible" mode
(default).

Benchmarking
For benchmarking and comparison, we have used the
PDB40 dataset of 1,901 protein domain pairs (DP) corre-
sponding to SCOP version 1.61 from the ASTRAL data-
base [29]. Table 1 provides the SCOP superfamily level
homolog versus non-homolog statistics for the four main
SCOP classes i.e., all-alpha, all-beta, alpha/beta, alpha+beta,
and all proteins regardless of their structural classes.

Evaluation Analyses
We performed the Receiver Operating Characteristics
(ROC) curve and the AUC (Area Under the ROC Curve)
analyses to compare the performance of the TOPS++FAT-
CAT method with the original FATCAT method, using
SCOP classification at the superfamily level as a standard
of comparison [30].

Results
ROC and AUC Analyses
We have compared the performance of the TOPS++FAT-
CAT method against the original FATCAT method using
the SCOP classification information at the superfamily
level. We have plotted the ROC curves based on P-values
obtained from the FATCAT and the TOPS++FATCAT
methods. We have plotted the ROC curves separately for
the main SCOP classes, i.e., all-alpha, all-beta, alpha/beta,
alpha+beta, and all proteins regardless of the class they
belong to (see Figure 5(a) to 5(e)). In the graph, the x- and
y-axes represent the false positive and true positive rates of
the performance of the comparison methods respectively.
In the legend, rF-pvalue and fF-pvalue indicate results
from the rigid and flexible FATCAT methods, respectively;
similarly, rT2F-pvalue and fT2F-pvalue represent the rigid
and flexible TOPS++FATCAT methods, respectively. We
have calculated the AUC values for all the SCOP classes
based on ROC curves obtained from the FATCAT and
TOPS++FATCAT methods with the flexible/rigid options
(see Table 2).

For all protein classes, the rigid FATCAT performs best,
usually followed by the flexible FATCAT, the rigid
TOPS++FATCAT, and the flexible TOPS++FATCAT. The
performance of all four methods is best for all alpha and
all beta proteins, and all four perform markedly worse
(but similar to each other) for alpha/beta proteins. Only
alpha+beta proteins show a clear difference between the
FATCAT and TOPS++FATCAT methods. It is important to
note that the TOPS+ strings models consider the parallel
and anti-parallel properties of the beta-sheet information
in the form of total number of incoming and outgoing
arcs with their ArcTypes. Thus, the TOPS++FATCAT
method discriminates the protein domain pairs more effi-
ciently compared to the original FATCAT method. For
example, in the all-beta protein domain pairs, both the
flexible and the rigid TOPS++FATCAT methods perform
well. The flexible TOPS++FATCAT method covers nearly
84% of protein domains with 0% false positives, but the
flexible and rigid FATCAT methods cover only 76% and
49% of the true positives, respectively, with 0% false pos-
itives. The zoomed-in version of the ROC curves with up
to 10% false positives for all-beta rich protein families is
shown in Figure 5(f); where both the rigid TOPS++FAT-
CAT (green) and flexible (red) TOPS++FATCAT methods
have coverage rates of 82% and 84% true positives respec-
tively with 0% false positives. The overall results for all
protein classes show that TOPS++FATCAT performance is
only slightly lower (3%–7% AUC value difference (see
Table 2)) as compared to FATCAT while providing a sig-
nificant, more than 10-fold speedup (see next section).
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The schematic illustration of FATCAT structural alignment by chaining AFPs in a constrained alignment region defined by TOPS alignment outputFigure 4
The schematic illustration of FATCAT structural alignment by chaining AFPs in a constrained alignment 
region defined by TOPS alignment output. (a) In FATCAT, two fragments form an AFP (shown as a line in the graph) 
according to the criteria (see text). (b) The alignment of secondary structure elements from TOPS+ comparison is used to 
define the constrained area for AFP detection, in which each two aligned secondary structure elements defines an "eligible" 
block (shown as filled squares). These blocks may be disconnected, and we need to connect them with connecting blocks 
(shown as open squares). (c) We add a buffer area surrounding the constrained area defined in (b) (shown as the area closed 
by dashed lines) to get the constrained alignment region for FATCAT alignment (show as the area closed by dark lines). (d) Only 
those AFPs within the constrained alignment region are used in the dynamic programming algorithm for chaining.

Table 1: SCOP Superfamily-Level Homolog vs Non-Homolog Protein Domain Pairs Statistics

SCOP Domains Protein Domains from  
same superfamily

(Homolog)

Protein Domains from 
different superfamily 

(Non-Homolog)

Total Number of 
Domain Pairs

All alpha Class 90 18 108
All beta Class 95 42 137

Alpha/beta Class 226 200 426
Alpha+beta Class 93 71 164

All Proteins 568 1,333 1,901
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The ROC curve analysis results based on P-values obtained from flexible and rigid options from the FATCAT and TOPS++FATCAT methods, where rF-pvalue and fF-pvalue indicate rigid and flexible FATCAT methods, respectively; similarly, rT2F-pavlue and fT2F-pvalue represents rigid and flexible TOPS++FATCAT methods, respectivelyFigure 5
The ROC curve analysis results based on P-values obtained from flexible and rigid options from the FATCAT 
and TOPS++FATCAT methods, where rF-pvalue and fF-pvalue indicate rigid and flexible FATCAT methods, 
respectively; similarly, rT2F-pavlue and fT2F-pvalue represents rigid and flexible TOPS++FATCAT methods, 
respectively.
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AFP and Runtime Analyses
We tested both the FATCAT and TOPS++FATCAT methods
using the Mac OS X version 10.4.10 computer system with
a 2 × 2.66-GHz Dual-Core Intel Xeon processor and 1-GB
667 MHz memory. We have performed runtime analysis
on 1,901 protein domain pairs and counted the total
number of AFPs and the corresponding runtime from
both the FATCAT and the TOPS++FATCAT methods. The
results show an exponential increase in AFPs (Figure 6(b))
and corresponding runtime (Figure 6(a)) for the FATCAT
method as compared to the TOPS++FATCAT method (see
Table 3) For example, the average number of AFPs for the
TOPS++FATCAT method is 530, but the average number
of AFPs for the FATCAT method is 15,019. This represents
the number of average AFPs used by the FATCAT method
is increased by a factor of 28 (see Table 3). This result
leads to the conclusion that TOPS++FATCAT is 22 times
faster compared to the FATCAT because this method must
take into account more number of AFPs in the compari-
son process (see Table 3).

Case Studies
While the overall accuracy of both rigid and flexible FAT-
CAT methods is better than their TOPS++FATCAT equiva-
lents, an interesting example where the opposite is true
lies in the comparison of two proteins, d2trxa_ (108 aa)
from Escherichia coli and d1kte__ (105 aa) from Sus scrofa
(pig) from the thioredoxin-like superfamily. For this pair,
the flexible_TOPS++FATCAT method provides an align-
ment with 88 equivalent positions with 1.67 Å chain
RMSD and 3.06 Å of optimal RMSD without any twist,
giving the alignment with 10% sequence identity (see
Table 4). On the other hand, the flexible_FATCAT method
provides an alignment with 86 aligned positions using a
twist in the C-terminal region; it has a higher chain RMSD
of 5.14 Å, and its optimal RMSD is 3.48 Å. For more infor-
mation regarding the chain and optimal RMSDs refer [5].
The flexible_FATCAT method uses the twist to align a
helix in the C-terminal region, which is positioned incor-
rectly with a beta-sheet core (see Table 4). Figure 7(a)
shows the superposition of d2trxa_ (gray) and d1kte__
(orange) domains from the flexible_FATCAT method,
where the blue color indicates the d1kte__ protein
domain from the flexible_TOPS++FATCAT method. The
incorrect alignment of the C-terminal domain alpha helix

of the d1kte__ domain (orange) is visible in the core of
the beta-sheet region. Figure 7(b) and 7(c) shows the AFPs
from the flexible_FATCAT and flexible_TOPS++FATCAT
methods, respectively. The hinge region provides a twist
in the flexible_FATCAT method indicated by an arrow and
the AFPs represented by a different color (see Figure 7(b)).
In this case, the alignment constraints from the TOPS+
strings alignment allow the TOPS++FATCAT method to
avoid a spurious alignment.

The Erythrocruorin protein domain d1eca__ (136 aa)
from Chironomus thummi and the Phycocyanin alpha sub-
unit protein domain d1cpca_ (162 aa) from Fremyella
diplosiphon (Cyanobacterium) belong to the Globin-like
superfamily. For these protein domain pairs, the FATCAT
method provides a better alignment with 120 and 118
aligned positions with the chain RMSD of 4.02 Å based on
the flexible and rigid options, respectively. The
flexible_TOPS++FATCAT method gives an alignment of
63 aligned positions with the 3.23 Å optimal RMSD and
the 6.28 Å chain RMSD. In this case, the
flexible_TOPS++FATCAT method misses the N-terminal
region helix and misaligns some helices. For example, Fig-
ure 8(a) shows the superposition of d1eca__ (gray) and
d1cpca_ (orange) domains from the flexible_FATCAT
method, while d1cpca_ (blue) domain is from the
flexible_TOPS++FATCAT method. The AFP chaining
alignment and the actual alignment from FATCAT are
shown in Figure 8(b) and 8(e), respectively. Figure 8(c)
shows the AFP alignment from TOPS++FATCAT, in which
this method misses the N-terminal region and incorrectly
aligns some of the C-terminal regions (see Figure 8(d)).
However, the rigid_TOPS++FATCAT method produces an
alignment of 108 aligned positions with optimal and
chain RMSDs of 3.22 Å and 6.28 Å respectively. In general,
TOPS comparison does not work well for alpha-rich pro-
teins due to the lack of hydrogen bonds between SSEs
[26]. The same is true for TOPS+ strings comparison to
some extent; however, this method takes advantage of lig-
and-interaction information to compare protein domains
more efficiently; for example the DNA binding motifs
such as helix-turn-helix and helix-loop-helix can be easily
recognized [28]. However, we have not explored that lig-
and pattern discovery option within the TOPS+ strings
comparison in this paper. In addition, the TOPS+ strings

Table 2: AUC Values Based on p-values from the FATCAT and TOPS++FATCAT Methods.

SCOP Domains FATCAT (Flexible) TOPS++FATCAT (Flexible) FATCAT (Rigid) TOPS++FATCAT (Rigid)

All Alpha Class 95 93 96 91
All Beta Class 97 95 97 95

Alpha/Beta Class 82 79 84 79
Alpha+Beta Class 98 91 97 91

All Proteins 95 90 97 91
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Graph showing the runtime and AFP analysis of the FATCAT (in green) and TOPS++FATCAT (in red) methods based on the flexible option, (a) runtime statistics, where the x-axis indicates the 1,901 SCOP domain pairs ordered by flexible_FATCAT runtime; (b) total number of AFP statistics, where the x-axis represents the 1,901 SCOP domain pairs ordered based on AFPs from the flexible_FATCAT methodFigure 6
Graph showing the runtime and AFP analysis of the FATCAT (in green) and TOPS++FATCAT (in red) meth-
ods based on the flexible option, (a) runtime statistics, where the x-axis indicates the 1,901 SCOP domain 
pairs ordered by flexible_FATCAT runtime; (b) total number of AFP statistics, where the x-axis represents 
the 1,901 SCOP domain pairs ordered based on AFPs from the flexible_FATCAT method.
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Table 3: AFP and Runtime from FATCAT and TOPS++FATCAT.

Methods AFPs (total) AFPs (average) Runtime (sec) Average Runtime (sec)

flexible_FATCAT 28,550,682 15,019 2,738 1.44029
flexible_TOPS++FATCAT 1,007,601 530 122 0.06417
rigid_FATCAT 28,550,682 15,019 2,743 1.44292
rigid_TOPS++FATCAT 1,007,601 530 122 0.06417

(a) Superposition of d2trxa_(gray) and d1kte__(orange) from flexible_FATCAT and d1kte__(blue) from flexible_TOPS++FAT-CAT; (b) AFP chaining alignment from flexible_FATCAT; (c) AFP chaining alignment from flexible_TOPS++FATCATFigure 7
(a) Superposition of d2trxa_(gray) and d1kte__(orange) from flexible_FATCAT and d1kte__(blue) from 
flexible_TOPS++FATCAT; (b) AFP chaining alignment from flexible_FATCAT; (c) AFP chaining alignment 
from flexible_TOPS++FATCAT.

Table 4: Flexible and rigid FATCAT and TOPS++FATCAT comparison results for d2trxa_ and d1kte_

Methods Optimal RMSD 
(Å)

Chain RMSD 
(Å)

Optimal 
length

Alignment 
length/gaps

Score P-value Sequence 
Identity

(%)

Sequence 
Similarity 

(%)

AFPs

Flexible_FATCAT 3.48 5.14 86 107/21 125.51 3.29e-03 9.35 25.23 3,092

rigid_FATCAT 3.06 3.14 88 109/21 123.09 7.14e-5 10.09 25.69 3,092

flexible_TOPS++FATCAT 3.06 1.67 88 109/21 110.05 2.08e-04 10.09 25.69 323

rigid_TOPS++FATCAT 3.06 1.67 88 109/21 110.05 2.08e-04 10.09 25.69 323

Optimal RMSD: The root mean square deviation (RMSD) of aligned Cα atoms of the input structures, with one input structure rearranged if 
flexibility is detected (i.e., twists are introduced in the alignment). Chain RMSD: The RMSD of aligned Cα atoms of the input structures, without 
structural rearrangement even if structural flexibility is detected in the alignment. Optimal Length: The number of equivalent positions of the 
alignment; P-value. P-value is the probability of observing a greater score used in FATCAT to evaluate the significance of structural similarity detected 
by FATCAT. AFPs: Aligned Fragment Pairs. For further information, please refer to the FATCAT help page available at the following web site: http://
fatcat.burnham.org/fatcat/fatcathelp.html

http://fatcat.burnham.org/fatcat/fatcathelp.html
http://fatcat.burnham.org/fatcat/fatcathelp.html
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alignment provides only a basic alignment; the scoring
function to find the best alignment has not been opti-
mized. These problems can be addressed in future devel-
opment by considering the advanced TOPS+ and TOPS+
strings models based on helix-helix packing relationships
and SSE-ligand interaction properties together with the
right and left chiralities. Furthermore, the TOPS+ strings
comparison can be optimized in both the comparison
process as well as in the alignment process in order to take
into account indels (insertion/deletion) of SSEs which
exist in nature across the different members of the protein
superfamilies [31].

Discussion and conclusion
The overall results for all protein classes show that
TOPS++FATCAT performance is only slightly lower (3%–
7% AUC value difference) as compared to FATCAT while
providing a significant, more than 10-fold speedup. The
main reason for the discrepancies is that TOPS+ strings
alignments occasionally misalign the secondary structure
elements and subsequent FATCAT alignment, constrained
by the TOPS+ strings alignment, cannot overcome the ear-
lier errors. There is a clear trade-off between the runtime
and the accuracy; limiting the pool of fragments being
compared speeds up the algorithm but results in (slightly)
lower accuracy. At the same time, these results offer clear

suggestions for future development. Using a more
advanced version of the TOPS+ strings comparison
method would remove some of the false positives might
be at a cost of significantly slowing the total performance
of the TOPS++FATCAT method.
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