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Abstract

Background: The G-protein coupled receptor (GPCR) superfamily is currently the largest class
of therapeutic targets. In silico prediction of interactions between GPCRs and small molecules in
the transmembrane ligand-binding site is therefore a crucial step in the drug discovery process,
which remains a daunting task due to the difficulty to characterize the 3D structure of most GPCRs,
and to the limited amount of known ligands for some members of the superfamily.
Chemogenomics, which attempts to characterize interactions between all members of a target
class and all small molecules simultaneously, has recently been proposed as an interesting
alternative to traditional docking or ligand-based virtual screening strategies.

Results: We show that interaction prediction in the chemogenomics framework outperforms
state-of-the-art individual ligand-based methods in accuracy both for receptor with known ligands
and without known ligands. This is done with no knowledge of the receptor 3D structure. In
particular we are able to predict ligands of orphan GPCRs with an estimated accuracy of 78.1%.

Conclusion: We propose new methods for in silico chemogenomics and validate them on the
virtual screening of GPCRs. The methods represent an extension of a recently proposed machine
learning strategy, based on support vector machines (SVM), which provides a flexible framework
to incorporate various information sources on the biological space of targets and on the chemical
space of small molecules. We investigate the use of 2D and 3D descriptors for small molecules, and
test a variety of descriptors for GPCRs. We show that incorporating information about the known
hierarchical classification of the target family and about key residues in their inferred binding

pockets significantly improves the prediction accuracy of our model.

Background

The G-protein coupled receptor (GPCR) superfamily is
comprised of an estimated 600-1,000 members and is the
largest known class of molecular targets with proven ther-
apeutic value. They are ubiquitous in our body, being
involved in regulation of every major mammalian physi-

ological system [1], and play a role in a wide range of dis-
orders including allergies, cardiovascular dysfunction,
depression, obesity, cancer, pain, diabetes, and a variety of
central nervous system disorders [2-4]. They are integral
membrane proteins sharing a common global topology
that consists of seven transmembrane alpha helices, an
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intracellular C-terminal, an extracellular N-terminal, three
intracellular loops and three extracellular loops. There are
four main classes of GPCRs (A, B, C and D) defined in
terms of sequence similarity [5]. Their location on the cell
surface makes them readily accessible to drugs, and 30
GPCRs are the targets for the majority of best-selling
drugs, representing about 40% of all prescription pharma-
ceuticals on the market [6]. Besides, the human genome
contains several hundreds unique GPCRs which have yet
to be assigned a clear cellular function, suggesting that
they are likely to remain an important target class for new
drugs in the future [7]. Predicting interactions in silico
between small molecules and GPCRs is not only of partic-
ular interest for the drug industry, but also a useful step for
the elucidation of many biological process. First, it may
help to decipher the function of so-called orphan GPCRs,
for which no natural ligand is known. Second, once a par-
ticular GPCR is selected as a target, it may help in the
selection of promising molecule candidates to be screened
in vitro against the target for lead identification.

In silico virtual screening of GPCRs is however a daunting
task, both for receptor-based approaches (also called
docking) and for ligand-based approaches. The former
relies on the prior knowledge of the 3D structure of the
protein, in a context where only two GPCR structures are
currently known (bovine rhodopsin and human pg,-
adrenergic receptor). Indeed, GPCRs, like other mem-
brane proteins, are notoriously difficult to crystallize. As a
result, docking strategies for screening small molecules
against GPCRs are often limited by the difficulty to model
correctly the 3D structure of the target. To circumvent the
lack of experimental structures, various studies have used
3D structural models of GPCRs built by homology mode-
ling using bovine rhodopsin as a template structure.
Docking a library of molecules into these modeled struc-
tures allowed the recovery of known ligands [8-11], and
even identification of new ligands [12,13]. However,
docking methods still suffer from docking and scoring
inaccuracies, and homology models are not always relia-
ble-enough to be employed in target-based virtual screen-
ing. Methods have been proposed to enhance the quality
of the models for docking studies by global optimization
and flexible docking [9], or by using different sets of
receptor models [11]. Nevertheless, these methods have
been applied only to class A receptors and they are
expected to show limited performances for GPCRs sharing
lower sequence similarity with rhodopsin, especially in
the case of receptors belonging to classes B, C and D. Alter-
natively, ligand-based strategies, in particular quantitative
structure-activity relationship (QSAR), attempt to predict
new ligands from previously known ligands, often using
statistical or machine learning approaches. Ligand-based
approaches are interesting because they do not require the
knowledge of the target 3D structure and can benefit from
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the discovery of new ligands. However, their accuracy is
fundamentally limited by the amount of known ligands,
and degrades when few ligands are known. Although
these methods were successfully used to retrieve strong
GPCR binders [14], they are efficient for lead optimiza-
tion within a previously identified molecular scaffold, but
are not appropriate to identify new families of ligands for
a target. At the extreme, they cannot be pursued for the
screening of orphan GPCRs. In this paper, we present a
contribution to the screening of GPCRs, that is comple-
mentary to the above docking and ligand-based
approaches. The method is related to ligand-based
approaches, but because it allows to share information
between different GPCRs, it can be used for orphan
GPCRs, possibly in parallel to docking methods in order
to increase the prediction quality.

Indeed, instead of focusing on each individual target inde-
pendently from other proteins, a recent trend in the phar-
maceutical industry, often referred to as chemogenomics, is
to screen molecules against several targets of the same
family simultaneously [15,16]. This systematic screening
of interactions between the chemical space of small mol-
ecules and the biological space of protein targets can be
thought of as an attempt to fill a large 2D interaction
matrix, where rows correspond to targets, columns to
small molecules, and the (i, j)-th entry of the matrix indi-
cates whether the j-th molecule can bind the i-th target.
While in general the matrix may contain some description
of the strength of the interaction, such as the association
constant of the complex, we will focus in this paper on a
simplified description that only differentiates binding
from non-binding molecules, which results in a binary
matrix of target-molecule pairs. This matrix is already
sparsely filled with our current knowledge of protein-lig-
and interactions, and chemogenomics attempts to fill the
holes. While classical docking or ligand-based virtual
screening strategies focus on each single row independ-
ently from the others in this matrix, i.e., treat each target
independently from each others, the chemogenomics
approach is motivated by the observation that similar
molecules can bind similar proteins, and that information
about a known interaction between a ligand and a GPCR
could therefore be a useful hint to predict interaction
between similar molecules and similar GPCRs. This can
be of particular interest when, for example, a particular
target has few or no known ligands, but similar proteins
have many: in that case it is tempting to use the informa-
tion about the known ligands of similar proteins for a lig-
and-based virtual screening of the target of interest. In this
context, we can formally define in silico chemogenomics
as the problem of predicting interactions between a mol-
ecule and a ligand (i.e., a hole in the matrix) from the
knowledge of all other known interactions or non-interac-
tions (i.e., the known entries of the matrix).
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Recent reviews [15-18] describe several strategies for in sil-
ico chemogenomics. A first class of approaches, called lig-
and-based chemogenomics by [18], pool together targets at
the level of families (such as GPCR) or subfamilies (such
as purinergic GPCR) and learn a model for ligands at the
level of the family [19,20]. Such strategies could be facili-
tated by the design of libraries of annotated ligands [21].
Other approaches, termed target-based chemogenomic
approaches by [18], cluster receptors based on ligand
binding site similarity and again pool together known lig-
ands for each cluster to infer shared ligands [22]. Finally,
a third strategy termed target-ligand approach by [18]
attempts to predict ligands for a given target by leveraging
binding information for other targets in a single step, that
is, without first attempting to define a particular set of
similar receptors. This strategy was pioneered by [23]. [24]
predicted ligands of orphan GPCR. They merged descrip-
tors of ligands and targets to describe putative ligand-
receptor complexes, and used SVM to discriminate real
complexes from ligand-receptors pairs that do not form
complexes. A similar approach termed proteochemometrics
was used in [25,26] to correlate ligand-receptor descrip-
tions to the corresponding binding affinities. [27] fol-
lowed a similar idea to [24] with different descriptors, and
showed in particular that the SVM formulation allows to
generalize the use of vectors of descriptors to the use of
positive definite kernels to describe the chemical and the
biological space in a computationally efficient frame-
work. [27] were not able to show, however, significant
benefits with respect to the individual approach that
learns a separate classifier for each GPCR (except in the
case of orphan GPCRs, for which their approach per-
formed better than the baseline random classifier).
Recently, in the context of predicting interactions between
peptides and different alleles of MHC-I molecules, [28]
followed a similar approach and highlighted the impor-
tance of choosing adequate descriptors for small mole-
cules and targets. They obtained state-of-the-art prediction
accuracy for most MHC-I allele, in particular for those
with few known binding peptides. [29] on the other hand
applied this approach to predict interaction between vari-
ous potential targets including GPCRs, enzymes and ion
channels. Using general descriptors for targets, they
obtained predictors that were more accurate than state-of-
the-art individual methods both for the orphan targets
and for the targets for which some ligands were already
known.

In this paper we go one step further in this direction and
present an in silico chemogenomics approach specifically
tailored for the screening of GPCRs, although the method
could in principle be adapted to other classes of therapeu-
tic targets. We follow the idea of [24] and the algorithmic
trick of [27], which allows us to systematically test a vari-
ety of descriptors for both the molecules and the GPCRs.
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We test 2D and 3D descriptors to describe molecules, and
five ways to describe GPCRs, including a description of
their relative positions in current hierarchical classifica-
tions of the superfamily, and information about key resi-
dues likely to be in contact with the ligand. We evaluate
the performance of all combinations of these descriptions
on the data of the GLIDA database [30], which contains
34686 reported interactions between human GPCRs and
small molecules, and observe that the choice of the
descriptors has a significant impact on the accuracy of the
models. However, in all cases, we obtained significant
improvements of the prediction accuracy with respect to
the individual learning setting.

Data

We used the GLIDA GPCR-ligand database [30] which
includes 22964 known ligands for 3738 GPCRs from
human, rat and mouse. The ligand database contains
highly diverse molecules, from ions and very small mole-
cules up to peptides, and a significant number of dupli-
cates. These redundancies were eliminated. Elimination of
duplicates present in the GLIDA database was important
here because it could have led to over-optimistic evalua-
tion in the cross-validation procedure described below.
The remaining molecules were further filtered in order to
satisfy two constraints. First, our method relies on the
evaluation of similarities between molecules using ker-
nels, which makes sense only if the molecules are compa-
rable in size. Second, since the long term goal is to identify
drug candidates targeting GPCRs, it was important to
retain drug-like compounds, i.e. molecules having the
adequate physico-chemical characteristics to be potential
drugs candidates satisfying ADME criteria [31]. Therefore,
to only keep drug-like compounds, we filtered the GLIDA
database using the filter program (OpenEye Scientific
Software) with standard parameters, which removes mol-
ecules according to calculated properties such as molecu-
lar weight, hydrogen bond donor and acceptor count,
number of rotatable bonds, ring size and number etc... as
discussed in [32-35]. For example, only molecules of
molecular weights ranging from 150 Da to 450 Da were
kept (the classically accepted range for drugs), since the
aim was to evaluate if statistical learning was possible on
drug-like compounds. Another example was the elimina-
tion of molecules with more than 10 rotatable bonds
(although most of them being already filtered out on the
molecular weight criterion). Indeed, they correspond to
very flexible molecules that are not suitable for the use of
3D descriptors. Overall these filters retained 2446 mole-
cules, available under a 2D description file in the GLIDA
data bank, and giving 4051 interactions with the human
GPCRs. The number of molecules retained is only a small
fraction of the GLIDA database, but it corresponds to all
drug-like compounds of this database. For each positive
interaction given by this restricted set, we generated a neg-
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ative interaction involving the same receptor and one of
the ligands that was in the database and that was not indi-
cated as one of its ligands. This may have generated a few
false negative points in our benchmark, and it would be
interesting to use experimentally tested negative interac-
tions. However, the mean similarity between the different
ligands in the database using the Tanimoto kernel, a clas-
sical normalized similarity measure for ligands which is
later used in our method, is quite low (0.13). Besides,
only 6.7% of the ligands have a mean similarity of more
than 0.2 to the other ligands. This suggests that even if
false negative have to be expected, this method to generate
negative interaction is a reasonable approximation. We
loaded the sequences of all GPCRs that are able to bind
any of these ligands, which resulted in 80 sequences, all
corresponding to human GPCRs. The retained GPCRs
were significantly diverse in sequence, most of them shar-
ing 15% to 50% pairwise sequence similarities. Further-
more, they belong to various families, according to the
GLIDA classification. They are found in several sub-
families of class A (rthodopsin-like receptors), classes B
(secretin family) and C (metabotropic family). In the
GLIDA database, GPCRs are classified in hierarchy (as
mentioned above) which was also loaded for use in the
hierarchy kernel.

Methods

In this section, we first review the methods proposed by
[24,27] for in silico chemogenomics with SVM, before pre-
senting the particular descriptors we propose to use for
molecules and GPCRs within this framework.

In silico chemogenomics with machine learning

We consider the problem of predicting interactions
between GPCRs and small molecules. For this purpose we
assume that a list of target/small molecule pairs {(t,,
m;),....(t,, m,)}, known to interact or not, is given. Such
information is often available as a result of systematic
screening campaigns in the pharmaceutical industry, or
on dedicated databases. Our goal is then to create a model
to predict, for any new candidate pair (t, m), whether the
small molecule m is likely to bind the GPCR .

A general method to create the predictive model is to fol-
low these four steps:

1. Choose n,, descriptors to represent each GPCR target t
in the biological space by a n,-dimensional vector

© (1) =( @l (1), @l (1))
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2. In parallel, choose n,,,; descriptors to represent each
molecule m in the chemical space by a n,,,;-dimensional

vector @, (m)= (GD}no,(m),...,(D"V""l (m)),

mol

3. Derive a vector representation of a candidate target/
molecule complex ®,,,(t, m) from the representations of
the target ®@,,,(t) and of the molecule ®,,;(m);

4. Use a statistical or machine learning method to train a
classifier able to discriminate between binding and non-
binding pairs, using the training set of binding and non-
binding pairs {q)pair(tlf ml)""' q)pair(tn' mn)}

While the first two steps (selection of descriptors) may be
specific to each particular chemogenomics problem, the
last two steps define the particular strategy used for in silico
chemogenomics. For example, [24,36] proposed to con-
catenate the vectors @,,(t) and ®,,,,(m) to obtain a (n,,, +
n,,01)-dimensional vector representation of the ligand-tar-
get complex @,,;(t, m), and to use a SVM as a machine
learning engine. [27] followed a slightly different strategy
for the third step, by forming descriptors for the pair (t, m)
as product of small molecule and target descriptors. More
precisely, given a molecule m described by a vector
®,.(m) and a GPCR ¢ described by a vector ®,,(t), the
pair (t, m) is represented by the tensor product:

(I)pair(t' m) = q)tar(t) ® (I)mol(m)' (1)

thatis, a (n,, x n,,,)-dimensional vector whose entries are

products of the form @}, (t)x®/

ar Ja(m), forl<i<n,

and 1<j<n,, ASVM is then used as an inference engine,

to estimate a linear function f(t, m) in the vector space of
target/molecule pairs, that takes positive values for inter-
acting pairs and negative values for non-interacting ones.

The main motivation for using the tensor product (1) is
that it provides a systematic way to encode correlations
between small molecule and target features. For example,
in the case of binary descriptors, the product of two fea-
tures is 1 if both the molecule and the target descriptors
are 1, and zero otherwise, which amounts to encode the
simultaneous presence of particular features of the mole-
cule and of the target that may be important for the for-
mation of a complex. A potential issue with this approach,
however, is that the size of the vector representation n,,, x
n,,, fOr @ pair may be prohibitively large for practical com-
putation and manipulation. For example, using a vector
of molecular descriptors of size 1024 for molecules, and
representing a protein by the vector of counts of all 2-mers
of amino-acids in its sequence (d,= 20 x 20 = 400) results
in more than 400 k dimensions for the representation of
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a pair. As pointed out by [27], this computational obstacle
can however be overcome when a SVM is used to train the
linear classifier, thanks to a trick often referred to as the
kernel trick. Indeed, a SVM does not necessarily need the
explicit computation of the vectors representing the com-
plexes in the training set to train a model. What it needs,
instead, is the inner products between these vectors, and a
classical property of tensor products is that the inner prod-
uct between two tensor products @, (t, m) and @, (¢,
m') is the product of the inner product between ®,,,(t) and
®,,(t"), on the one hand, and the inner product between
®,,,(m) and ®,,,(m'), on the other hand. More formally,
this property can be written as follows:

(q)tar(t)®q)mol(m))T(q)tar(t,)@)q)mol(m,))
:(Dtar(t)Tq)tar(t,)xq)mol(m)Tq)mol(m,)'
(2)

where u < v = uyv; + ... + U, denotes the inner product
between two d-dimensional vectors u and v. In other
words, the SVM does not need to compute the n,,, x n,,,;
vectors to describe each pair, it only computes the respec-
tive inner products in the target and ligand spaces, before
taking the product of both numbers.

This flexibility to manipulate molecule and target descrip-
tors separately can moreover be combined with other
tricks that sometimes allow to compute efficiently the
inner products in the target and ligand spaces, respec-
tively. Many such inner products, also called kernels, have
been developed recently both in computational biology
[37] and chemistry [38-40], and can be easily combined
within the chemogenomics framework as follows: if two
kernels for molecules and targets are given as:

Kmol(m’m,)

K (1.1)

= q)mol(m)T(I)mal (m’)' (3)
=0

tar(t)Tq)tar(t,)’

then we obtain the inner product between tensor prod-
ucts, i.e., the kernel between pairs, by:

K((t, m), (¢, m)) = Ky (6, 1) x Ky, ). (4)
In summary, as soon as two vectors of descriptors or ker-
nels K,,,; and K, are chosen, we can solve the in silico
chemogenomics problem with an SVM using the product
kernel (4) between pairs. The particular descriptors or ker-
nels used should ideally encode properties related to the
ability of similar molecules to bind similar targets or lig-
ands respectively.
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In the next two subsections, we present different possible
choices of descriptors - or kernels - for small molecules
and GPCRs, respectively.

Descriptors for small molecules

The problem of explicitly representing and storing small
molecules as finite-dimensional vectors has a long history
in chemoinformatics, and a multitude of molecular
descriptors have been proposed [41]. These descriptors
include in particular physicochemical properties of the
molecules, such as its solubility or logP, descriptors
derived from the 2D structure of the molecule, such as
fragment counts or structural fingerprints, or descriptors
extracted from the 3D structure [42]. Each classical finger-
print vector and vector representation of molecules define
an explicit "chemical space" in which each molecule is
represented by a finite-dimensional vector, and these vec-
tor representations can obviously be used as such to
define kernels between molecules [43]. Alternatively,
some authors have recently proposed some kernels that
generalize some of these sets of descriptors and corre-
spond to inner products between large- or even infinite-
dimensional vectors of descriptors. These descriptors
encode, for example, the counts of an infinite number of
walks on the graph describing the 2D structure of the mol-
ecules [39,40,44], or various features extracted from the
3D structures [43,45].

In this study we select two existing kernels, encoding
respectively 2D and 3D structural information of the
small molecules:

® The 2D Tanimoto kernel. Our first set of descriptors is
meant to characterize the 2D structure of the molecules.
For a small molecule m, we define the vector ®,,,,(m) as
the binary vector whose bits indicate the presence or
absence of all linear graph of length u or less as subgraphs
of the 2D structure of I. We chose u = 8 in our experiment,
i.e., characterize the molecules by the occurrences of linear
subgraphs of length 8 or less, a value previously observed
to give good results in several virtual screening tasks [40].
Moreover, instead of directly taking the inner product
between vectors as in (3), we use the Tanimoto kernel:

Kligand ( l, Z,)
q’lig(l)—rq)lig(l’) (5)
2 2 T n
q’lig(l) +q’lig(l) _q)lig(l) d)lig(l)
which was proven to be a valid inner product by [46], giv-

ing very competitive results on a variety of QSAR or toxic-
ity prediction experiments.

® 3D pharmacophore kernel While 2D structures are known
to be very competitive in ligand-based virtual screening
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for identification of molecules presenting some given
chemical, physical or biological properties [43], we rea-
soned that the protein-ligand recognition process takes
place in the 3D space. Thus, we decided to test descriptors
representing the presence of potential 3-point pharma-
cophores. For this, we used the 3D pharmacophore kernel
proposed by [45], that generalizes 3D pharmacophore
fingerprint descriptors. This approach requires the choice
of a 3D conformer for each molecule, in a context where
there exists a large number of methods for exploring the
conformation space, and where we lack significant data
for bound ligands in GPCR structures. Therefore, we chose
to build a 3D version of the ligand database in which mol-
ecules are represented in the conformation proposed by
the Omega program (OpenEye Scientific Software),
because it performs rapid systematic conformer search,
and has been showed to present good performances for
retrieving bioactive conformations [47]. For each of the
2446 retained ligands, the conformer was generated using
the standard Omega parameters, except for a 1 A RMSD
clustering of the conformers, instead of the 0.8 default
value. Partial charges were calculated for all atoms using
the molcharge program (OpenEye Scientific Software)
with standard parameters. This ligand database was then
used to calculate a 3D pharmacophore kernel for mole-
cules [45].

We used the freely and publicly available ChemCPP (avail-
able at http://chemcpp.sourceforge.net) software to com-
pute the 2D and 3D pharmacophore kernel.

Descriptors for GPCRs

SVM and kernel methods are also widely used in bioinfor-
matics [37], and a variety of approaches have been pro-
posed to design kernels between proteins, ranging from
kernels based on the amino-acid sequence of a protein
[48-54] to kernels based on the 3D structures of proteins
[55-57] or on the pattern of occurrences of proteins in
multiple sequenced genomes [58]. These kernels have
been used in conjunction with SVM or other kernel meth-
ods for various tasks related to structural or functional
classification of proteins. While any of these kernels can
theoretically be used as a GPCR kernel in (4), we investi-
gate in this paper a restricted list of specific kernels
described below, aimed at illustrating the flexibility of our
framework and test various hypothesis.

e The Dirac kernel between two targets ¢, t' is:

1 ift=t,
K pirae (1, 1) = 6
pinc (1) {O otherwise. ©)
This basic kernel simply represents different targets as
orthonormal vectors. From (4) we see that orthogonality
between two proteins t and t' implies orthogonality
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between all pairs (I, t) and (I', t') for any two small mole-
cules ¢ and ¢'. This means that a linear classifier for pairs
(I, t) with this kernel decomposes as a set of independent
linear classifiers for interactions between molecules and
each target protein, which are trained without sharing any
information of known ligands between different targets.
In other words, using Dirac kernel for proteins amounts to
performing classical learning independently for each tar-
get, which is our baseline approach.

¢ The multitask kernel between two targets t, t' is defined
as:

Kmultitask(tf tl) =1+ KDimc(t' t‘).

This kernel, originally proposed in the context of multi-
task learning [59], removes the orthogonality of different
proteins to allow sharing of information. As explained in
[59], plugging K, sirzs¢int (4) amounts to decomposing the
linear function used to predict interactions as a sum of a
linear function common to all GPCRs and of a linear func-
tion specific to each GPCR:

f(l't)=wT(D(l't)=w;—eneml(blig(l)_’_w:—q)lig(l)'

A consequence is that only data related to the the target ¢
are used to estimate the specific vector w, while all data
are used to estimate the common vector Wy, In our
framework this classifier is therefore the combination of a
target-specific part accounting for target-specific proper-
ties of the ligands and a global part accounting for general
properties of the ligands across the targets. The latter term
allows to share information during the learning process,
while the former ensures that specificities of the ligands

for each target are not lost.

e The hierarchy kernel. Alternatively we could propose a
new kernel aimed at encoding the similarity of proteins
with respect to the ligands they bind. In the GLIDA data-
base indeed, GPCRs are grouped into 4 classes based on
sequence homology and functional similarity: the rho-
dopsin family (class A), the secretin family (class B), the
metabotropic family (class C) and some smaller classes
containing other GPCRs. The GLIDA database further sub-
divides each class of targets by type of ligands, for example
amine or peptide receptors or more specific families of lig-
ands. This also defines a natural hierarchy that can be used
to compare GPCRs.

The hierarchy kernel between two GPCRs was therefore

defined as the number of common ancestors in the corre-
sponding hierarchy plus one, that is,

Khiemrchy(t' t') = <(Dh(t)' q)h(tl)>/
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where @,,(t) contains as many features as there are nodes
in the hierarchy, each being set to 1 if the corresponding
node is part of t's hierarchy and 0 otherwise, plus one fea-
ture constantly set to one that accounts for the "plus one"
term of the kernel.

¢ The binding pocket kernel. Because the protein-ligand rec-
ognition process occurs in 3D space in a pocket involving
a limited number of residues, we tried to describe the
GPCR space using a representation of this pocket. The dif-
ficulty resides in the fact that although the GPCR
sequences are known, the residues forming this pocket are
a priori unknown. However, mutagenesis data showed
that the transmembrane binding site is situated in a simi-
lar region for all GPCRs [60], and this information was
confirmed by the two available X-ray structures. In order
to identify residues potentially involved in the binding
pocket of GPCRs of unknown structure studied in this
work, we proceeded in several steps, somewhat similarly

HELIX 5
HELIX 6

Figure |

http://www.biomedcentral.com/1471-2105/9/363

to [61]. (a) The two known structures, PDB entries 1U19
and 2RH1[62,63], were superimposed using the STAMP
algorithm [64]. Although retinal is an inverse agonist and
form a covalent bond with Rhodopsin, while carazolol is
an agonist and binds non-covalently, root mean square
deviation between these two complexed structures is only
of 1.6 A in the transmembrane helices [65]. In the super-
imposed structures, the retinal and 3-(isopro-
pylamino)propan-2-ol ligands are localized in the same
region of the transmembrane space, which is in agreement
with global conservation of binding pockets, as shown on
Figure 1. (b) The structural alignment of bovine rho-
dopsin and of human f,-adrenergic receptor was used to
generate a sequence alignment of these two proteins. (c)
For both structures, in order to identify residues poten-
tially involved in stabilizing interactions with the ligand
(residues of the pocket), we selected residues that pre-
sented at least one atom situated at less than 6 A from at
least one atom of the ligand. Figure 2 shows that these two

HELIX 3

HELIX 2

HELIX 1
HELIX 7

Binding pocket. Representation of the binding pocket of f,-adrenergic receptor (in red) and bovine Rhodopsin (in black)
viewed from the extracellular surface. On the center of the pocket, 3-(isopropylamino)propan-2-ol and cis-retinal have been
represented to show the size and the position of the pocket around each ligand. Figure drawn with VMD [79].
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ey

@%‘E 3-(isopropylamino)

HELIX 7

3-(isopropylamino)propan-2-ol and the protein environment of f,-adrenergic receptor as viewed from the
extracellular surface. 3-(isopropylamino)propan-2-ol and the protein environment of f3,-adrenergic receptor as viewed
from the extracellular surface. Amino acid side chains are represented for 6 of the 31 residues (in cyan, blue and red) of the
binding pocket motif. Transmembrane helix and 3-(isopropylamino)propan-2-ol are colored in black and red respectively. Fig-

ure drawn with VMD [79].

pockets clearly overlap, as expected. (d) Residues of the
two pockets (as defined in (c)) were labeled in this struc-
tural sequence alignment. These residues were found to
form small sequence clusters that were in correspondence
in this alignment. These clusters were situated mainly in
the apical region of transmembrane segments and
included a few extracellular residues. Indeed, it has been
previously demonstrated that extracellular loops can play
a role in ligand binding together with transmembrane
regions [66]. (e) All studied GPCR sequences, including
bovine rhodopsin and human f,-adrenergic receptor were
aligned using CLUSTALW [67] with Blosum matrices [68].
Sequences which could not be correctly aligned (i.e. with
important gaps in the transmembrane regions) were dis-
carded in order to only keep comparable sequences. We
then checked that conserved residues according to [69] of
the transmembrane helices were correctly aligned, and

local misalignments were corrected. In addition, the struc-
tural alignment of bovine rhodopsin and human pg,-
adrenergic receptor, and known conserved positions were
used to locally correct misalignments. For each protein,
residues in correspondence in this alignment with a resi-
due of the binding pocket (as defined above) of either
bovine rthodopsin or human f,-adrenergic receptor were
retained. This lead to a different number of residues per
protein, because of sequence variability. For example, in
extracellular regions, some residues from bovine rho-
dopsin or human p,-adrenergic receptor had a corre-
sponding residue in some sequences but not in others. In
order to provide a homogeneous description of the bind-
ing pocket for all GPCRs, in the list of residues initially
retained for each protein, only residues situated at posi-
tions where no gaps were found in any of the GPCRs were
kept. (f) Each protein was then represented by a vector
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whose elements corresponded to a potentially conserved
pocket. This description, although appearing as a linear
vector filled with amino acid residues [see Additional file
1], implicitly codes for a 3D information on the receptor
pocket, as illustrated in Figure 2. These vectors were then
used to build a kernel that allows comparison of binding
pockets. The classical way to represent motifs of constant
length as fixed length vectors is to encode the letter at each
position by a 20-dimensional binary vector indicating
which amino acid is present, resulting in a 180-dimen-
sional vector representations. In terms of kernel, the inner
product between two binding pocket motifs in this repre-
sentation is simply the number of letters they have in
common at the same positions:

Kpb(x,x')=Z§(x[i],x'[i]),

where [ is the length of the binding pocket motifs (31 in
our case), x[i] is the i-th residue in x and & (x[i], x'[1]) is 1
if x[i] = x'[i], O otherwise. This is the baseline pocket bind-
ing kernel. Alternatively, using a polynomial kernel of
degree p over the baseline kernel is equivalent, in terms of
feature space, to encoding p-order interactions between
amino acids at different positions. In order to assess the
relevance of such non-linear extensions we tested this pol-
ynomial pocket binding kernel,

Kypp(% x') = (Kpp(x, x') + 1)P.

We only used a degree p = 2, although a more careful
choice of this parameter could further improve the per-
formances.

Results

We ran two different sets of experiments on this dataset in
order to illustrate two important points. In a first set of
experiments, for each GPCR, we 5-folded the data availa-
ble, i.e., the line of the interaction matrix corresponding to
this GPCR. The classifier was trained with four folds and
the whole data from the other GPCRs, i.e., all other lines
of the interaction matrix. The prediction accuracy for the
GPCR under study was then tested on the remaining fold.
The goal of these first experiments was to evaluate if using
data from other GPCRs improved the prediction accuracy
for a given GPCR. In a second set of experiments, for each
GPCR we ignored ligand data available for this particular
GPCR, we trained a classifier on the whole data from the
other GPCRs, and tested on the data of the considered
GPCR. The goal was to assess how efficient our chemoge-
nomics approach would be to predict the ligands of
orphan GPCRs. In both experiments, the C parameter of
the SVM was selected by internal cross validation on the
training set among 2/, i € {-8, -7,..., 5, 6}. The data and

http://www.biomedcentral.com/1471-2105/9/363

source code (under GPL license) are publicly available
[see Additional file 2].

For the first experiment, since learning an SVM with only
one training point does not really make sense and can
lead to "anti-learning" less than 0.5 performances, we set
all results r involving the Dirac GPCR kernel on GPCRs
with only 1 known ligand to max(r, 0.5). This is to avoid
any artefactual penalization of the Dirac approach and
make sure that we measure the actual improvement
brought by sharing information across GPCRs.

Table 1 shows the results of the first experiments with all
the ligand and GPCR kernel combinations. For all the lig-
and kernels, one observes an improvement between the
individual approach (Dirac GPCR kernel, 86.2%) and the
baseline multitask approach (multitask GPCR kernel,
88.8%). The latter kernel is merely modeling the fact that
each GPCR is uniformly similar to all other GPCRs, and
twice more similar to itself. It does not use any prior infor-
mation on the GPCRs, and yet, using it improves the glo-
bal performance with respect to individual learning.
Using more informative GPCR kernels further improves
the prediction accuracy. In particular, the hierarchy kernel
add more than 4.5% of precision with respect to naive
multitask approach. All the other informative GPCR ker-
nels also improve the performance. The polynomial bind-
ing pocket kernel is almost as efficient as the hierarchy
kernel, which is an interesting result. Indeed, one could
fear that using the hierarchy kernel, for the construction of
which some knowledge of the ligands may have been
used, could have introduced bias in the results. Such bias
is certainly absent in the binding pocket kernel. The fact
that the same performance can be reached with kernels
based on the mere sequence of GPCRs' pockets is there-
fore an important result. Figure 3 shows three of the GPCR
kernels. The baseline multitask is shown as a comparison.
Interestingly, many of the subgroups defined in the hier-
archy can be found in the binding pocket kernel, that is,
they are retrieved from the simple information of the
binding pocket sequence.

The 3D kernel for the ligands, on the other hand, did not
perform as well as the 2D kernel. This can be either
explained by the fact the the pharmacophore kernel is not

Table I: Prediction accuracy for the first experiment with
various ligand and target kernels

Kiar\Kig 2D Tanimoto 3D pharmacophore
Dirac 862+ 1.9 84420
multitask 888+ 1.9 85.0 £23
hierarchy 93.1 £ 1.3 88.5+20
binding pocket 903+ 1.9 87.1 £23
poly binding pocket 92.1 £ 1.5 87422
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Figure 3
GPCR kernel Gram matrices. GPCR kernel Gram matrices (K,,,) for the GLIDA GPCR data with multitask, hierarchy and
binding pocket kernels.
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Figure 4

Improvement of the chemogenomics approach. Improvement (as a performance ratio) of the hierarchy GPCR kernel
against the Dirac GPCR kernel as a function of the number of training samples available. Restricted to [2 — 200] samples for the
sake of readability.
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suited to this problem, or by the fact that choosing the
conformer of the ligand is not a trivial task. This point is
discussed below.

Figure 4 illustrates how the improvement brought by the
chemogenomics approach varies with the number of
available training points. As one could have expected, the
strongest improvement is observed for the GPCRs with
few (less than 20) training points (i.e., less than 10 known
ligands since for each known ligand an artificial non-lig-
and was generated). When more training points become
available, the improvement is less important, and sharing
the information across the GPCRs can even degrade the
performances. This is an important point, first because, as
showed on Figure 5, many GPCRs have few known lig-
ands (in particular, 11 of them have only two training
points), and second because it shows that when enough
training points are available, individual learning will
probably perform as well as or better than our chemoge-
nomics approach.

http://www.biomedcentral.com/1471-2105/9/363

Our second experiment intends to assess how our chem-
ogenomics approach can perform when predicting lig-
ands for orphan GPCRs, ie., with no training data
available for the GPCR of interest. Table 2 shows that in
this setting, individual learning performs random predic-
tion. Naive multitask approach provides modest improve-
ment of the performance, but informative kernels such as
hierarchical and binding pocket kernels achieve 77.4%
and 78.1% of precision respectively, that is, almost 30%
better than the random approach one would get when no
data is available. Here again, the fact that the binding
pocket kernel that only uses the sequence of the receptor
pocket performs as well as the hierarchy-based kernel is
encouraging. It suggests that given a receptor for which
nothing is known except its sequence, it is possible to
make reasonable ligand predictions.

Discussion

Our results demonstrate that chemogenomic approaches
outperform individual approach, in particular in cases
where very limited or no ligand information is available,
as shown in Table 2 and Figure 4. In the case of well stud-
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Figure 5

Distribution of the number of training points for a GPCR. Distribution of the number of training points for a GPCR.

Restricted to [2 — 200] samples for the sake of readability.
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Table 2: Prediction accuracy for the second experiment with
various ligand and target kernels

K:ar\Kiig 2D Tanimoto 3D pharmacophore
Dirac 50.0 £ 0.0 50.0+0.0
multitask 56.8 £2.5 582+22
hierarchy 774 +24 762 +22
binding pocket 78.1 £2.3 76.6 £2.2
poly binding pocket 764 +24 749 £ 23

ied GPCRs, more classical ligand-based methods (QSAR)
may be better suited to predict new strong binders from a
large number of known ligands, as shown in Figure 4.
Consistent with this observation, Tables 3 and 4 show
that in the two types of experiments, the improvement is
observed for all subfamilies of GPCRs retained in this
study. This is an interesting result since most of published
virtual screening studies on GPCRs were applied to class A
GPCRs.

Since our chemogenomic approach is a ligand-based
approach, it would probably be interesting to use it in
combination with docking. Indeed, although prior
known ligands can help tuning docking procedures to the
receptor under study, it can in principle be used with little
or no ligand information. When more experimental 3D
structures become available for GPCRs in the future, this
will help building reliable models for a wider range of
GPCRs that would be suitable for docking studies. Joint
use of ligand-based chemogenomic and docking would
certainly improve predictions.

We chose to use a binary descriptor for the receptor-ligand
interaction, while QSAR or docking methods usually try
to rank molecules according to their predicted affinity for
the receptor. However, affinity prediction is still a subject
of research at the level of a single receptor, at least when
using methods whose calculation times are compatible
with the screening of large molecular databanks. In this
context, we feel that in chemogenomic approaches, where
information is shared between different proteins, such
quantitative prediction is even more challenging. This led
us to retain the binary binding and non-binding descrip-

http://www.biomedcentral.com/1471-2105/9/363

tors, although it would formally have been straightfor-
ward to use a regression algorithm instead of a
classification one to make quantitative predictions.

It is not always easy to compare the performances of a new
method to other existing methods, and particularly in the
case of GPCRs. Indeed, at least to our knowledge, there is
up to now no public complete data from previous screen-
ing studies available as a benchmark to compare different
screening methods on the same data. This urged us to give
public access to the ligand and receptor databases used in
this study, to the detailed experimental protocol of the
study, and to the predictions made by our chemogenomic
approach for each GPCR [see Additional files 3, 4] (sum-
marized by GPCR family in Table 3 and Table 4). This pro-
vides a benchmark which we hope will contribute to a fair
evaluation of different methods and trigger new develop-
ments. This benchmark could be used to compare predic-
tions made by other methods. Our approach boils down
to the application of well-known machine learning meth-
ods in the constructed chemogenomics space. We used a
systematic way to build such a space by combining a given
representation of the ligands with a given representation
of the GPCRs into a binding-prediction-oriented GPCR-
ligand couple representation. This allows to use any lig-
and or GPCR descriptor or kernel existing in the chemoin-
formatics or bioinformatics literature, or new ones
containing other prior information as we tried to propose
in this paper. Our experiments showed that the choice of
the descriptors was crucial for the prediction, and more
sophisticated features for either the ligands or the GPCRs
could probably further improve the performances.
Among these features, improvements in the 3D ligand
descriptors could probably be obtained. Indeed, 3D phar-
macophore kernels did not always reach the performance
of 2D kernels for the ligands. This is apparently in contra-
diction with the idea that protein-ligand interaction is a
process occurring in the 3D space, and with previous work
in our group [45]. Different explanations can be pro-
posed. First, it is possible that the bioactive conformation
was not correctly predicted for all molecules used in this
study. For the two ligands for which it was known, i.e., ret-
inal and 3-(isopropylamino)propan-2-ol from PDB

Table 3: Prediction accuracy by GPCR family for the first experiment

Family\K,,, Dirac multitask hierarchy BP PBP
Rhodopsin peptide receptors (18) 737 80.0 85.8 83.8 83.7
Rhodopsin amine receptors (35) 9.1 92.1 94.0 93.9 94.1
Rhodospin other receptors (17) 83.6 88.0 95.7 95.9 95.9
Metabotropic glutamate family (9) 73.1 935 98.9 83.3 933
Secretin family (1) 50.0 100.0 100.0 50.0 100.0

Mean prediction accuracy for each GPCR family for the first experiment with the 2D Tanimoto ligand kernel and various target kernels. The
numbers in bracket are the numbers of receptors considered in the experiment for each family. BP is the binding pocket kernel and PBP the poly

binding pocket kernel.
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Table 4: Prediction accuracy by GPCR family for the second experiment

Family\K,,, Dirac multitask hierarchy BP PBP
Rhodopsin peptide receptors (18) 50.0 50.6 66.7 74.0 65.3
Rhodopsin amine receptors (35) 50.0 56.0 737 74.0 73.1
Rhodospin other receptors (17) 50.0 50.2 86.5 87.6 85.5
Metabotropic glutamate family (9) 50.0 79.7 93.9 87.2 91.3
Secretin family (I) 50.0 100.0 100.0 50.0 100.0

Mean prediction accuracy for each GPCR family for the second experiment with the 2D Tanimoto ligand kernel and various target kernels. The

numbers in bracket are the numbers of receptors considered in the experiment for each family. BP is the binding pocket kernel and PBP the poly

binding pocket kernel.

entries 1U19 and 2RH1 respectively, we found that the
predicted conformation, using the same method as for all
other molecules, was very close to the experimental con-
formation, with RMSD values of less than 1 A. However,
in absence of any other information on bound ligand con-
formations, it is not possible to rule out the possibility
that for other molecules, the prediction was not correct.
Although more complete conformational space explora-
tion for all ligands was clearly out of the scope of this
paper and would be a study by itself, work in this direc-
tion could improve the method. In particular, since 2D
ligand-based methods are not easily suitable to make pre-
dictions outside of the molecular scaffolds for which
information is known, ligand-based methods using 3D
description are of particular interest, because they are
expected to allow better predictions on molecules present-
ing diverse molecular patterns. Synergy between our
method and docking would provide a means for the
choice of a conformer. The principle could be to build
homology models for the GPCRs, dock the molecular
database in the modeled binding pockets, and derive a 3D
database using, for each molecule, the conformer associ-
ated to the best docking solution. However, conformer
generation and selection is a major drawback of using 3D
descriptors, especially in the case of large ligands with
many free torsion angles.

Various evidence suggest that, within a common global
architecture, a generic binding pocket mainly involving
transmembrane regions hosts agonists, antagonists and
allosteric modulators. In order to identify this pocket
automatically, other studies report the use of sequence
alignment and the prediction of transmembrane helices.
[60] detected hypervariable positions in transmembrane
helices for identification of residues forming the binding
pocket, although some positions were more conserved.
Indeed, conserved residues are probably important for
structural stabilization of the pocket, while variable posi-
tions are involved in ligand binding, in order to accom-
modate the wide spectrum of molecules that are GPCR
substrates. Analyzing the positions of variable positions,
these authors proposed potential binding pockets for
GPCRs, and found that the corresponding residues were

frequently in the GRAP mutant database for GPCRs [70].
Interestingly, they pointed that residues at hypervariable
positions were found within a distance of 6 A from retinal
in the rhodopsin X-Ray structure, which is also a classical
distance cutoff above which it is admitted that protein-lig-
and interactions become negligible. Therefore, this
inspired the simple and automatic method used in the
present work for extracting GPCRs potential binding
pockets, and our results are in good agreement with this
study. It is also important to note that GPCRs are known
to exist in dynamic equilibrium between inactive- and
several active-state conformations [71], and different lig-
ands sometimes trigger distinct conformational changes
and stabilize different receptor conformations [72]. Tak-
ing into account receptor plasticity constitutes in itself a
research domain in docking. Its use is of particular interest
for screening GPCR homology models since residue posi-
tions are not exactly known. Therefore flexible docking
procedures have been proposed and applied on GPCR
proteins [9,73]. Moreover, a modeling method has been
proposed to get insights on transmembrane bundle plas-
ticity [74]. In our case, receptor flexibility might influence
the definition of the binding pocket, since it initially relies
on the identification of residues in the two reference struc-
tures (1U19 and 2RH1) that present at least one atom sit-
uated at less than 6 A of the ligand. Therefore, we made
the implicit hypothesis that receptor conformational
changes upon ligand binding does not drastically affect
this list of residues. When more structures become availa-
ble in this family of proteins, a better appreciation of such
conformational rearrangements will be possible, which
could be taken into account in the binding pocket defini-
tion and could help to improve the method. [70] found
that hierarchical tree representations of GPCR subfamilies
calculated with full-length GPCR sequences or with only
binding pocket residues were similar, and that locally, the
latter was in better agreement with functional data
although their binding pocket included only 35 residues.
This result is also in good agreement with our finding that
the hierarchy kernel based on full length sequence (from
GLIDA) and the kernel based on the binding pocket pro-
vided very similar performances. As mentioned in the
Results section, it is however important to note that the
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kernels based on the binding pocket were built without
any ligand information that could lead to some bias and
artificially better performance.

Conclusion

We showed how sharing information across the GPCRs by
considering a chemogenomics space of the GPCR-ligand
interaction pairs could improve the prediction perform-
ances, with respect to the single receptor approach. In
addition, we showed that using such a representation, it
was possible to make reasonable predictions even when
all known ligands were ignored for a given GPCR, that is,
to predict ligands for orphan GPCRs. Our results demon-
strate that chemogenomic approaches is particularly
suited to cases where very limited or no ligand informa-
tion is available, as shown in Table 2.

This chemogenomics approach is related to ligand-based
approaches. However, sharing information among differ-
ent GPCRs allows, in this case, to perform prediction on
orphan GPCRs, which is also possible using target-based
methods. Nevertheless, the latter are limited by the
number of known receptor structures and the difficulty to
apply such methods on homology models.

Interesting developments of this method could include
application to other important drug target families, like
enzymes or ion channels [75], for which most of the
descriptors used for the GPCRs in this paper could directly
be transposed, and other, more specific ones could be
designed. From a methodological point of view, many
recent developments in multitask learning [76-78] could
be applied to generalize this chemogenomics approach
using, for example, other regularization methods.
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Additional material

Additional file 1

Aligned receptor pocket residues. Residues of 5-hydroxytryptamine 5A
receptor, Adenosine A2b receptor, Gamma-aminobutyric acid type B
receptor and Relaxin 3 receptor 2 (shown as examples) aligned with [3,-
adrenergic receptor binding site amino acids. The binding pocket motif of
B,-adrenergic receptor has been used as reference to determine residues
involved in the formation of the binding site of the 79 other GPCRs. Bold
columns correspond to the residues shown on Figure 2.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-363-S1.pdf]

Additional file 2

Source and data. Source code (under GPL license) and benchmark used
in the experiments in a compressed archive checker.tgz.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-363-52.1gz]

Additional file 3

Prediction accuracy by GPCR for the first experiment. Mean prediction
accuracy for each GPCR for the first experiment with the 2D Tanimoto
ligand kernel and various target kernels. The GPCR identifiers are the
GLIDA references. The numbers in bracket are the numbers ligands con-
sidered in the experiment for each GPCR. BP is the binding pocket kernel
and PBP the poly binding pocket kernel.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-363-S3.pdf]

Additional file 4

Prediction accuracy by GPCR for the second experiment. Mean prediction
accuracy for each GPCR for the second experiment with the 2D Tanimoto
ligand kernel and various target kernels. The GPCR identifiers are the
GLIDA references. The numbers in bracket are the numbers ligands con-
sidered in the experiment for each GPCR. BP is the binding pocket kernel
and PBP the poly binding pocket kernel.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-363-S4.pdf]

Acknowledgements
We thank Mines ParisTech and Carnot Mines for financial support to the
project and funding of L] and BH.

References

I. Bockaert ], Pin JP: Molecular tinkering of G protein-coupled
receptors: an evolutionary success. EMBO | 1999,
18(7):1723-1729.

2. Deshpande DA, Penn RB: Targeting G protein-coupled recep-
tor signaling in asthma. Cell Signal 2006, 18(12):2105-2120.

3. Hill§): G-protein-coupled receptors: past, present and future.
Br J Pharmacol 2006, 147(Suppl 1):527-S37.

4. Catapano LA, Manji HK: G protein-coupled receptors in major
psychiatric  disorders. Biochim  Biophys  Acta 2007,
1768(4):976-993.

5. Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G:
GPCRDB information system for G protein-coupled recep-
tors. Nucl Acids Res 2003, 31:294-297.

Page 14 of 16

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2105-9-363-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-9-363-S2.tgz
http://www.biomedcentral.com/content/supplementary/1471-2105-9-363-S3.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10202136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10202136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16828259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16828259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16402114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17078926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17078926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520006
http://www.biomedcentral.com/content/supplementary/1471-2105-9-363-S4.pdf

BMC Bioinformatics 2008, 9:363

20.

21.

22.

23.

24.
25.

26.

27.

Fredholm BB, Hokfelt T, Milligan G: G-protein-coupled recep-
tors: an update. Acta Physiol 2007, 190:3-7.

Lin SHS, Civelli O: Orphan G protein-coupled receptors: tar-
gets for new therapeutic interventions. Ann Med 2004,
36(3):204-214.

Evers A, Klabunde T: Structure-based drug discovery using
GPCR homology modeling: successful virtual screening for
antagonists of the alphal A adrenergic receptor. | Med Chem
2005, 48(4):1088-1097.

Cavasotto CN, Orry AJW, Abagyan RA: Structure-based identifi-
cation of binding sites, native ligands and potential inhibitors
for G-protein coupled receptors. Proteins 2003, 51(3):423-433.
Shacham §, Marantz Y, Bar-Haim §, Kalid O, Warshaviak D, Avisar N,
Inbal B, Heifetz A, Fichman M, Topf M, Naor Z, Noiman S, Becker
OM: PREDICT modeling and in-silico screening for G-protein
coupled receptors. Proteins 2004, 57:51-86.

Bissantz C, Bernard P, Hibert M, Rognan D: Protein-based virtual
screening of chemical databases. Il. Are homology models of
G-Protein Coupled Receptors suitable targets? Proteins 2003,
50:5-25.

Becker OM, Marantz Y, Shacham S, Inbal B, Heifetz A, Kalid O, Bar-
Haim S, Warshaviak D, Fichman M, Noiman S: G protein-coupled
receptors: in silico drug discovery in 3D. Proc Natl Acad Sci USA
2004, 101(31):11304-11309.

Cavasotto CN, Orry AJW, Murgolo NJ, Czarniecki MF, Kocsi SA,
Hawes BE, O'Neill KA, Hine H, Burton MS, Voigt JH, Abagyan RA,
Bayne ML, Monsma FJ: Discovery of novel chemotypes to a G-
protein-coupled receptor through ligand-steered homology
modeling and structure-based virtual screening. | Med Chem
2008, 51(3):581-588.

Rolland C, Gozalbes R, Nicolai A, Paugam MF, Coussy L, Barbosa F,
Horvath D, Revah F: G-protein-coupled receptor affinity pre-
diction based on the use of a profiling dataset: QSAR design,
synthesis, and experimental validation. | Med Chem 2005,
48(21):6563-6574.

Kubinyi H, Miiller G, Mannhold R, Folkers G, (Eds): Chemogenomics in
Drug Discovery: A Medicinal Chemistry Perspective Methods and Princi-
ples in Medicinal Chemistry, New York: Wiley-VCH; 2004.

Jaroch SE, Weinmann H, (Eds): Chemical Genomics: Small Molecule
Probes to Study Cellular Function Ernst Schering Research Foundation
Workshop, Berlin: Springer; 2006.

Klabunde T: Chemogenomic approaches to drug discovery:
similar receptors bind similar ligands. Br | Pharmacol 2007,
152:5-7.

Rognan D: Chemogenomic approaches to rational drug
design. BrJ Pharmacol 2007, 152:38-52.

Balakin KV, Tkachenko SE, Lang SA, Okun |, Ivashchenko AA, Savchuk
NP: Property-based design of GPCR-targeted library. | Chem
Inf Comput Sci 2002, 42(6):1332-1342.

Klabunde T: Chemogenomics Approaches to Ligand Design.
In Ligand Design for G Protein-coupled Receptors Great Britain: Wiley-
VCH; 2006:1 15-135.

Schuffenhauer A, Zimmermann J, Stoop R, Vyver ]J van der, Lecchini
S, Jacoby E: An ontology for pharmaceutical ligands and its
application for in silico screening and library design. | Chem
Inf Comput Sci 2002, 42(4):947-955.

Frimurer TM, Ulven T, Elling CE, Gerlach LO, Kostenis E, Hogberg T:
A physicogenetic method to assign ligand-binding relation-
ships between 7TM receptors. Bioorg Med Chem Lett 2005,
15(16):3707-3712.

Schuffenhauer A, Floersheim P, Acklin P, Jacoby E: Similarity met-
rics for ligands reflecting the similarity of the target proteins.
J Chem Inf Comput Sci 2003, 43(2):391-405.

Bock JR, Gough DA: Virtual screen for ligands of orphan G pro-
tein-coupled receptors. | Chem Inf Model 2005, 45(5):1402-1414.
Lapinsh M, Prusis P, Uhlén S, Wikberg JES: Improved approach for
proteochemometrics modeling: application to organic com-
pound-amine G protein-coupled receptor interactions. Bioin-
formatics 2005, 21(23):4289-4296.

Freyhult E, Prusis P, Lapinsh M, Wikberg JES, Moulton V, Gustafsson
MG: Unbiased descriptor and parameter selection confirms
the potential of proteochemometric modelling. BMC Bioinfor-
matics 2005, 6:50.

Erhan D, L'heureux P, Yue SY, Bengio Y: Collaborative filtering
on a family of biological targets. | Chem Inf Model 2006,
46(2):626-635.

28.

29.

30.

31

32

33.

34.

35.
36.
37.
38.

39.

40.

41.
42.
43.

44.

45.

46.
47.

48.

49.

50.
51,

http://www.biomedcentral.com/1471-2105/9/363

Jacob L, Vert JP: Efficient peptide-MHC-I binding prediction for
alleles with few known binders. Bioinformatics 2008,
24(3):358-366.

Jacob L, Vert JP: Protein-ligand interaction prediction: an
improved chemogenomics approach. Bioinformatics 2008 [http:/
[bicinformatics.oxfordjournals.org/cgi/reprint/btn409].

Okuno Y, Yang ], Taneishi K, Yabuuchi H, Tsujimoto G: GLIDA:
GPCR-ligand database for chemical genomic drug discovery.
Nucleic Acids Res 2006:D673-D677.

Caldwell J, Gardner |, Swales N: An introduction to drug disposi-
tion: the basic principles of absorption, distribution, metab-
olism, and excretion. Toxicol Pathol 1995, 23(2):102-1 14.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ: Experimental
and computational approaches to estimate solubility and
permeability in drug discovery and development settings.
Adv Drug Deliv Rev 2001, 46(1-3):3-26.

Egan W], Merz KM, Baldwin JJ: Prediction of drug absorption
using multivariate statistics. J Med Chem 2000,
43(21):3867-3877.

Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD:
Molecular properties that influence the oral bioavailability of
drug candidates. | Med Chem 2002, 45(12):2615-2623.

Martin YC: A bioavailability score. | Med Chem 2005,
48(9):3164-3170.

Bock JR, Gough DA: Predicting protein-protein interactions
from primary structure. Bioinformatics 2001, 17(5):455-460.
Scholkopf B, Tsuda K, Vert JP: Kernel Methods in Computational Biology
The MIT Press, Cambridge, Massachussetts: MIT Press; 2004.
Kashima H, Tsuda K, Inokuchi A: Marginalized Kernels between
Labeled Graphs. In Proceedings of the Twentieth International Confer-
ence on Machine Learning Edited by: Faucett T, Mishra N. New York,
NY, USA: AAAI Press; 2003:321-328.

Girtner T, Flach P, Wrobel S: On graph kernels: hardness results
and efficient alternatives. In Proceedings of the Sixteenth Annual
Conference on Computational Learning Theory and the Seventh Annual
Workshop on Kernel Machines, Volume 2777 of Lecture Notes in Compu-
ter Science Edited by: Schélkopf B, Warmuth M. Heidelberg: Springer;
2003:129-143.

Mahé P, Ueda N, Akutsu T, Perret JL, Vert JP: Graph kernels for
molecular structure-activity relationship analysis with sup-
port vector machines. | Chem Inf Model 2005, 45(4):939-51.
Todeschini R, Consonni V: Handbook of Molecular Descriptors New
York: Wiley-VCH; 2002.

Gasteiger ), Engel T, (Eds): Chemoinformatics: a Textbook New York,
NY, USA: Wiley; 2003.

Azencott CA, Ksikes A, Swamidass SJ, Chen JH, Ralaivola L, Baldi P:
One- to four-dimensional kernels for virtual screening and
the prediction of physical, chemical, and biological proper-
ties. | Chem Inf Model 2007, 47(3):965-974.

Kashima H, Tsuda K, Inokuchi A: Kernels for graphs. In Kernel
Methods in Computational Biology Edited by: Scholkopf B, Tsuda K, Vert
. The MIT Press, Cambridge, Massachussetts: MIT Press;
2004:155-170.
Mahé P, Ralaivola L, Stoven V, Vert JP: The Pharmacophore Ker-
nel for Virtual Screening with Support Vector Machines. |
Chem Inf Model 2006, 46(5):2003-2014.

Ralaivola L, Swamidass §J, Saigo H, Baldi P: Graph kernels for
chemical informatics. Neural Netw 2005, 18(8):1093-1110.
Bostrom J, Greenwood JR, Gottfries J: Assessing the performance
of OMEGA with respect to retrieving bioactive conforma-
tions. | Mol Graph Model 2003, 21(5):449-462.

Jaakkola T, Diekhans M, Haussler D: A Discriminative Frame-
work for Detecting Remote Protein Homologies. | Comput
Biol 2000, 7(1,295-114 [http://www.cse.ucsc.edu/research/compbio/
discriminative/Jaakola2-1998.ps].

Leslie C, Eskin E, Noble W: The spectrum kernel: a string kernel
for SVM protein classification. In Proceedings of the Pacific Sympo-
sium on Biocomputing 2002 Edited by: Altman RB, Dunker AK, Hunter
L, Lauerdale K, Klein TE. Singapore: World Scientific; 2002:564-575.
Tsuda K, Kin T, Asai K: Marginalized Kernels for Biological
Sequences. Bioinformatics 2002, 18:5268-5275.

Leslie CS, Eskin E, Cohen A, Weston |, Noble WS: Mismatch string
kernels for discriminative protein classification. Bioinformatics
2004, 20(4):467-476.

Page 15 of 16

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15181976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15181976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15715476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15715476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15715476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12696053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12696053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12696053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15326594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15326594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12471595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12471595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12471595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15277683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15277683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18198821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18198821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18198821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16220973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16220973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16220973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17533415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17533415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17533416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17533416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12444729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12132896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12132896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15993056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15993056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15993056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12653501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12653501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16180917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16180917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16204343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16204343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16204343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15760465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15760465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16562992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16562992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18083718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18083718
http://bioinformatics.oxfordjournals.org/cgi/reprint/btn409
http://bioinformatics.oxfordjournals.org/cgi/reprint/btn409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7569663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11259830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11259830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11052792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11052792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12036371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12036371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12036371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15857122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16045288
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16045288
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16045288
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17338509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17338509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17338509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16995731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16995731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12543140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12543140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12543140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10890390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10890390
http://www.cse.ucsc.edu/research/compbio/discriminative/Jaakola2-1998.ps
http://www.cse.ucsc.edu/research/compbio/discriminative/Jaakola2-1998.ps
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990442

BMC Bioinformatics 2008, 9:363

52.

53.

54.
55.
56.

57.

58.
59.

60.

6l.

62.

63.

64.

65.

66.

67.

68.
69.

70.

71.

72.

73.

74.

75.

Saigo H, Vert JP, Ueda N, Akutsu T: Protein homology detection
using string alignment kernels. Bioinformatics 2004,
20(11):1682-1689.

Kuang R, le E, Wang K, Wang K, Siddiqi M, Freund Y, Leslie C: Pro-
file-based string kernels for remote homology detection and
motif extraction. | Bioinform Comput Biol 2005, 3(3):527-550.
Cuturi M, Vert JP: The context-tree kernel for strings. Neural
Netw 2005, 18(8):1111-23.

Dobson P, Doig A: Predicting enzyme class from protein struc-
ture without alignments. | Mol Biol 2005, 345:187-199.
Borgwardt K, Ong C, Schénauer S, Vishwanathan S, Smola A, Kriegel
HP: Protein function prediction via graph kernels. Bioinformat-
ics 2005, 21 (Suppl 1):i47-i56.

Qiu J, Hue M, Ben-Hur A, Vert JP, Noble WS: A structural align-
ment kernel for protein structures. Bioinformatics 2007,
23(9):1090-1098.

Vert JP: A tree kernel to analyze phylogenetic profiles. Bioin-
formatics 2002, 18:5276-5284.

Evgeniou T, Micchelli C, Pontil M: Learning multiple tasks with
kernel methods. | Mach Learn Res 2005, 6:615-637 [http:/
jmlr.csail. mit.edu/papers/volumeé/evgeniou05a).

Kratochwil NA, Malherbe P, Lindemann L, Ebeling M, Hoener MC,
Miihlemann A, Porter RHP, Stahl M, Gerber PR: An automated sys-
tem for the analysis of G protein-coupled receptor trans-
membrane binding pockets: alighment, receptor-based
pharmacophores, and their application. | Chem Inf Model 2005,
45(5):1324-1336.

Surgand JS, Rodrigo J, Kellenberger E, Rognan D: A chemogenomic
analysis of the transmembrane binding cavity of human G-
protein-coupled receptors. Proteins 2006, 62(2):509-538.
Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V: The
retinal conformation and its environment in rhodopsin in
light of a new 2.2 A crystal structure. | Mol Biol 2004,
342(2):571-583.

Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS,
Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC:
High-resolution crystal structure of an engineered human
beta2-adrenergic G protein-coupled receptor. Science 2007,
318(5854):1258-1265.

Russell RB, Barton GJ: Multiple protein sequence alignment
from tertiary structure comparison: assignment of global
and residue confidence levels. Proteins 1992, 14(2):309-323.
Lefkowitz R}, Sun JP, Shukla AK: A crystal clear view of the beta2-
adrenergic receptor. NatBiotechnol 2008, 26(2):189-191.

Avlani VA, Gregory K|, Morton CJ, Parker MW, Sexton PM, Chris-
topoulos A: Critical role for the second extracellular loop in
the binding of both orthosteric and allosteric G protein-cou-
pled receptor ligands. | Biol Chem 2007, 282(35):25677-25686.
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG,
Thompson |JD: Multiple sequence alignment with the Clustal
series of programs. Nucleic Acids Res 2003, 3 1(13):3497-3500.
Henikoff S, Henikoff |G: Amino acid substitution matrices from
protein blocks. Proc Natl Acad Sci USA 1992, 89(22):10915-10919.
Mirzadegan T, Benkd G, Filipek S, Palczewski K: Sequence analyses
of G-protein-coupled receptors: similarities to rhodopsin.
Biochemistry 2003, 42(10):2759-2767.

Kristiansen K, Dahl SG, Edvardsen O: A database of mutants and
effects of site-directed mutagenesis experiments on G pro-
tein-coupled receptors. Proteins 1996, 26:81-94.

Kobilka BK: G protein coupled receptor structure and activa-
tion. Biochim Biophys Acta 2007, 1768(4):794-807.

Yao X, Parnot C, Deupi X, Ratnala VRP, Swaminath G, Farrens D,
Kobilka B: Coupling ligand structure to specific conforma-
tional switches in the beta2-adrenoceptor. Nat Chem Biol 2006,
2(8):417-422.

Chen JZ, Wang ], Xie XQ: GPCR structure-based virtual
screening approach for CB2 antagonist search. | Chem Inf
Model 2007, 47(4):1626-1637.

Deupi X, Délker N, Lopez-Rodriguez ML, Campillo M, Ballesteros JA,
Pardo L: Structural models of class a G protein-coupled
receptors as a tool for drug design: insights on transmem-
brane bundle plasticity. Curr Top Med Chem 2007, 7(10):991-998.
Hopkins AL, Groom CR: The druggable genome. Nat Rev Drug
Discov 2002, 1(9):727-730.

76.

77.

78.

79.

http://www.biomedcentral.com/1471-2105/9/363

Argyriou A, Evgeniou T, Pontil M: Multi-task feature learning. In
Adv Neural Inform Process Syst 19 Edited by: Scholkopf B, Platt ], Hoff-
man T. Cambridge, MA: MIT Press; 2007:41-48.

Bonilla E, Chai KM, Williams C: Multi-task Gaussian Process Pre-
diction. In Advances in Neural Information Processing Systems 20 Edited
by: Platt ], Koller D, Singer Y, Roweis S. Cambridge, MA: MIT Press;
2008.

Abernethy J, Bach F, Evgeniou T, Vert JP: A new approach to col-
laborative filtering: operator estimation with spectral regu-
larization. | Mach Learn Res 2008 in press.

Humphrey W, Dalke A, Schulten K: VMD: visual molecular
dynamics. | Mol Graph 1996, 14:33-8, 27-8.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 16 of 16

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16108083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16108083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16108083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16198086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15567421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15567421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17234638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17234638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12169557
http://jmlr.csail.mit.edu/papers/volume6/evgeniou05a
http://jmlr.csail.mit.edu/papers/volume6/evgeniou05a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16180909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16180909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16180909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16294340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16294340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16294340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15327956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15327956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15327956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17962520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17962520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17962520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1409577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1409577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1409577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17591774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17591774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17591774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1438297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1438297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12627940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12627940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8880932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8880932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8880932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17188232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17188232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16799554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16799554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17580929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17580929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17508932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17508932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17508932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12209152
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8744570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8744570
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Data

	Methods
	In silico chemogenomics with machine learning
	Descriptors for small molecules
	Descriptors for GPCRs

	Results
	Discussion
	Conclusion
	Authors' contributions
	Additional material
	Acknowledgements
	References

