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Abstract

Background: Simulating the major molecular events inside an Escherichia coli cell can lead to a very
large number of reactions that compose its overall behaviour. Not only should the model be
accurate, but it is imperative for the experimenter to create an efficient model to obtain the results
in a timely fashion. Here, we show that for many parameter regimes, the effect of the host cell
genome on the transcription of a gene from a plasmid-borne promoter is negligible, allowing one
to simulate the system more efficiently by removing the computational load associated with
representing the presence of the rest of the genome. The key parameter is the on-rate of RNAP
binding to the promoter (k_on), and we compare the total number of transcripts produced from
a plasmid vector generated as a function of this rate constant, for two versions of our gene
expression model, one incorporating the host cell genome and one excluding it. By sweeping
parameters, we identify the k_on range for which the difference between the genome and no-
genome models drops below 5%, over a wide range of doubling times, mRNA degradation rates,
plasmid copy numbers, and gene lengths.

Results: We assess the effect of the simulating the presence of the genome over a four-
dimensional parameter space, considering: 24 min <= bacterial doubling time <= 100 min; 10 <=
plasmid copy number <= 1000; 2 min <= mRNA half-life <= 14 min; and 10 bp <= gene length <=
10000 bp. A simple MATLAB user interface generates an interpolated k_on threshold for any point
in this range; this rate can be compared to the ones used in other transcription studies to assess
the need for including the genome.

Conclusion: Exclusion of the genome is shown to yield less than 5% difference in transcript
numbers over wide ranges of values, and computational speed is improved by two to 24 times by
excluding explicit representation of the genome.

Background level. The complexity of cellular pathways and networks
In recent decades, extraordinary advances in biochemistry =~ often makes it difficult or impossible to reliably predict
and molecular biology have led to an unprecedented level ~ the behavior of a system from knowledge of its compo-
of understanding biological systems at the molecular  nents, and thus there is considerable interest in formula-
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tion of quantitative, predictive mathematical models of
cellular functions. Such efforts, collectively described by
such terms as systems biology and in silico biology [1-9],
aim in the long term toward goals such as predicting the
effects of drugs or other interventions on the state of dis-
eased cells, and enhancing our fundamental understand-
ing of how cells respond to stimuli and regulate their
internal environments.

The internal dynamics of cells are driven by the kinetics of
a complex set of biochemical reactions: the state of the cell
may be viewed as the numbers and binding states of all
species of interest, and the time evolution of that state is
defined by how those species react with one another. A
central challenge in cellular modelling is to formulate cor-
rect biochemical reaction schemes to represent a process
of interest, and then to populate the reaction system with
appropriate rate constants [5-9]. Within this effort, two
persistent difficulties arise: populating mathematical
models based on incomplete experimental information
[10,11]; and the computational demands of simulating
the resulting systems, which can grow large for even mod-
erately complex processes.

We have previously carried out a study aimed at the first
of these problems, in which we used bulk expression data
from Escherichia coli to deduce the numbers of free RNA
polymerases available to transcribe a target gene of inter-
est [10]; this information is not currently experimentally
available, with bulk studies [12] able to provide the aver-
age numbers of each enzyme type but not to determine
how many are "tied up" in the cell, transcribing other
genes, at any given time. When simulating the expression
of a gene or network of genes, whether an engineered or
"synthetic" system [13-18], or a natural one [2,6,8,19-21],
the total number of RNA polymerases is less relevant than
the number that are not currently occupied expressing
genes outside the target system of interest. Our method
for deducing this number involved using bulk measure-
ments (collected as a function of growth rate [12]) to cre-
ate an average (or "mean field") behaviour for the set of
genes in the bacterial genome; we then tested how many
expression enzymes our target gene had available to tran-
scribe it, and generate free enzyme levels as a function of
growth rate [10].

We turn now to the second of the challenges mentioned
above, that of computational time. Having the rest of the
genome present in the system, even in our bulk-averaged
way, added significantly to the computational demands of
the simulations. Further investigation shows, however,
that there are regimes in which the target system is not sig-
nificantly affected by the presence of the remainder of the
genome, and may thus well approximated by excluding
the genome portion and simulating only the target sys-
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tem. The key quantity is the "on rate" of binding between
RNA polymerase and the promoter of the target gene: for
certain ranges of this parameter, the perturbation intro-
duced by the presence of other genes (the rest of the
genome in the cell) is small enough to be neglected, sav-
ing significant amounts of computational time. We
explore the details of these ranges, as a function of other
system parameters, below. We view this work as comple-
mentary to the various ongoing large-scale cellular simu-
lation projects [2,7,19,22-25], offering a method of
simplifying the system in cases where including genes out-
side the immediate system of interest does not alter the
overall behaviour significantly. Although our results are
obtained for our particular gene expression model, we
anticipate that our promoter on-rates will apply, at least
approximately, to other studies of transcription in bacte-
ria, and thus offer guidance to others wishing to simplify
their system by omitting the genomic influence.

Methods

E. coli gene expression model

Our technique relies on the existence of experimental
results [12] reporting bulk average assays of the amounts
of each species present in the biological system of interest,
as a function of growth rate; quantities such as average
RNA polymerase per cell, average transcript content per
cell, and so on, are much more readily obtained than spe-
cific rate constants for individual reactions. Using the bac-
terium Escherichia coli as a model organism, we have
formulated a picture of the biochemical reactions under-
lying gene expression from an inserted plasmid carrying a
promoter controlling the transcription of our target gene.
We implemented a "mean-field" modelling approach,
generating genome-wide averages for the mean transcript
length, mean elongation time, and so on, adjusting the
model parameters so that it generated numbers matching
the bulk averages that had previously been reported exper-
imentally [10,12]. A full list of the reactions included in
the model and the nomenclature used for the species is
provided in Tables 1, 2, and 3. The following sections pro-
vide an overview of the processes represented in the
model, with further details provided in the Appendix and
in our previously published work [10].

Cell growth and division

The cellular volume grows exponentially until a threshold
is reached, at which point it is approximately halved (a
binomial distribution is used) and exponential growth
restarts. A counter species, v, is used to represent volume:
v — 2v, with rate constant k = In(2)/t, where 7 is the dou-
bling time of the cells. At cell division, all species present
are divided between two hypothetical daughter cells, and
the simulation follows one of these daughters. We treat
the system as ergodic, and average over long times for a
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Table I: Biochemical reactions that make up our bacterial gene expression model (version incorporating the host's genome).

Left

Right

Forward Rate constant

Backward rate constant

operon_ns + Rpoly
closed_Rpoly_prom_ns
open_Rpoly_prom_ns
Rpoly_operon_ns_|1
Rpoly_operon_ns_2
Rpoly_operon_ns_3
Rpoly_operon_ns_4
Rpoly_operon_ns_5
Rpoly_operon_ns_6
Rpoly_operon_ns_7
operon_s + Rpoly
closed_Rpoly_prom_s
open_Rpoly_prom_s
Rpoly_operon_s

A%

plas + Rpoly
closed_Rpoly_prom_reporter
open_Rpoly_prom_reporter

Rpoly_reporter

closed_Rpoly_prom_ns
open_Rpoly_prom_ns

operon_ns + Rpoly_operon_ns_|I

Rpoly_operon_ns_2 + mRNA
Rpoly_operon_ns_3 + mRNA
Rpoly_operon_ns_4 + mRNA
Rpoly_operon_ns_5 + mRNA
Rpoly_operon_ns_6 + mRNA
Rpoly_operon_ns_7 + mRNA
Rpoly + mRNA_small
closed_Rpoly_prom_s
open_Rpoly_prom_s
operon_s + Rpoly_operon_s
Rpoly + stable_RNA

2v

operon_ns

operon_s

Rpoly
closed_Rpoly_prom_reporter
open_Rpoly_prom_reporter

plas + Rpoly_reporter +
incom_mRNA_reporter
Rpoly + mRNA_reporter

k_on_Rpoly_prom_ns/(v/1000)
k_isomerization
k_prom_clearance
k_transcription_ns
k_transcription_ns
k_transcription_ns
k_transcription_ns
k_transcription_ns
k_transcription_ns
k_transcription_ns/0. 87 179487179487 |
k_on_Rpoly_prom_s/(v/1000)
k_isomerization
k_prom_clearance
k_transcription_s

k_cell_div

k_rep_operon_ns
k_rep_operon_s

k_rep_Rpoly
k_on_Rpoly_prom_reporter/(v/1000)
k_isomerization
k_prom_clearance

k_transcription_reporter

k_off_Rpoly

k_off_Rpoly

k_off_Rpoly

incom_mRNA_reporter

mRNA_reporter

incom_mRNA _reporter

Rpoly_reporter Rpoly

k_transcription_reporter
k_deg mRNA_reporter
k_deg mRNA_reporter

incom_mRNA_reporter*k_deg mRNA_reporter/
Rpoly_reporter

Gene expression model incorporating the host's genome. Lists of the biochemical reactions that make up our bacterial gene expression model, for the version of the model
that includes an "averaged" version of the host cell's genome. Columns Left and Right represent the left and right sides of chemical reactions, and the Forward and Backward

rate constants are associated with the forward and reverse reactions.

single cell to obtain ensemble averages across the cellular
population.

Enzyme binding and isomerization

RNA polymerases (Rpoly) are responsible for initiating
and catalyzing the transcription of messenger RNA
(mRNA) strands. As the model assumes all mRNA tran-
scripts reside in operons, Rpoly binds to promoter
sequences in the DNA (operon) and forms a closed com-
plex (Rpoly+operon—closed_Rpoly_prom). This closed
complex then must isomerize into an open complex

(closed_Rpoly_prom—open_Rpoly_prom) before tran-
scription can begin.

Enzyme clearance

RNA polymerases clear the promoters, leaving those sites
free to bind additional enzymes while transcription pro-
ceeds further down the DNA strand. We model this by
regenerating the promoter after clearance occurs, forming
an enzyme-template complex plus the original site:
open_Rpoly_prom—Rpoly_operon+incom_mRNA-+oper
on. We create a nascent transcript (mRNA_incom) at this

Table 2: List of the biochemical reactions that make up our bacterial gene expression model (version excluding the host's genome).

Gene expression model excluding the host's genome

Left Right Forward rate constant Backward rate constant
\ 2v k_cell_div

Rpoly k_rep_Rpoly
plas + Rpoly closed_Rpoly_prom_reporter k_on_Rpoly_prom_reporter/(v/1000) k_off_Rpoly

closed_Rpoly_prom_reporter
open_Rpoly_prom_reporter

open_Rpoly_prom_reporter
plas + Rpoly_reporter +
incom_mRNA_reporter
Rpoly_reporter Rpoly + mRNA_reporter
incom_mRNA_reporter

mRNA_reporter

incom_mRNA_reporter

Rpoly_reporter Rpoly

k_isomerization
k_prom_clearance

k_transcription_reporter
k_transcription_reporter
k_deg mRNA_reporter
k_deg mRNA_reporter

incom_mRNA _reporter*k_deg mRNA_reporter/
Rpoly_reporter

Lists of the biochemical reactions that make up our bacterial gene expression model, for the version of the model that excludes the host cell's genome. Columns Left and
Right represent the left and right sides of chemical reactions, and the Forward and Backward rate constants are associated with the forward and reverse reactions.

Page 3 of 18

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:373

Table 3: Species nomenclature used in biochemical models
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Species Label

Species

Rpoly RNA polymerase
closed_Rpoly_prom_ns*
closed_Rpoly_prom_s*
closed_Rpoly_prom_reporter
open_Rpoly_prom_ns*
open_Rpoly_prom_s*
open_Rpoly_prom_reporter
Rpoly_operon_ns*
Rpoly_operon_s*
Rpoly_reporter
incom_mRNA*
incom_mRNA_small*
incom_mRNA_reporter

Nascent average genomic mRNA

Nascent reporter mMRNA

RNA polymerase in a closed-complex with the average genomic mRNA operon promoter

RNA polymerase in a closed-complex with the average genomic SRNA operon promoter

RNA polymerase in a closed-complex with the reporter mRNA promoter on the plasmid

RNA polymerase in an open-complex with the average genomic mRNA operon promoter

RNA polymerase in an open-complex with the average genomic sSRNA operon promoter

RNA polymerase in an open-complex with the reporter mRNA promoter on the plasmid

RNA polymerase elongating the average genomic mRNA transcript from the average genomic mRNA operon
RNA polymerase elongating the average genomic sSRNA transcript from the average genomic sSRNA operon
RNA polymerase elongating the reporter mRNA transcript from the plasmid

Nascent genomic mMRNA where its final length is approximately 90% of the average genomic mRNA

mRNA*  Average genomic mRNA (represented as the length of the average genomic mRNA gene)

mRNA_small*

Genomic mRNA that is approximately 90% of the average genomic mMRNA

stable_RNA*  Average genomic sRNA (represented as the length of the average genomic SRNA operon)

mRNA _reporter Reporter mRNA — the mRNA of interest
operon_ns*  Average genomic mRNA operon
operon_s* Average genomic sSRNA operon
plas Reporter promoter on the plasmid
v Cell volume

*  Refers to species used exclusively in the gene expression model that incorporates the host's genome

List of species names used in the two versions of the model.

step to allow subsequent translation to proceed; this fea-
ture will prove very helpful in studying future simulated
studies of protein synthesis. Conservation of the number
of promoters is maintained: when the enzyme-template
complex finishes elongation, only the enzyme and the
polymerized product are released.

Elongation

To avoid the complexity of accounting for each enzyme at
different stages of elongation, a single reaction is used to
represent the process of completing the mRNA chain:
Rpoly_operon—Rpoly+mRNA. Compliment to this reac-
tion is the disappearance of the nascent transcript made
available during transcription: incom_mRNA—(), where
() is a null placeholder. Both the reactions have the same
elongation rate constant that can be summarized as k..
gation = P/, where p and A are the polymerization rate and
length of template, respectively.

Enzyme production

Since the kinetics of RNA polymerase assembly are not
fully known, the model is simplified by treating enzyme
production as a zero-order process in which enzymes
appear from outside the model at a constant rate:
()>Rpoly. The enzymes are partitioned at cell division
like all other species. The rate constant for production can
be summarized as k., = (v/1.5)/t, where v and t are the
average number per cell and cellular doubling time,
respectively.

DNA replication

DNA replication in bacteria is a complex process involv-
ing multiple replication forks. We represent the coding
portion of the genomic DNA by the number of operons
present (operon), and simplify the replication process as
a zero-order process: ()—operon. Rate constants for this
process are chosen to match the number of genomes per
cell at different growth rates.

mRNA degradation

RNases act to destroy mRNA in E. coli, and we represent
the degradation of mRNA by these enzymes with first-
order reactions: mRNA—(), and incom_mRNA—(); the
latter is an additional RNase-driven degradation, beyond
the above-mentioned rate of disappearance of incomplete
mRNA through conversion to complete mRNA strands.

RNA production from operons

We assume that all genes in the genome are clustered into
operons: groups of genes transcribed from a single pro-
moter, as in the lac operon. The model keeps track of
which gene on the mRNA operon Rpoly is currently tran-
scribing and makes available completed transcripts of the
nascent operon (this latter point will prove relevant in
future protein synthesis models):
Rpoly_operon1—Rpoly_operon2+mRNA. In response to
the genome-wide average of 6.9 genes per operon [10,12]
the model tracks the 7 transcripts representing the average
mRNA operon (six genes of equal size, one 90% the
length of the average size).
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In addition to messenger RNA, other forms of RNA collec-
tively known as stable RNA (sRNA) are produced within
the cell. Since sRNA is transcribed but not translated the
model does not consider nascent SRNA production.

With-genome and no-genome models

We have constructed two versions of the model, one con-
taining a representation of the host cell genome and the
reporter gene, the other neglecting the cellular genome
and representing only the reporter gene on the plasmid.
The with-genome model incorporates 26 reactions involv-
ing 27 species, while the no-genome version has 10 reac-
tions involving 10 species; the two versions are shown
schematically in Figures 1A and 1B. The genome affects a
plasmid-borne gene of interest by competing for RNA
polymerase binding with the plasmid-borne promoter,
while in the no-genome version of the model we omit the
genomic promoter sites and thus this competition does
not occur. The goal, then, is to determine the parameter
regimes in which this omission has an acceptably small
influence on the behaviour of the system, and to deter-
mine how much more quickly the computational simula-
tions will run as a result of the simplification.

Computational simulation method

The chemical kinetics of this system were initially simu-
lated using the Gillespie Monte Carlo algorithm [26-28],
and these results were used to validate a deterministic,
ordinary differential equation (ODE) version of the sys-
tem, which was shown to yield identical average transcript
numbers, allowing us to use the significantly faster ODE
model to generate larger numbers of points in parameter
space. Comparing the two models allowed us to deter-
mine the point at which the on-rate constant between the
target promoter and RNA polymerase, k_on, crossed a
threshold where the two models (with and without the
host genome included) generated average transcript num-
bers differing by more than a certain percentage; here, we
have chosen a five percent difference as an admittedly
arbitrary significance threshold.

The original experimental measurements in the literature
were carried out over a range of cellular growth rates, each
of which yielded different average quantities of biomole-
cules per cell. Stochastic simulations of our system were
carried out at each experimentally-examined growth rate
(doubling times of 24, 30, 40, 60, and 100 minutes [12])
and sampled at discrete points in parameter space, as fol-
lows: plasmid copy numbers of 10, 100, and 1000; mRNA
half-lives of 2, 6, 10, and 14 min; and gene lengths of 10,
100, 1000, and 10000 bp. The relationship between these
independent variables and the point at which the pro-
moter-RNAP on-rate begins to yield a significant differ-
ence between the genome and no-genome models is
complex and highly nonlinear, and not amenable to
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reduction to a single equation. We have instead produced
a MATLAB script (The MathWorks, Natick, MA) that gen-
erates an on-rate threshold given a user's input of plasmid
copy number, mRNA degradation rate, gene length and
cellular doubling time: any promoter on-rate constant
larger than this predicted value can exclude the computa-
tionally expensive genome from the simulations without
creating more than a five-percent error, while any constant
smaller than this should include the genome.

Stochastic modelling approach and software
Deterministic chemical kinetics apply in the regime of
large numbers of randomly interacting molecules. Inside
cells, molecule numbers are often small enough to pro-
duce significant fluctuations [8,20,28-44], thus requiring
a stochastic simulation of the reaction kinetics. The
Gillespie algorithm [2] treats chemical reactions as Pois-
son processes, with event (reaction) rates given by micro-
scopic rate constants and the current state of the system.
For an elementary reaction of the form A+B—C with rate
constant k, the Poisson rate of the forward reaction is kab/
V, where a and b represent the numbers of molecules of
species A and B present, and V is the reaction volume
(note that this volume is a changing parameter in a living
bacterial cell). We use the unit "n" to represent the
number of molecules present in the system, rather than
concentration units such as molarity. To advance the sim-
ulation, the timing of the next reaction event is randomly
selected using the exponential distribution of inter-event
times for the set of Poisson processes representing the
reactions, and the probability of each reaction being the
one that occurs at that instant is given by its fraction of the
sum of all reaction rates [26-28].

Bacterial cells have often been approximated as well-
stirred reactors: based on their small size, it is assumed
that diffusion is sufficiently fast to yield a well-mixed sys-
tem. Early experimental results showed protein mobility
in vivo consistent with normal diffusion [45], and though
the diffusion coefficients were substantially lower than for
the same proteins in water, the diffusion was fast enough
to spread the proteins over the volume of a bacterium on
a time scale of seconds. Recent theoretical treatments
[43,46-49] have questioned the picture of bacterial cells as
well-mixed systems, and recent experimental results [50]
have reported subdiffusive behavior in the motion of
individual RNA molecules, where each RNA is rendered
visible through binding to multiple fluorescent protein
labels. In this paper, we use the well-stirred reactor picture
as a first approximation to gain insight, but it should be
noted that this is a significant simplification, and that
future refinements and extensions are possible.
Approaches proposed to deal with crowded cellular envi-
ronments include rate laws obeying fractal-like kinetics
[49,51,52], and Monte Carlo simulations wherein two- or
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Schematic of the two versions of the model system. Our simulations compare two versions of a bacterial gene expres-
sion model. (A) In the first version, the genome is represented as an "average" open generating generic transcripts, rather than
as the full set of individual genes. Bulk experimental measurements are used to generate the correct average number of tran-
scripts from this generic operon in the genome. In this version of the model, the promoter residing on a plasmid of interest
(plas) competes with the genomic operons for access to RNA polymerase (Rpoly) enzymes. (B) In this version, all references
to the host cell genome are excluded from the model, leaving only the plasmid-borne promoter (plas) to be transcribed by
RNA polymerase (Rpoly). Full lists of the reactions that constitute the models are given in Tables | and 2, with a list of species

names given in Table 3.
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three-dimensional spatial information is retained for each
molecule [43,46,49,53].

The gene expression model was initially implemented
using BioNetS (Biochemical Network Stochastic Simula-
tor) [26], which provides a convenient interface for speci-
fying reactants, products and kinetic data. The software
generates C++ source code implementing the system using
the Gillespie stochastic simulation algorithm (or an
approximation, if desired), and this code is then compiled
and executed with user-tunable parameters as inputs.
Some species in the model exist in small numbers while
others exist in large numbers; although continuum
approximations and hybrid schemes are available
through BioNetS [26], the Gillespie algorithm with no
approximations yielded the best simulation speed. The
data from the BioNetS-generated code was processed
using DataTask (Visual Data Tools, Inc) and its run man-
ager DataTask, which automated the process of sweeping
parameter values and analyzing the results. The complete
gene expression models used are available as BioNetS
scripts and are provided along with this paper (see Addi-
tional File 1).

Derivation of E. coli gene expression parameters

To derive the on-rate constant between RNA polymerase
and the reporter promoter where there is 5% difference in
transcript average between models, we employ bulk cellu-
lar averages obtained by Bremer and Dennis for several
different cellular growth rates [12]. We implement a
"mean-field" approach [10] by considering the produc-
tion of generic transcripts with properties derived from
genome-wide averages: we compute mean transcript
lengths, mean elongation rates, and so on. With these
quantities in hand, the unknown between models is
reduced to the RNA polymerase on-rate constant for bind-
ing to the reporter promoter, and we find its value by
sweeping until the difference in transcript average
between models is 5%.

The model has been constructed to be as detailed as pos-
sible, using all available information about the biochem-
ical processes underlying gene expression. This leads to a
large number of species and reactions, the full details of
which are provided in the Appendix. For a derivation of
average genome parameters, please see lafolla and McMil-
len [10].

Stochastic model parameter sweeping

The first step in deriving the on-rate constant that deter-
mines a 5% difference in transcript averages between
models is to obtain steady-state values of all species in the
simulations. Figure 2 shows the time series for one species
in the model, the reporter mRNA. An initial run of 10 cell
divisions in length is generated for each simulation, and
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the final state of this run is used as the initial state for the
long-duration run in which statistics are accumulated to
determine average species levels; this prevents the initial
transient approach to steady state from distorting the aver-
ages.

Parameter sweeping begins by using on-rates that vary by
a factor of 10 (Figure 3A). When the desired percent dif-
ference between models lies between two on-rate con-
stants, another sweep is performed between these new
limits incrementing the on-rate by a unit multiple of the
smaller limit. The third parameter sweep uses a unit incre-
ment of the next significant digit between the new limits;
this change in on-rate is small enough to approximate lin-
earity (Figure 3B). Only R2> 0.90 were accepted for inter-
polation; the range was narrowed until this level of
linearity was achieved.

The duration of the stochastic simulations was varied to
obtain linearity with R2> 0.90; this is achieved by using a
minimum of 1000 cell divisions, although some simula-
tions use more cell divisions to obtain the desired linear-
ity. Since the doubling time of the cells is varied, the total
duration in real time varies among the simulations; the
number of cell divisions explored appears to be the key
factor in obtaining well-converged statistics, rather than
the absolute duration.

The minimum 1000 cell division duration was deduced
by qualitative analysis of multiple simulations with the
same seed but different durations; we examined the effect
of duration on the mean values obtained from the
reporter mRNA histograms. The on-rate constants used in
the duration analysis was determined by comparing the
histograms between models over a range of on-rate con-
stants (107 n-!s'! to 1 n's!); the range of on-rate con-
stants that bound the percent difference in the above
statistical parameters by 5% was investigated for duration
analysis (this range was from 10->n-1s-1to 10-2n-!s-1). Ulti-
mately, longer-duration runs produced averages that were
not statistically different from those obtained after 1000
divisions (see the Appendix for additional explanation),
implying that longer durations only increase computa-
tional expense.

After interpolation, the validity of the on-rate was tested:
using a different seed for 30 simulations - all employing
steady-state initial conditions and the same duration,
kinetics and interpolated on-rate - the sample mean dif-
ference between models of the 30 simulations was statis-
tically compared to the population mean of 5%. The on-
rate was accepted if the two means were not proven statis-
tically different using a level of significance o = 0.95. All
simulations, either in parameter sweeping or verification,
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Typical time series generated by the model. Typical time series generated by the model. Plot A (left) shows a run with
all intermediates and products initially set to zero, illustrating the initial transient. Plot B (right) shows a run initialized with the
state obtained after 10 cell divisions in the left-hand run, thus removing the initial transient. Simulations were performed at a

variety of cellular growth rates with different kinetic parameters. Parameters for this example: doubling time = 24 min; on-rate
constant = 10-3 n'!s’!; plasmid copy number = 10; gene length = 104 bp; and mRNA half-life = 14 min.

employ different nucleating random number generator
seeds.

Additional deterministic simulations

The stochastic simulations are very computationally
intensive, and thus we investigated methods of speeding
up the calculations. The ordinary differential equations
corresponding to the full reaction system for each model
(genome and no genome) were derived using standard
chemical kinetics and solved numerically using the solvers
provided by MATLAB. To take cell growth and division
into account, the ODEs were solved one cell cycle at a
time, with the numbers of molecules at the end of the
cycle cut in half to simulate division, then used as the ini-
tial state for the next cell cycle. Within each set of param-
eter values, each ODE was run for ten cell cycles to allow
the system to reach a steady state, then for more ten more
cell cycles, during which state values were averaged to
obtain the average mRNA numbers for the reporter gene.
As shown in Figure 4, the average mRNA numbers from
the stochastic simulations matched nearly perfectly with
those generated by the ODEs, and on this basis we used
the deterministic ODEs to increase the number of points
in the parameter space that could be feasibly sampled.
(This reduction to the deterministic model is possible

because here we are considering only the mean values
from the stochastic simulation; in cases where the fluctu-
ations were the point of interest, fully stochastic simula-
tions would of course be required.) Full-scale stochastic
simulations were carried out for the experimentally avail-
able doubling times (24, 30, 40, 60, and 100 minutes
[12]), varying the other parameters as follows: gene
lengths of 10, 100, 1000, and 10000 base pairs (bp);
mRNA half-lives of 2, 6, 10, and 14 minutes; and plasmid
copy numbers of 10, 100, and 1000 per cell. These were
supplemented by deterministic simulations for the same
doubling times, at the following parameter values: gene
lengths from 10 to 100 in steps of 10 bp, from 100 to
1000 in steps of 100 bp, and from 1000 to 10000 in steps
of 1000 bp; mRNA half-lives from 2 to 14 minutes in steps
of 1 minute; and plasmid copy numbers from 1 to 9 in
steps of 1, from 10 to 100 in steps of 10, and from 100 to
1000 in steps of 100 copies per cell.

Similar to the parameter sweeping carried out for the sto-
chastic simulations, we used the deterministic simulation
results for each parameter set to calculate the RNA
polymerase-promoter binding on rate, k_on, at which
there will be a five percent difference between the models
with and without a representation of the host cell
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Parameter sweeping. Parameter sweeping. Here, we compare two versions of the gene expression model, one incorporat-
ing the host cell genome and one excluding it. The RNA polymerase on-rate constant for binding to the promoter that pro-
duces the reporter mRNA is varied until the percentage difference between these models exceeds 5% (the value we have
selected as our threshold for a significant difference between the two models, marked by a horizontal dashed line on each
plot). The on-rate is first varied by a factor of 10 to determine the general location of the desired value (plot A, left), followed
by a sweep on a finer scale to narrow in on an approximately linear region near the threshold crossing (plot B, right). The solid
vertical line in Graph B shows the interpolated on-rate constant when the percent difference in transcript production between
models crosses the 5% threshold. The parameters for this example are: doubling time = 24 min; plasmid copy number = |10;

gene length = 10 bp; and mRNA half-life = 6 min.

genome; for the deterministic results, the 5% threshold
was determined using the fzero function in MATLAB,
which searches for a zero-crossing between two given
points.

Interpolation of on-rate thresholds

The on-rate (k_on) threshold above which a 5% deviation
between the genome and no-genome models occurred
has been calculated explicitly only at the set of parameter
values listed above (based on stochastic simulations sup-
plemented by cross-validated deterministic simulations to
increase the density of the sampling of parameter space).
To allow the k_on threshold to be calculated at values
other than those explicitly simulated, we created a MAT-
LAB script to carry out the necessary interpolation using a
local minimization method. In local linear fitting, to find
the unknown point at a desired parameter value, one
draws a straight line connecting the known points on
either side of the desired value, and takes the point on that
straight line as the interpolated result at the desired
parameter value. Note that this process minimizes the

total distance between the interpolated point and the two
known points, and we use this idea to perform our inter-
polation in our 5-dimensional space (k_on as a function
of four parameters: growth rate, gene length, mRNA half
life, and plasmid copy number). For any single given 4-
dimensional parameter set, the nearest available set of
parameter values is determined by finding the two nearest
parameter values in each direction on this 4-dimensional
mesh; combining all four dimensions yields the 16 near-
est points on the mesh. Since these 16 data points do not
generally fit well to a linear function, we obtain the inter-
polated on-rate value for a given parameter set by search-
ing for the k_on value that minimizes the total distance in
5-dimensional space to those nearest 16 points, using the
MATLAB fminsearch function to carry out the minimiza-
tion operation.

The above interpolation has been implemented in MAT-
LAB script that presents a simple user interface allowing
the user to enter the desired parameter values (within the
ranges spanned by the simulations), after which the script
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Comparison of stochastic and deterministic simula-
tion outputs. Comparison of stochastic and deterministic
simulation outputs. The stochastic simulations required too
much computational time for it to be practical to sample the
parameter space very densely. Since we have used only the
mean values from the stochastic simulations, we explored
the possibility of using deterministic simulations, which
require a tiny fraction of the stochastic simulation time, to
increase our sampling of the parameter space. The plot
shows the average number of mMRNA transcripts generated
by the two methods, stochastic and deterministic. The
straight diagonal line indicates a good match, and in fact the
two methods differ by less than one percent in most cases.
Parameter values are the same as those used in Figure 2A.

will carry out the interpolation for the given point and
return the k_on value above which a 5% difference arises
between the genome and no-genome models: any pro-
moter on-rate constant larger than this predicted value
can exclude the computationally expensive genome from
the simulations without creating more than a five-percent
error, while any constant smaller than this should include
the genome. The user interface is shown in Figure 5, and
the MATLARB files required to implement it are provided
along with this paper (see Additional File 2).

Results and discussion

Percent difference of reporter transcript averages between
models

As shown in Figure 3, using the stated parameters as a rep-
resentative example, the percent difference of reporter
transcripts between models changes as a function of bind-
ing constant between RNA polymerase and the target pro-
moter (k_on). An excessively small binding constant (=
10-19n-1s! to 107 n'ls'!) prevents the RNA polymerase
from binding to the promoter, thereby producing an
insignificant number of transcripts, usually less than one
per cell division, as shown in Figure 6. The constant can

http://www.biomedcentral.com/1471-2105/9/373

be so small that noise dominates the system, leading to
essentially random results, including some in which more
reporter transcripts are produced in simulations that use
the genome, relative to the simulations that only use the
plasmid-borne reporter genes. Eventually the binding
constant becomes large enough to produce a considerable
quantity of transcripts; at this point the genome's presence
competes with the reporter gene for access to RNA
polymerase and reduces the transcription of the reporter
gene, producing a significant percent difference between
models. As the binding constant to the reporter promoter
further increases, the RNA polymerase binding saturates
and the promoter generates nearly the same number of
transcripts with or without the presence of the competing
genome; the difference between models trends towards
zero as the binding constant approaches infinity.

Figure 3 shows there are two binding constant ranges for
each set of parameters where there is less than a 5% differ-
ence in transcript production. We have not considered the
lower range, here, because of the insignificant number of
transcripts produced, usually an average of much less than
one per cell division. In this regime, the two versions of
the model are both matching simply because they are
both yielding a result of "nearly zero." For the case we
wish to consider, that of observing the output of a target
gene through the expression of a reporter, such low levels
of transcription would be invisible to current detection
techniques, requiring single-molecule resolution against
the noisy background of the cytoplasm, and thus for the
moment we consider it justified to exclude this near-zero
range in our simulations. The higher k_on rate constant
limit corresponds to transcript numbers on the order of
102 to 104, a magnitude that is much more amenable to
experimental access and thus potentially more significant
for use in other studies.

Accuracy of the interpolated on-rates

To test the accuracy of the interpolated on-rates, the on-
rates were entered back into both versions of the model
and run for 30 different simulations seeds for a duration
of 30 cell divisions, after creating steady state values for all
species within the model. The percent differences were
assembled and statistically compared to the population
mean of 5% using a level of significance o = 0.95. This
process was repeated for all 240 different kinetic situa-
tions generated using the stochastic simulations. There
was no statistical difference between the population mean
and the sample mean obtained from the simulations
(data not shown), thereby ensuring that the interpolated
values are the correct ones for producing a percent differ-
ence of 5%.
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Figure 5

MATLAB graphical user interface. MATLAB graphical user interface. The on-rate at which excluding the genome yields
less than a 5% difference between the genome and no-genome models is a complex function of the parameters: population
doubling time, gene length, mRNA degradation half-life, and plasmid copy number. This space is sampled only at discrete points,
but the MATLAB user interface (provided in the additional files accompanying this paper) allows the user to enter any value
within the ranges sampled by our simulations (the allowable range is specified above each parameter's input window). A thresh-
old on-rate (above which the genome and no-genome models differ by less than 5%) is calculated by a minimum-distance inter-
polation between the nearest available points (see text for more detail).

Time reduction via genome exclusion

Excluding the genome from simulation studies does
reduce CPU simulation time in the computationally
intensive fully stochastic simulations. To illustrate this,
the verification runs were used for comparison between
models; these simulations employ the same kinetic
parameters and duration, and offer a large population size
(since each run was repeated multiple times with varying
random seeds).

Dividing the average run time of the genome by those
models excluding it produces a direct measure of the ben-
efit of excluding the host cell genome in the simulations.
As Figure 7 shows, computational time can be reduced by
a factor ranging from two to 24-fold. Accurate analysis of
the time saved between models requires standard CPU
power. The verification simulations in this study have
been spread out over many computers, most of which
have different CPUs. To normalize the results, 10 repli-
cates of a standard run with the same kinetic parameters,
duration and random number seed was run (with mini-
mal other processor load) on each type of CPU, for each
version of the model. The simulation duration was set to
take approximately 30 minutes of CPU time, to average
away any aberrations caused by minor fluctuations in
CPU availability over time. The run durations for these
standard runs were then used to create a scaling factor for

each CPU type, and the simulation times reported in Fig-
ure 7 were corrected by these factors.

The simulation spends most of its time on the RNA
polymerase binding/binding reactions: the reactions
operon_ns+Rpoly, operon_s+Rpoly, and plas+Rpoly in
the with-genome model, and simply plas+Rpoly in the
no-genome model. Figures 8A and 8B show the number
of reaction steps simulated in the with-genome and no-
genome versions of the model (keeping plasmid copy
number, mRNA half-life, and gene length fixed, while var-
ying cell doubling time). As Figure 8A shows, the number
of reaction steps dedicated to simulating the genomic
RNA polymerase binding operations falls off more rapidly
with growth rate than does the number of steps required
to simulate the plasmid-to-RNA polymerase binding. Fig-
ure 8B shows that the number of reaction steps simulated
in the no-genome version of the model falls off as a func-
tion of growth rate, but less rapidly than in the with-
genome case; this is the cause of the reduction in the rela-
tive advantage of the no-genome version as the growth
rate increases, seen in Figure 7. For large plasmid copy
numbers, the RNA polymerase binding steps are more
time-consuming in the no-genome version of the model,
and the computational advantage of excluding the
genome is correspondingly smaller; again, this is seen in
Figure 7.
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The effect of the genome on the reporter transcript
output. The effect of the genome on the reporter transcript
output. At small enough binding constants neither model is
able to produce a significant number of transcripts: the aver-
age time between transcriptions is much larger than the dou-
bling time, leading to an average of much less than one
transcript per cell division. As the binding constant increases,
the reporter promoter starts to compete with the genomic
promoters for RNA polymerase, ultimately producing a dif-
ference in the number of transcripts between models. The
above example has been arbitrarily chosen; it uses the same
parameters as in Figure 2 (doubling time = 24 min; plasmid
copy number = 10; gene length = 10 bp; and mRNA half-life
= 6 min). The error bars are a single standard deviation in
the transcript number distributions generated by the sto-
chastic simulations.

Relationship between the parameters

Figures 9, 10, and 11 show the dependence of the k-on
value on gene length, plasmid number and mRNA half-
life, while the doubling time is fixed at 30 minutes. These
plots are 3D slices through the full 5D space of results
(where the five dimensions are the four input parameters,
mRNA half life, gene length, plasmid number, and dou-
bling time, and the output promoter on-rate, k_on). The
plots show some of the nonlinearity inherent in the rela-
tionship of k_on to the parameters, and help to indicate
why it has not proven to be possible to reduce the param-
eter relationships to a single regression equation.

Potential extensions
Simulating the translation of mRNA to protein, down-
stream of the transcriptional events discussed here,

http://www.biomedcentral.com/1471-2105/9/373
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Ratios of simulation times in models with and with-
out the genome included. The ratio of simulation time
between models with the genome to those excluding it, as a
function of doubling time and plasmid copy number. Remov-
ing the genome from simulation studies can be 2 to 24 times
more efficient compared to those that include it. The data
was constructed by averaging the simulation times for all ver-
ification runs that employed the set doubling times and plas-
mid copy numbers, regardless of mMRNA half-life and gene
length. All computer simulation times were normalized with
respect to the computer's CPU strength. The trends suggest
that the ratio will approach | for sufficiently long doubling
times.

requires a significantly more elaborate model [10] with
correspondingly greater computational demands. One
extension of this study would be to investigate the binding
on-rates for ribosomes binding to the ribosome-binding-
sites (RBS) of the mRNA binding sites, and once again
compare the results when the presence of the genome is
modelled to those when it is excluded; presumably there
would be a similar possibility of excluding the representa-
tion of the genome under some parameter ranges (where
the main parameters would remain the same: doubling
time, gene length, mRNA half-life, and plasmid copy
number). Since translation follows transcription in the
gene expression process, the range of parameter values in
which one can exclude the genome from studies of the
translational output of a target gene should be smaller
than the regions found in the current study of transcrip-
tional output: the system will be subject to the constraints
imposed by matching the transcriptional results, as well as
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Number of reaction steps simulated. Fixing three of the input parameters (plasmid copy number is 10, mRNA half-life is 6
min, and gene length is 1000 bp), we plot the number of reaction steps taken in a stochastic run simulating 9000 seconds of

time. (A) With-genome model. The total number of reaction steps, and the number of reactions dedicated to RNA polymerase
binding/unbinding to the genomic operons, and to the plasmid carrying our gene of interest. (B) No-genome model. The total
number of reaction steps, and the number of reactions dedicated to RNA polymerase binding/unbinding to the plasmid carry-

ing our gene of interest.

additional constraints required to match the translational
results.

The ability of RNA polymerase to produce an approxi-
mately equal amount of transcripts at large enough bind-
ing constants for both models raises an important
question: are there enough RNA polymerases left when a
large rate law exists for the reporter promoter to transcribe
the necessary genomic genes for cell division? The pres-
ence of a large rate for the reporter transcript will produce
metabolic strain on the cell [54-56], possibly leading to an
increase in doubling time that is not captured within the
current model. Further studies on modelling the effect of
metabolic strain and its feedback with cellular doubling
time will help to clarify this issue.

Conclusion

Efforts to create accurate, quantitative models of
Escherichia coli genomic networks using chemical equa-
tions results in large reaction schemes, with reactions
potentially proceeding at a wide range of rates. The large
computational time required to simulate these reactions is
a persistent problem for large-scale cellular simulation. To
help address one aspect of this problem, we have investi-

gated the necessity of simulating the presence of the E. coli
genome when studying a target gene inserted on a plas-
mid. The presence of the genome, introduced using our
"mean-field" approach, is felt by the target gene through
the competition for free RNA polymerases available to
bind to the target gene's promoter and generate tran-
scripts. However, there are ranges of the parameter space
in which the presence of the genome yields a negligible
difference in the number of reporter transcripts produced
from the target gene, and in these cases is it possible to
exclude any explicit representation of the genome and
save the computations required to simulate the associated
additional reactions. Stochastic simulations show speed
increases of from two to 24 times, when the genome is
excluded from our models. We have generated a set of
fully stochastic simulations and found the promoter on-
rate values for which the genome and no-genome models
differ by less than 5%, and augmented these stochastic
simulations with cross-validated deterministic runs to
increase the number of sampled points in parameter
space. Within the ranges of our four independent param-
eters (growth rate, gene length, mRNA degradation half-
life, and plasmid copy number), we have produced a
MATLAB user interface that will allow the user to input

Page 13 of 18

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:373

0.025

0.02
@ 0.015
3
©
>
c
Q oot
X
0.005
0>
0
Gene Length 800 1000
10000~ 200 400 600
Plasmid Number
.
Figure 9

Dependence of promoter strength on gene length
and plasmid number. The full set of simulations yields
promoter strengths, k_on, as a function of four input param-
eters (gene length, plasmid number, mRNA half-life, and cell
doubling time). Here, we fix the doubling time at 30 minutes
and the mRNA half-life at 8 minutes, and plot k_on as a func-
tion of the two remaining parameters: gene length and plas-
mid copy number.

http://www.biomedcentral.com/1471-2105/9/373

k-on value
©

Plasmid Number

Figure 10

Dependence of promoter strength on plasmid
number and mRNA half-life. The full set of simulations
yields promoter strengths, k_on, as a function of four input
parameters (gene length, plasmid number, mRNA half-life,
and cell doubling time). Here, we fix the doubling time at 30
minutes and the gene length at 4000 base pairs, and plot
k_on as a function of the two remaining parameters: plasmid
copy number and mRNA half-life.

any set of parameters and obtain the promoter on-rate
value (k_on) above which the effect of the genome will
fall below our 5%-difference threshold. Given the increas-
ing computational demands of cellular simulations, we
hope that this approach will aid in the efficiency of other
studies, and suggest other methods in which portions of
the full cellular system may be excluded without signifi-
cantly affecting the final results.
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Appendix

Below is a detailed explanation of the gene expression
model, expanding on the information presented in the
Methods section. A full list of kinetic parameters for each
reaction is provided in Iafolla and McMillen [10].
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Figure 11

Dependence of promoter strength on mRNA half-life
and gene length. The full set of simulations yields pro-
moter strengths, k_on, as a function of four input parameters
(gene length, plasmid number, mRNA half-life, and cell dou-
bling time). Here, we fix the doubling time at 30 minutes and
the plasmid copy number at 200, and plot k_on as a function
of the two remaining parameters: mRNA half-life and gene
length.
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Table 4: Species used in both versions of the model
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Species Name

Rpoly

Rpoly_reporter
closed_Rpoly_prom_reporter
deg mRNA _incom_reporter
deg mRNA_reporter
incom_mRNA
mRNA_reporter
open_Rpoly_prom_reporter
plas Promoter on the plasmid

v Counter (representing cell volume)
Species used exclusively in the model containing the genome
Rpoly_operon_ns
Rpoly_operon_s
closed_Rpoly_prom_ns
closed_Rpoly_prom_s
mRNA

mRNA_small

Species
RNA polymerase

Reporter mRNA degradation product
Nascent reporter mMRNA
Reporter mRNA

Average mRNA (gene length)

its products/complexes
open_Rpoly_prom_ns
open_Rpoly_prom_s

RNA polymerase elongating the reporter mRNA transcript from the reporter gene
RNA polymerase in a closed-complex with the repoter promoter
Nascent reporter mRNA degradation product

RNA polymerase in an open-complex with an mRNA reporter promoter

RNA polymerase elongating an average mRNA transcript from a template operon
RNA polymerase elongating an average RNA transcript from a template operon
RNA polymerase in a closed-complex with an mRNA operon promoter

RNA polymerase in a closed-complex with an mRNA operon promoter

Approximately 90% of the average mRNA; all species names that include "small" refer to this shorter species and

RNA polymerase in an open-complex with an mRNA operon promoter
RNA polymerase in an open-complex with a stable RNA operon promoter

operon_ns Average mRNA operon

operon_s Average stable RNA operon

stable_RNA Average stable RNA (full operon length)
Nomenclature

The following is a complete list of species names used in
the model:

The cellular processes represented in the model are dis-
cussed individually, below:

Cellular division

To reflect the exponential growth of bacterial cells in a
nutrient-rich liquid culture, we include cell growth and
division, incorporated as a process that grows to a thresh-
old volume and is then halved. At division, all species
have their numbers cut approximately in half: for large
numbers, a binomial distribution is used to calculate the
new number, while small numbers (less than 100) have
each molecule explicitly checked and randomly assigned
to a daughter cell with equal probability [26]. The model
follows only one cell as a representative of the full popu-
lation, so the second daughter effectively vanishes after
division. Tracking such a representative cell over long
times yields the same statistics as tracking an ensemble of
many cells over shorter times, if we make the reasonable
assumption that the system is ergodic.

Cell volume is represented by a "counter" species, v,
whose exponential growth is governed by the following
reaction, with rate constants adjusted to produce various
doubling times to match the experimental conditions
being examined:

v—2v (R1)

For a doubling time t, the rate constant is set to k = In(2)/
1. The reaction is initialized at v = V;, and cellular division
occurs when v reaches 2V,,. Our model treats all processes
as stochastic, but the resulting degree of variability
depends strongly on the number of molecules participat-
ing in the reaction. The range of cell division times can
thus be tuned by the choice of V,;; here we set V,= 1000,
which yields a very slight degree of variability in the cell
division times. This variability arises from two sources:
the stochastic rate of reaction R1, and the random assort-
ment of the counter v between daughter cells at division:
v is cut only approximately in half at cell division, like all
other species, and thus the initial volume after cell divi-
sion lies in a small range around V,,.

Enzyme binding, unbinding, isomerization and clearance

Since the only enzymes used in this model are RNA
polymerases only binding to promoters need considera-
tion. The bimolecular reactions for RNA polymerase
(Rpoly) binding to a promoter on a gene (plas or operon)
are shown below:

Rpoly + plas < closed_Rpoly_prom K, = [k_on_Rpoly/
(v/Vy)]/k_oft_Rpoly (R2)

closed_Rpoly_prom — open_Rpoly_prom kg,
(R3)

RNA polymerase initially forms a closed-complex with the
promoter region, which then undergoes isomerization
(R3) into an open-complex. The rate constants for R2 and
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R3 are adjacent to the reactions; that for R2 is scaled to
mimic dilution of cell cycle progression: as the cell grows,
the increase in volume decreases the probability of the
two species coming into contact and reacting, effecting
reducing the rate constant [26]; this effect is incorporated
by dividing the rate constants by v/V,,.

Following binding, the enzyme clears the promoter at a
particular rate. The elementary reactions for this process
are shown below:

open_Rpoly_prom — Rpoly_operon + operon +
incom_mRNA (R4)
We create a nascent transcript (mRNA_incom) at this step
to allow subsequent translation to proceed; this feature
will prove very helpful in studying future simulated stud-
ies of protein synthesis. Reaction R4 also shows an impor-
tant assumption: the regeneration of a binding site after
clearance allows another enzyme to bind to the same
gene, creating the multiple simultaneous elongation proc-
esses observed in actual bacterial cells.

Elongation

To avoid the computational complexity of accounting for
all elongating intermediates (growing mRNA and pep-
tides of every possible length), the following approxima-
tion has been employed: a single intermediate is
converted to the final product at a rate corresponding to
the average time taken by the complete polymerization
process. Using average elongation rates for specific cell
growth rates as specified by Bremer and Dennis [12], the
elongating species produce only the enzyme and the
polymerized product, not the template that is read. This is
shown below in Reaction R5:

Rpoly_operon — Rpoly + mRNA (R5)
Compliment to this reaction is the disappearance of the
nascent transcript made available during transcription:
incom_mRNA—(), where () is a null placeholder. The
elongation rate constant can be summarized as Kqjopgaion =
p/A, where p and A are the polymerization rate and length
of template, respectively.

Enzyme and genome production

Many processes involved in molecular biology are either
too complex to model or not characterized at present. In
our model, we use simplified zeroth-order production
rates for complicated species involved: although the
assembly details of some species are not fully available,
there is considerable information on population size of
these species. In E. coli, the average number of RNA
polymerases and genome equivalents per cell are known

http://www.biomedcentral.com/1471-2105/9/373

at several cellular growth rates [12], and their production
is represented by the elementary reactions below:

() & Rpoly (R6)
() — plas (R7)
() > operon (R8)

The operon species in R8 is representative of the genome,
since our model employs RNA polymerase binding
directly to the promoter sequence of the average operon.
The rate constant for production can be summarized as
Kiep= (v/1.5)/1, where v and t are the average number per
cell and cellular doubling time, respectively.

mRNA degradation

The presence of RNases in E. coli implies that mRNA pos-
sess a finite life-span. The following reactions are used to
represent mRNA degradation:

mRNA_reporter — () (R9)

incom_mRNA_reporter — () (R10)
For a half-life h, the rate constant for R9 and R10 is set to
k =1In(2)/h.

We assume that RNases can degrade nascent transcripts.
To account for degrading a transcript while it is being cre-
ated we propose the following elementary reaction and
rate constant:
Rpoly_mRNA_reporter — Rpoly (R11)
lel = incom_mRNA_reporter - kaNA?degradation/
Rpoly_mRNA_reporter

The reaction indicates that an RNA polymerase currently
producing a transcript becomes an unscathed RNA
polymerase and a degraded mRNA. Although this reaction
implies that all RNA polymerases producing a transcript
are subject to degradation, the proportionality to incom-
plete transcripts is specified in the rate constant. The
Rpoly_mRNA species present in the denominator of the
rate constant makes the reaction rate independent of the
number of elongating RNA polymerases.

Modelling RNA production from operons

We assume that all genes in our relevant genome are clus-
tered into operons. Our model creates a single transcript
for the entire operon, mimicking the lac operon [57]. To
make the elementary reactions simple and accurate for
mRNA and subsequent peptide production, RNA
polymerase binds once to the promoter and produces a
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transcript of average length under corresponding kinetics;
the ejection of the mRNA occurs simultaneously with
RNA polymerase transcribing the adjacent gene on the
operon, or in the case of the last gene on the operon, being
released. This is shown in the following reactions for a
hypothetical three gene operon, where the binding (R2),
isomerization (R3) and clearance steps (R4) have been
omitted:

Rpoly_operonl — Rpoly_operon2 + mRNA k =k

transcrip-
tion
Rpoly_operon2 — Rpoly_operon3 + mRNA k= Ky nqqrip.
tion
Rpoly_operon3 — Rpoly + mRNA k= K,nscription
The numeric suffix on the Rpoly_operon species repre-
sents the gene number adjacent to the promoter. Notice
that the rate constants for the above reactions are all
equivalent. The release of the mRNA while the RNA
polymerase is still elongating the operon allows ribos-
omes to bind and perform translation without requiring
additional species; the act of transcription is conserved
since RNA polymerase only binds once to the promoter.
Evidently, the total time to transcribe all three genes is
equivalent to the time for transcribing the whole operon.

Contrast to mRNA production, stable RNA is easily pro-
duced. Since this RNA is not translated there is no need to
include ribosomes translating complete transcripts before
the operon is finished elongation. Hence, the length of
stable RNA in the model is equivalent to the average stable
RNA operon length.

Additional material

Additional file 1

Bionets files for the models. Files used to generate the stochastic simula-
tions, using the Bionets stochastic simulation tool (required to read the
files, and freely available from http://x.amath.unc.edu/BioNetS/). The
ZIP file extracts to a directory containing files corresponding to the with-
genome and no-genome versions of the model.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-373-S1 zip|

http://www.biomedcentral.com/1471-2105/9/373

Additional file 2

MATLAB user interface. Files used to create the MATLAB user interface,
allowing the user to enter four parameters (plasmid copy number, gene
length, mRNA half-life, and bacterial cell doubling time), and get back
the k_on rate above which excluding the genome will make less than a five
percent difference in the simulated transcription levels of the plasmid-
borne gene of interest. The ZIP file extracts to a directory containing three
files that should be placed in the directory where the user interface will be
used; the interface may be executed by opening MATLAB and running the
script kon_gui.m.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-373-52.zip|
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