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Abstract
Background: The methodologies we use both enable and help define our research. However, as
experimental complexity has increased the choice of appropriate methodologies has become an
increasingly difficult task. This makes it difficult to keep track of available bioinformatics software,
let alone the most suitable protocols in a specific research area. To remedy this we present an
approach for capturing methodology from literature in order to identify and, thus, define best
practice within a field.

Results: Our approach is to implement data extraction techniques on the full-text of scientific
articles to obtain the set of experimental protocols used by an entire scientific discipline, molecular
phylogenetics. Our methodology for identifying methodologies could in principle be applied to any
scientific discipline, whether or not computer-based. We find a number of issues related to the
nature of best practice, as opposed to community practice. We find that there is much
heterogeneity in the use of molecular phylogenetic methods and software, some of which is related
to poor specification of protocols. We also find that phylogenetic practice exhibits field-specific
tendencies that have increased through time, despite the generic nature of the available software.
We used the practice of highly published and widely collaborative researchers ("expert"
researchers) to analyse the influence of authority on community practice. We find expert authors
exhibit patterns of practice common to their field and therefore act as useful field-specific practice
indicators.

Conclusion: We have identified a structured community of phylogenetic researchers performing
analyses that are customary in their own local community and significantly different from those in
other areas. Best practice information can help to bridge such subtle differences by increasing
communication of protocols to a wider audience. We propose that the practice of expert authors
from the field of evolutionary biology is the closest to contemporary best practice in phylogenetic
experimental design. Capturing best practice is, however, a complex task and should also
acknowledge the differences between fields such as the specific context of the analysis.
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Background
As scientists, the methodologies we use both enable and
help define our research. Furthermore, the methodologies
we declare in articles permit others to judge the merits of
the research we have carried out and to replicate our
experiments. As experimental complexity has increased,
however, the choice of appropriate methodologies has
become an increasingly difficult task [1,2], especially in
fields that rely heavily on computational analysis. Indeed
there is now a bewildering array of software tools (e.g.,
[3]) that often perform similar tasks using different meth-
ods, making it difficult for individual researchers to keep
track of new and existing software, let alone the most suit-
able software in a specific research area.

Best practice is the most efficient (and effective) declara-
tion of the process that describes the implementation of a
specific methodology. Although all of the elements of best
practice are routinely considered by researchers, its
explicit declaration in biological research is rarely per-
formed. Recording of best practice is an important ele-
ment of many disciplines such as clinical medicine, e.g.,
evidence-based medicine [4] and NICE guidelines [5];
medical research, e.g., MRC guidelines [6] and meta-anal-
yses [7]; and in business, e.g., best practice templates [8]
and best practice benchmarking [9]. The commonality
between these groups is evidence; in order to justify a deci-
sion you need evidence upon which to base it. However,
most of the current usage of best practice in biological
research employs evidence in the context of results with
limited regards to the design of experimental protocols
[10].

To enable researchers to choose appropriate methodolo-
gies, we propose that systems to automatically suggest
experimental design templates based on literature-based
validation of best practice information will: (i) simplify
the design process and (ii) provide a sound scientific basis
for the choice of the specific details of an experiment. In
order to survey practice in a community and identify best
practice we must first be able to collect practice in general.
From this data we can then attempt to identify elements
therein that may be considered for inclusion into a best
practice proposal. Experimental best practice is dependent
on its contextual environment. This could constitute the
size of the data set to analyse, the field in which the
researcher works or the kind of research questions that the
research aims to address. We aim to capture elements of
context in relation to practice and to incorporate this into
our best practice information. Specifically we examine the
impact of field allegiance, co-authorship patterns and the
overall popularity of methods on experimental practice.

We refer to the complete set of all different practices used
by all members of a research community as "community

practice". Additionally, we define "best practice" as a sub-
set of community practice, incorporating those elements
most scientifically credible and providing the most appro-
priate choice for any practitioner from the field. Note,
when defining best practice we are not necessarily seeking
superlatives, but rather a combination of optimal and
agreed solutions.

Our implementation of methodology capture involves
the application of information extraction techniques to
full-text journal literature. Text analysis, text mining and
data mining are becoming increasingly popular tech-
niques for information conglomeration. They are suited
to the large information resources that are currently avail-
able, for example, literature [11,12] or gene expression
[13,14] databases. These techniques, for example, have
been used extensively in the identification of protein
interactions [15,16]. When we combine text mining with
the increasing availability of full-text journal articles [17-
22], we find it facilitates the automatic identification,
extraction and dissemination of experimental methods.

To assess the utility of our approach we selected the field
of molecular phylogenetics to act as a test case. Phyloge-
netics was selected because: (i) the methods used are
mainly computational and are implemented by a large
but well defined group of software programs, the names
of which can be easily collected. (ii) There is significant
variety in the methods that different researchers use. (iii)
Phylogenetic methods are employed by many scientifi-
cally distinct fields of research. (iv) There is debate over
which methods should be employed. (v) There is no
standard way to communicate or declare the methods and
software used in a phylogenetic analysis.

The single largest source of phylogenetic and indeed sci-
entific practice is journal literature. Because of the adher-
ence to the scientific method and therefore the need to
declare the methods used, each article describing original
research should contain text relating to the methods
employed. Our approach makes use of this practice
resource by operating on the full-text of journal articles.
We then search this text for terms that are significant in the
description of phylogenetic experiments (see Figure 1 for
example).

The set of important methodological terms found in any
one article can be said to be a description of the protocol
employed in that piece of research. We divide the method-
ological terms, found in the text, between four key stages:
(i) sequence alignment, (ii) tree inference, (iii) statistical
testing and data resampling, and (iv) tree visualisation
and annotation (Figure 1). The individual protocols are,
thus, a model of a scientific experiment that is inferred
from the text of the methods described in an article. The
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Model of archetypal phylogenetic experimentFigure 1
Model of archetypal phylogenetic experiment. A model of the archetypal phylogenetic experiment with an example rep-
resentation of a protocol in text form. Protocol elements are coloured according to their stage (1 to 4) in the model.
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phylogenetic terms found in the methods are inferred to
describe a task or part of a task and the collection of these
tasks is what we term the protocol. Note, our analytical
protocol model (Figure 1) is only part of a fully declared
workflow that also includes the more mundane aspects:
data retrieval, reformatting etc., which may then be trans-
formed into a computer-enabled workflow that can be
implemented by a system such as Taverna [23] or Kepler
[24]. These are the stages that need to be included for full
automation [25,26].

Our approach successfully retrieves a large number of
phylogenetic protocols from the scientific literature. Ana-
lysing this data, we find that phylogenetic practice over
the last 10 years has varied both temporally and between
different groups of practitioners. Distinct fields of phylo-
genetic practitioners can be identified that, although they
overlap, are significantly divergent in the protocols they
use. We have also identified, using a collaboration net-
work, highly published and widely collaborative research-
ers for each field. These "expert" researchers design their
experiments in very similar ways to the other members of
their field and therefore act as useful practice indicators
for their field. Our recommendation for producing a best
practice proposal for phylogenetics involves a combina-
tion of expert practice from each of the most significant
fields (for example, evolutionary biology) and the most
sophisticated or appropriate practice from all fields.

Results
A PubMed [27] search for "phylogen*" in titles or
abstracts identified 27,259 results, which yielded 24,494
different articles in PDF format. This difference is attribut-
able to incorrect PubMed "link out" data and software dif-
ficulties with finding the PDF version of the article from
the original link. After processing the 24,494 PDF files,
21,484 articles in plain text remained. Reasons for this dif-
ference include a number of PDF files being encrypted,
while others contained only scanned images of text.

The result of the community practice gathering and extrac-
tion process was 861 unique phylogenetic protocols
found in 17,732 different articles. The oldest available
article to contain any terms in our data set was published
in 1980 and 90% of all analysed articles were published
after 1996; before 1996 protocols were retrieved in fewer
than 300 articles per year. Thus, we focussed our analysis
on the 847 unique protocols identified from 1996 to
2005. We found there are several very popular protocols
with most articles (62%) using one of the top 10 most uti-
lised protocols (Additional file 1). This does, however,
leave another 851 protocols that have on average only
been used seven times each. The 10 most popular proto-
cols all include at least one reference to either neighbor-
joining, maximum-likelihood, parsimony or the

unweighted pair-group method with arithmetic mean
(UPGMA) as a method for phylogenetic tree inference.
When assessing the accuracy of protocol identification by
comparing our approach to manually annotated text (see
methods) we found very high levels of protocol retrieval:
precision 89.8%, recall 85.7% and f-measure (f-score)
87.7%.

Now that we have a sample of community practice we can
address how practice varies with respect to contextual
properties. To do this we investigated the importance of
field allegiance and scientific authority (as inferred by co-
authorship patterns) in relation to community and best
practice. Our first step, therefore, in identifying best prac-
tice is to define the fields for which it must be able to cater
and whether practice varies between them.

847 different journals are represented in the 21,484 arti-
cles that we collected. Out of these, 723 journals are rep-
resented in the set of 17,732 articles from which a
protocol has been extracted. The 10 most commonly rep-
resented journals have published almost 40% of all the
articles in our data set. Excluding PNAS as a general inter-
est journal, there are three defined journal groups relating
to fields of research within these 10 journals: evolutionary
biology, microbiology/bacteriology and virology. In addi-
tion to the 10 most common journals, we have also clas-
sified all journals represented in our article set (see
methods) into these journal groups. We found that 17%
(3,712 articles) of articles were published in evolutionary
biology journals, 22% (4,625 articles) were published in
microbiology or bacteriology journals and 11% (2,274
articles) were from journals related to virology. The
remaining 50% (10,873 articles) were published in a wide
variety of fields.

Given that a best practice proposal should be able to cater
for all users of phylogenetics, we assessed the differences/
similarities between these fields and how they have devel-
oped through time. Furthermore, we can use this to assess
whether there is methodological communication between
fields. To do this we calculate the proportion of articles
from each journal group that contained each of the proto-
cols implemented in each year and generate a series of net-
works (Figure 2) that map the methodological choices
made by authors from three different fields during the last
10 years (Additional file 1). These networks indicate that,
while there is overlap, a significant shift in methodologi-
cal preference has occurred between fields. We have used
calculations of the network assortativity coefficient (r)
[28] to highlight changes in methodological choice. In
this case a larger r-value indicates field-specific method
choice. Overall network assortativity and some field-field
assortativity comparisons, specifically, Evolutionary Biol-
ogy/Microbiology and Evolutionary Biology/Virology,
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have increased throughout this period (Figure 3). Com-
pared to random networks, there is a significantly differ-
ent increase in overall network assortativity (Figure 3).
This is presumably due to the larger increase in assortativ-
ity between the Evolutionary Biology field and the other
two fields (Figure 3). There was no change in assortativity
between the Microbiology and Virology fields, with the
values being inside the 95% confidence interval from
1996–1998 and 2000, and when outside the 95% confi-
dence interval only varying between -0.04 and 0.04.

To analyse the pattern of divergence between evolutionary
biology and the other two fields, we analysed the usage of
terms relating to Bayesian phylogenetic analysis (a rela-
tively new method). Over 60% of evolutionary biology
articles published in 2005 included one or more refer-
ences to a term describing Bayesian phylogenetic analysis
of some kind, this compares to 5% of microbiology and
11% of virology articles. This demonstrates that the kind
of protocols implemented by the three fields have
diverged during the period 1996–2005 and that, in partic-
ular, protocols published in evolutionary biology journals
have become more distinct from those in the other two
journal groups during the same period.

To further investigate the heterogeneous use of different
phylogenetic software and methods between fields for
each of our phylogenetic terms we analysed: (i) the field
or fields in which it was used in its first year (Figure 4A)
and (ii) whether it was ever used in each of the fields (Fig-

ure 4B). Interestingly, there are a large number of terms
that are only used in their first year of reporting (Figure
4A) in evolutionary biology (49/207) and outside of the
three fields (101/207). Very few were used in all fields in
their first year (2/207), while many more terms (89/207)
are used by all fields at some point, and some are only
ever used by one (35/207) or two (55/207) of the fields
(Figure 4B). Many terms are first published outside the
three fields with 80% (81/101) used at least once by one
or more of the three fields studied.

It is commonly accepted that much scientific practice is
influenced by authority of some kind, be it by role, cita-
tions or experience. Therefore authority can be seen as an
indicator of best practice. Authorities are, however, almost
always specific to a field, for example, a virologist will
tend to read virology literature more often than microbi-
ology literature. Given that field-specific research commu-
nities exist, we can make an inference on what might be
considered "best", or perhaps more accurately commonly
published and scrutinised practice, by capturing what is
done by the experts in each field. We define our experts as
those who are most widely collaborative and also who
contribute the most research of publication quality to the
community.

To explore expert practice we constructed a collaboration
network [29] from our articles and overlaid collaboration
metric data. We also labelled our authors according to the
journal group in which they most frequently publish. We

Usage of protocols by field and through timeFigure 2
Usage of protocols by field and through time. Protocol networks for the years 1996, 2000 and 2005. Nodes represent 
individual protocols and are sized according to the number of times they were used. Each node is also a pie chart describing 
the proportion of all uses of that protocol by each field group. Edges denote an F-measure value of greater than 0.75 phyloge-
netic term similarity between the protocols. The networks shown are the largest connected component after the F-measure 
threshold was applied.
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included only those authors that came from articles from
which a protocol has been extracted. This resulted in
45,290 unique authors and 190,530 collaborations
between them. Each author was represented as a node and
each collaboration as an edge. We assigned two sets of
attributes to the edges: these were the number of collabo-
rations (edge weights 1) between the two authors con-
nected by the edge and the number of collaborations

divided by the number of authors on each article (edge
weights 2) of which they were co-authors [30]. This
weights collaboration between authors on articles with a
small number of co-authors more highly than articles
with many co-authors.

In order to identify authors who were most active in this
network, we restricted the node set to include only those

Field-field network assortativity calculations dataFigure 3
Field-field network assortativity calculations data. Bar chart showing the changes in whole network and field-field net-
work assortativity coefficient calculations (r). Error bars show 95% confidence interval of distribution of r values calculated 
from 1000 simulated networks (see Methods).

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

-0
.2

-0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

Whole network
Evol. Biol. and Microbiol.
Evol. Biol. and Virology
Microbiol. and Virology

N
et

w
or

k 
A

ss
or

ta
tiv

ity
 C

oe
ff

ic
ie

nt
 (r

)

Year of Publication
Page 6 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:359 http://www.biomedcentral.com/1471-2105/9/359
that had co-authored three or more articles with one or
more other authors. This reduced the largest connected
component of the resultant network to 1,112 nodes and
2,412 edges; we refer to this network as the reduced col-
laboration network (Figure 5). When we consider the
reduced collaboration network of authors (Figure 5) who
have published in our phylogenetics corpus, we see a
field-specific pattern similar to that in Figure 2. There are
many authors who tend not to collaborate regularly with
others outside their field (visible as the clusters of nodes
of a single colour) and then there are other authors who
link the clusters through interdisciplinary collaborations.

We quantified the field specific structure in Figure 5 in the
same way as Figure 2 (see methods). Overall network
assortativity is 0.36 with fields being almost equally assor-
tative with respect to each other (Evolutionary Biology/
Microbiology: 1.0, Evolutionary Biology/Virology: 0.977
and Microbiology/Virology: 0.959). Note, the assortativ-
ity value of 1.0 between evolutionary biology and micro-
biology indicates there are no co-authorships between
authors from these fields in this reduced network. Using a
metric of collaborative activity (see methods) we have
highlighted the five most active researchers from each of
the three fields as well as five from outside the fields.
Interestingly, the protocols employed by these 20 most
highly active authors in the network are very similar to

those used by the rest of the community. The 10 most fre-
quently used protocols by the non-experts (used 73% of
the time) are used almost as frequently by the experts
(74%). The experts have co-authored 1,001 articles
between them and these articles have made use of 26 pro-
tocols unique to their group.

Discussion
Our survey of phylogenetic practice over the last 10 years
has found a large range of experimental protocols
declared at varying levels of detail. This has created an
environment of both consensus and variation. We have
authors reporting methods that are commonly used by
hundreds of authors, and others who create highly
bespoke experimental protocols of their own design and
remain the sole practitioners of these protocols. Context is
clearly important. It could be that these highly specific
protocols are used to answer highly specific research ques-
tions. Until we are able to reliably capture detailed contex-
tual information of this kind we will not know whether
this is the case. In addition our results highlight the need
for better recording and communication of experimental
methods.

The observed field-specific and temporal variations (Fig-
ures 2 and 3) in community practice suggest that an opin-
ion of what constitutes best practice is changing through

Usage of phylogenetic terms according to fieldFigure 4
Usage of phylogenetic terms according to field. Venn diagrams showing the usage of phylogenetic terms in articles from all 
three fields and those from outside the fields. (A) Shows in which field or fields a term was used during the year when it was 
first mentioned in our corpus; this demonstrates the origin of the term. (B) Shows usage of terms in the three fields (or out-
side the three fields) but measures usage across all years; this measures communication of the term between fields.
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time and depends to a large extent on the field to which
an individual belongs. In particular, we find there has
been a significant shift in the methodologies used by the
evolutionary biology field and the microbiology and
virology fields, which is partly attributable to the differen-
tial use of Bayesian inference. We have analysed the emer-
gence and spread of different phylogenetic terms in the
three fields (Figure 4), and find a large number of terms

unique to the evolutionary biology field (in their first year
of usage, Figure 4A) and that a large number of terms are
never used outside of this field (Figure 4B), except for
when they are used in ungrouped journal articles. The
number of terms being first used outside the three fields
(101/207, Figure 4B) is presumably a reflection of the spe-
cialised nature of phylogenetic methods and software. The
authors who develop new methods and software tend not

Co-authorship network highlighting most expert authorsFigure 5
Co-authorship network highlighting most expert authors. Co-authorship network according to research field. Nodes 
represent individual authors, edges represent three or more co-authorships between the two connected authors. The 20 
expert authors (see Methods) are represented by larger nodes with numbered labels. Author Names, 1: Koonin, E.V., 2: Pace, 
N.R., 3: Wang, Y., 4: Zhang, Y., 5: Doolittle, W.F., 6: Hasegawa, M., 7: Okada, N., 8: Nei, M., 9: Roger, A.J., 10: Meyer, A., 11: 
Falsen, E., 12: Collins, M.D., 13: Stackebrandt, E., 14: Schumann, P., 15: Yoon, J.H., 16: Orito, E., 17: Mizokami, M., 18: Webster, 
R.G., 19: Sharp, P.M., 20: Gessain, A.
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to publish in the same kind of journals as those who use
their innovations.

Almost all of the 10 protocols used most commonly by
the phylogenetics community represent a valid choice
(except those using UPGMA (see [31,32])) for a researcher
new to the field. Common community practice is there-
fore a good starting point upon which to build a best prac-
tice proposal. It does, however, lack those features unique
to specific fields and the requirements of specific users.

Our analysis suggests that communication of methods is
not only difficult, i.e., researchers apparently use many
different computer programs for generally the same type
of analysis, but it is also hampered by inefficient informa-
tion exchange between practitioners of phylogenetics. The
latter appears to be due to academic specialism, in that
researchers tend to first look to others from their own field
when choosing methods. Interestingly, expert authors
tend not to use protocols that are distinct from others in
their field. This makes the protocols used by experts in
each field a valuable indicator of the kind of protocols
commonly used in their respective fields and, thus, a use-
ful short-cut to identifying best practice for that specific
field.

Our model-based method for protocol extraction (Figure
1) has permitted the construction of representations of
protocols that have a direct link with the physical imple-
mentation of that protocol. The use of full-text journal
articles was necessary due to the information we were
endeavouring to capture, i.e., experimental methods.
Many other text mining projects would be significantly
enhanced with the use of full-text. An abstract is only an
abbreviated summary that presents the most important
findings from a piece of research and very briefly places
them in context. Its function is to act as a point of entry to
a complete manuscript. Much potentially important
information, and nuance, will only be found in the full
manuscript. Thus, given the number of different scientifi-
cally interesting elements [17-19,22] contained in a full
article, that are usually not present in the abstract, text
mining research needs to make more use of full-text.

The model-based method for protocol extraction also
allows us to organise method terms according to the order
in which they would have been used in the experiment
rather than their order in the text. This is a powerful ele-
ment of our approach that could lead to further work on
automated suggestion of methods or software for a given
task or part of a protocol. The model can also allow us to
account for missing information in our extracted proto-
cols, so that if an extracted protocol does not contain any
terms related to a single part of the model (Figure 1), we
can still analyse the other parts of the protocol for which

we do have information. This is an important feature for
analysing information automatically derived from text,
which is often sparse, with some elements well described
and easy to identify and analyse, and others described
indirectly via citation, figure legends or supplementary
information. Our structured approach to capturing proto-
cols from full-text articles could be applied to any disci-
pline of science where the methods used can be broken
down into individual sequential stages. For example, a
simple molecular biology task to sequence a genic region
from a fruit fly could be broken down into: DNA extrac-
tion, purification, amplification, sequencing and chroma-
togram analysis. As with a phylogenetic protocol several
terms could map on to each one of these stages, for exam-
ple, PCR or bacterial cloning could be used in the ampli-
fication step.

In the increasingly specialised world of scientific research,
our results demonstrate the need for strong collaboration
and communication between fields of research, especially
between those implementing similar experimental
designs. Best practice information derived from whole dis-
ciplines rather than small research communities allows us
to share information between a larger number of research-
ers who may have no knowledge of new innovations in
other fields. Best practice also supports replication of
results and standardisation of practices by providing pro-
tocols that can be reused in many different research areas
and which produce comparable results. Comparable
results are of particular importance in phylogenetics at the
moment, with the advent of phylogenomics [33,34] and
projects attempting to construct and represent the full tree
of life [35-37].

Conclusion
Our capture of protocols from a large group of researchers
has allowed us to reliably survey the current state of prac-
tice in the design of protocols in the field of molecular
phylogenetics. This information is useful for monitoring
best practice versus new trends and directions in the com-
munity as well as identifying from where they originate.

The capture of best practice is a non-trivial task; in this
case we have found that the practice of highly published
authors acts as a good proxy for that of others in the same
field. We have also defined how the main fields have
altered methodologically over time. The evolutionary
biology field, in particular, has diverged from the others
and these changes are characterised by the use of new and
more advanced methods. This suggests that the practice of
expert authors in evolutionary biology (Table 1) is the
closest to contemporary best practice for phylogenetic
experimental design. Notwithstanding data specific
issues, a protocol combining those methodological ele-
ments present in the protocols of the evolutionary biology
Page 9 of 13
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group combined with elements from protocols of the
experts in the specific field offers an appropriate choice for
any researcher. We also envisage the tailoring of best prac-
tice to individual users needs. This would determine the
user's experimental context, including such information
as data set size, any potential idiosyncrasies of the data,
the level of analytical detail required, possible time con-
straints etc. Such information could be used to modify a
base protocol to the data and users needs.

Currently practice capture requires extensive effort to
identify community-wide information from a field where
the choices of methods are well defined and described. We
propose that an explicit model of an experimental proto-
col represented as a workflow [26] will improve commu-
nication, sharing and ranking of experimental protocols
and will support one of the central tenets of the scientific
method, that of replicable results [1,2,38,39]. Impor-
tantly, this computer-enabled workflow should contain
all parameters and methods of all elements of the experi-
ment, with stable connections to implementations of
these methods that are accessible to all. Specific phyloge-
netic protocols (represented as implementable work-
flows) could then be associated with quality metrics. For
example, quantification of usage based on the number of
published articles using the protocol, protocols associated
with specific authors and types of data, specialist proto-
cols that integrate additional methodologies, e.g., the
detection of recombinant sequences. Work such as this
will benefit from concerted effort on the subject of context
capture and how to capture the real aims of a study. This
will complete the linking of methods with aims permit-
ting researchers to efficiently tailor experimental solutions
to specific research projects.

Methods
Article identification
We collected a set of journal articles in PDF format identi-
fied by a PubMed search defined as "phylogen* [Title/
Abstract] AND (full-text [sb]) AND ("X" [PDat]:"Y"
[PDat])" where X and Y are dates used to restrict the

number of results returned. The search was performed 01/
04/06. The Quosa Information Manager [40] was used to
download the PDF files.

PDF file text extraction
Text was extracted using the pdftotext executable from the
xpdf package [41] provided by foolabs. The executable
was run with default settings.

Methodological term identification
We used manually tested and designed regular expression
patterns to identify the methods declared in the text. A
manually created controlled vocabulary of 258 important
names and terms (Additional file 2) was used to store and
group these patterns. The controlled vocabulary is an XML
document that groups terms according to their methodo-
logical nature. The software names were taken from Pro-
fessor Joseph Felsenstein's page of phylogenetic programs
[3]. Other terms were manually created using the phyloge-
netics primary literature.

Protocol Formation
We constructed two forms of the protocol from each arti-
cle. The first included the term matches for all terms in the
vocabulary. The second form only includes terms that are
classified as a type of "phylo_method" or "phylo_model"
in the vocabulary document.

ISI Journal Citation Report categorisation
Classification of journals is determined by the ISI Journal
Citation Report (JCR) service, which classifies journals by
discipline. The three journal subject categories used are
"Evolutionary Biology", "Microbiology" and "Virology"
with 16, 51 and 15 of the journals in our data set being
present in these categories respectively. All journals not
present in these groups were labelled "Ungrouped".

Protocol similarity
We use the F-measure [42] to determine similarity
between protocols. The F-measure value gives an indica-
tion of the number of shared terms between two protocols

Table 1: Expert evolutionary biology methodological protocols. 

Protocol Usage (number of articles)

Neighbor-joining, Parsimony, Maximum-likelihood 15
Neighbor-joining, Parsimony, Maximum-likelihood, JTT model 9

Maximum-likelihood 8
Neighbor-joining 8

Neighbor-joining, Parsimony, Maximum-likelihood, HKY model 8
Neighbor-joining, Maximum-likelihood 6

Maximum-likelihood, Bayesian 5
Parsimony, Maximum-likelihood 5

Neighbor-joining, Maximum-likelihood, HKY model 5
Neighbor-joining, Parsimony, Maximum-likelihood, Bayesian 5

A sample of the most commonly implemented methodological protocols used by the top five expert authors from the evolutionary biology field
Page 10 of 13
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as a fraction of all the terms found in the two protocols.
This gives a measure of methodological similarity whilst
also normalising for the number of terms found. The F-
measure is calculated between all pairs of protocols. The
F-measure is calculated as follows.

where

c = the number of terms common between the two proto-
cols,

n1 = the total number of terms in the first protocol, and

n2 = the total number of terms in the second protocol.

Author names
We used the surname and all initials method of author
name construction [43]. This can lead to multiple author
names that may refer to the same author. However, we felt
that this would not bias the structure of the network sig-
nificantly given that most authors tend to co-author most
of their articles with a similar group of collaborators. This
method can also avoid the problem of common surname/
first initial combinations referring to multiple authors.

Protocol networks
The protocols in the protocol networks in Figure 2 are
present in the largest connected component from a net-
work of all unique protocols found in this study that have
an F-measure similarity score of greater than 0.75 and
were captured from an article published in the given year.
The protocols are in this case constructed from the terms
found in the article that are classified as part of the
"phylo_method" or "phylo_model" sections of our term
vocabulary. This eliminates unimportant software imple-
mentation detail from the protocols and allows us to ana-
lyse the specific methodological choices made in each
article.

We generated the pie node networks in Figure 2 using the
GenePro [44] plugin for Cytoscape [45]. Each pie node
gives a visual representation of the proportional use of
each protocol by each journal category.

Author field/journal group affiliation
Each author node present in the reduced collaboration
network was assigned a journal group label. These were
the same set of labels used in the protocol networks (Fig-
ure 2). If the author had published more than half (the
majority) of their articles in one of the journal groups
then they were labelled with that group. Otherwise they
were labelled as "ungrouped" and appear as white nodes
in the network.

Expert identification
For each node in the reduced collaboration network, we
calculated the sum of the values of edge weight two for
every connected edge. We then used five nodes with the
highest value of this metric from each of the three fields
and from the ungrouped authors as our set of 20 experts.

Term identification error analysis
To test the accuracy of our term matching we manually
annotated the methods section or section of text most
descriptive of methodological detail for 50 randomly cho-
sen articles from our corpus. We annotated all pieces of
text that referred to any of the phylogenetic entities that
are present in the controlled vocabulary.

Network assortativity calculations
The calculation of the network assortativity coefficient (r)
requires that each node is given a class label [28,46].
Because our nodes are composite structures that describe
the number of articles from each field using the particular
protocol, we calculated r using a discrete model of our
network. Each pie node becomes a set of nodes of size n
where n equals the number of articles that used the proto-
col. These nodes are then assigned class labels based on
the field composition of each pie node. We then create
edges between all new nodes that were part of a pie node
pair (Figure 6).

Network simulations and error
For each of the years between 1996 and 2005 (inclusive)
we calculated the r value, the coefficient of network assor-
tativity on the whole network and for all pairwise field
comparison subnetworks. To gain a measure on the error
of these values we simulated 1,000 randomised networks
for each year and performed the same network assortativ-
ity calculations on these networks. The randomisation
process maintained everything from the original network
apart from the class labels assigned to each node. These
labels were shuffled and reassigned to each node. We then
calculated the 95% confidence interval of the distribution
of simulation results and these values are presented in Fig-
ure 3 as error bars.

Author metadata
Author metadata for each article was extracted from the
eSummary NCBI eUtils service [47]. We used the PubMed
ID (PMID) as a unique identifier for each article. The
PMID for each article was obtained by Quosa when the
article was originally downloaded.

Network visualisation
The networks in Figure 2 were visualised using Cytoscape
version 2.3.2 [45] with yFiles organic layout and the
GenePro plugin. The network in Figure 5 was visualised
using Cytoscape version 2.6.0 with force-directed layout
and using default settings.
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