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Abstract
Background: The main limitations of most existing clustering methods used in genomic data analysis include heuristic or
random algorithm initialization, the potential of finding poor local optima, the lack of cluster number detection, an inability to
incorporate prior/expert knowledge, black-box and non-adaptive designs, in addition to the curse of dimensionality and the
discernment of uninformative, uninteresting cluster structure associated with confounding variables.

Results: In an effort to partially address these limitations, we develop the VIsual Statistical Data Analyzer (VISDA) for cluster
modeling, visualization, and discovery in genomic data. VISDA performs progressive, coarse-to-fine (divisive) hierarchical
clustering and visualization, supported by hierarchical mixture modeling, supervised/unsupervised informative gene selection,
supervised/unsupervised data visualization, and user/prior knowledge guidance, to discover hidden clusters within complex,
high-dimensional genomic data. The hierarchical visualization and clustering scheme of VISDA uses multiple local visualization
subspaces (one at each node of the hierarchy) and consequent subspace data modeling to reveal both global and local cluster
structures in a "divide and conquer" scenario. Multiple projection methods, each sensitive to a distinct type of clustering
tendency, are used for data visualization, which increases the likelihood that cluster structures of interest are revealed.
Initialization of the full dimensional model is based on first learning models with user/prior knowledge guidance on data projected
into the low-dimensional visualization spaces. Model order selection for the high dimensional data is accomplished by Bayesian
theoretic criteria and user justification applied via the hierarchy of low-dimensional visualization subspaces. Based on its
complementary building blocks and flexible functionality, VISDA is generally applicable for gene clustering, sample clustering, and
phenotype clustering (wherein phenotype labels for samples are known), albeit with minor algorithm modifications customized
to each of these tasks.

Conclusion: VISDA achieved robust and superior clustering accuracy, compared with several benchmark clustering schemes.
The model order selection scheme in VISDA was shown to be effective for high dimensional genomic data clustering. On
muscular dystrophy data and muscle regeneration data, VISDA identified biologically relevant co-expressed gene clusters. VISDA
also captured the pathological relationships among different phenotypes revealed at the molecular level, through phenotype
clustering on muscular dystrophy data and multi-category cancer data.
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Background
Due to limited existing biological knowledge at the
molecular level, clustering has become a popular and
effective method to extract information from genomic
data. Genomic data clustering may help to discover novel
functional gene groups, gene regulation networks, pheno-
types/sub-phenotypes, and developmental/morphologi-
cal relationships among phenotypes [1-7]. Due to the
complex and challenging nature of the task, various clus-
tering algorithms have been applied in genomic data anal-
ysis [5,8-10], including statistical, model-based methods
[11-13], "nonparametric" graph-theoretic approaches
[14,15], stability analysis based consensus clustering [16],
agglomerative/divisive hierarchical clustering [2], and
partitional methods, such as Self-Organizing Maps (SOM)
[1,17] and K-Means Clustering (KMC) [18]. The assign-
ment of data points to clusters can also be either hard
(exclusive) or soft (partial), the latter achieved by fuzzy
clustering [19,20] and mixture modeling [11-13].

While there is a rich variety of existing methods, unfortu-
nately when clustering genomic data, most of them suffer
from several major limitations, which we summarize as
follows. (1) Clustering methods such as KMC and mixture
model fitting are sensitive to the quality of model initiali-
zation and may converge to poor local optima of the
objective function, which will yield inaccurate clustering
outcomes, especially when applied to genomic datasets
that have high dimensionality and small sample size [21-
25]. (2) Stability/reproducibility of clustering outcomes is
also a critical issue [5,23,26-28]. Some clustering meth-
ods, such as HC, may not give reproducible clustering out-
comes in the presence of small dataset perturbations,
additive noise, or outliers [8,22]. (3) For statistical,
model-based approaches, traditional information-theo-
retic model selection criteria, such as Minimum Descrip-
tion Length (MDL) [29,30], may grossly fail in estimating
the cluster number due to inaccurate parameter estima-
tion resulting from the "curse of dimensionality" or due to
too many freely adjustable parameters [21,31]. As one
alternative solution, stability analysis has been applied for
model selection [32-34]. (4) Unsupervised informative
gene selection for sample clustering is a critical, difficult
problem due to the existence of many irrelevant genes
respective to the phenotypes/sub-phenotypes of interest
[9,10,35]. Existing iterative algorithms wrapping gene
selection around sample clustering were developed and
tested for the two-cluster case [13,36]. More research
effort targeting multi-cluster unsupervised gene selection
is needed. (5) Confounding variables produce clustering
structure that may not be associated with the biological
processes of interest. Effective removal or compensation
for confounding influences still requires further research
efforts [5,35]. (6) Most clustering algorithms do not uti-
lize prior knowledge, although some semi-supervised

clustering methods do exploit gene annotations to help
construct gene clusters [12,37,38]. Besides database
knowledge, the user's domain knowledge and human
intelligence assisted by data visualization can also help to
produce accurate and meaningful clustering outcomes for
practical tasks [39,40]. For example, hierarchical data vis-
ualization schemes based on mixture models with
human-data interaction were developed [41-43]. (7)
Many clustering algorithms have a non-adaptive nature,
without a mechanism for incorporating and taking advan-
tage of results from other methods or user knowledge.
These algorithms may fail badly without a "backup plan"
when the algorithm's underlying statistical or geometric
cluster assumptions are violated. (For the benefit of read-
ers, we expand on each of these limitations in section 1 of
Additional file 1.)

To address some of the existing methods' limitations out-
lined above and design a comprehensive and flexible clus-
tering tool effectively applicable to cluster modeling,
visualization, and discovery on genomic data, we devel-
oped a hierarchical data exploration and clustering
approach, the VIsual Statistical Data Analyzer (VISDA).
VISDA performs progressive, divisive hierarchical cluster-
ing and visualization, supported by hierarchical mixture
modeling, supervised/unsupervised informative gene
selection, supervised/unsupervised data projection, and
user/prior knowledge guidance, to discover hidden clus-
ters within complex, high-dimensional genomic data. The
data exploration process in VISDA starts from the top level
where the whole dataset is viewed as a cluster, with clus-
ters then hierarchically subdivided in successive layers
until all salient structure in the data is revealed. Since a
single 2-D data projection, even if it is nonlinear, may be
insufficient for revealing all cluster structures in multimo-
dal, high dimensional data, the hierarchical visualization
and clustering scheme of VISDA uses multiple local pro-
jection subspaces (one at each node of the hierarchy) and
consequent subspace data modeling to reveal both global
and local cluster structures. Consistent with the "divide
and conquer" principle, each local data projection and
modeling can be fulfilled with relatively simple method/
model, while the complete hierarchy maintains overall
flexibility and conveys considerable clustering informa-
tion.

The inclusive VISDA framework readily incorporates the
advantages of various complementary data clustering and
visualization algorithms to visualize the obtained clusters,
which not only give a "transparent" clustering process that
can enhance the user's understanding of the data struc-
ture, but also provide an interface to incorporate human
intelligence (e.g. user's discernment of sub-cluster separa-
bility and outliers) and domain knowledge to help
improve clustering accuracy and avoid finding nonmean-
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ingful or confounding cluster structure. Specifically, the
interactive user participation guides the coarse-to-fine
cluster discover via (1) the selection of a local visualiza-
tion, from a suite of data projections, each sensitive to a
distinct type of data structure, for best revealing a cluster's
substructure; (2) user-directed parameter initialization for
the new sub-clusters that divide existing clusters; (3) user-
guided model order selection, applied in conjunction
with MDL, for deciding the number of sub-clusters in the
local visualization space.

Based on its complementary building blocks and flexible
functionality, VISDA is comprehensively suitable for mul-
tiple genomic data clustering tasks, including gene cluster-
ing, sample clustering, and phenotype clustering (wherein
phenotype labels for samples are known), albeit with cus-
tomized modifications for each of these tasks. Specifically,
VISDA's sample clustering requires dimensionality reduc-
tion via unsupervised informative gene selection, whereas
the phenotype clustering algorithm exploits the knowl-
edge of phenotype labels in performing supervised
informative gene selection, supervised data visualization,
and statistical modeling that preserves the unity of sam-
ples from the same phenotype, which fulfils that in phe-
notype clustering known phenotypes, i.e. groups of
samples with the same phenotype label, are taken as data
objects to be clustered. An important goal of phenotype
clustering is to discover a Tree Of Phenotypes (TOP), i.e. a
hierarchical tree structure with all phenotypes as leaves of
the tree, which may reflect important biological relation-
ships among the phenotypes.

In this paper, we show that VISDA gives stable and
improved clustering accuracy compared to several bench-
mark clustering methods, i.e. conventional agglomerative
Hierarchical Clustering (HC) [2], KMC [18], SOM [1,17],
and Standard Finite Normal Mixtures (SFNM) fitting
[11,22]. Its model order selection scheme is also shown to
be effective on high dimensional data clustering. VISDA
detects critical co-expressed gene clusters associated with
specific genomic functions or gene regulation networks in
muscular dystrophy and muscle regeneration studies. It
also captures the pathological relationships between phe-
notypes reflected at the mRNA level, through phenotype
clustering on muscular dystrophy data and multi-category
cancer data. VISDA is a toolkit of caBIG™ [44]https://
cabig.nci.nih.gov/ and has been successfully applied on
several biomedical research projects [3,6,7,45,46]. The
open source caBIG™ VISDA software package is free avail-
able at https://gforge.nci.nih.gov/projects/visda. Matlab
code implementing a full functional version is free availa-
ble at http://www.cbil.ece.vt.edu/software/
VISDA_Package.zip.

Methods
In this section, we first introduce the main steps of VISDA
algorithm that directly describe the complete VISDA
processing for the task of gene clustering. Next, we extend
the algorithm to work on sample clustering by adding
unsupervised informative gene selection as a data pre-
processing step. Finally, we extend the algorithm for phe-
notype clustering by incorporating a cluster visualization
and decomposition scheme that explicitly utilizes the
phenotype category information.

VISDA algorithm
Let t = {t1, t2,..., tN|ti ∈ Rp, i = 1, 2,..., N} denote N p-
dimensional data points to be clustered. Based on a hier-
archical SFNM model, VISDA performs top-down divisive
clustering as outlined in Figure 1. Major blocks in the
flowchart are introduced in the following subsections.
Suppose that the hierarchical exploration has already pro-
ceeded to the lth level, i.e. Kl clusters have already been
detected at level l and the posterior probability of data
point xi belonging to cluster k (k = 1,..., Kl) is zi, k.

Visualization of cluster k by complementary structure-preserving 
projections
For cluster k, VISDA projects the given cluster onto 2-D
spaces by five projection methods preserving different
data structures associated with distinct types of sub-cluster
tendency.

(1) Principal Component Analysis (PCA) [22]. Sub-clus-
ter structure is consistent with variation within the cluster.
PCA does an eigenvalue decomposition of the cluster's
covariance matrix. The PCA projection uses the eigenvec-
tors associated with the largest two eigenvalues as the pro-
jection directions. Measured by second order statistics, the
PCA projection preserves the largest variation within the
cluster.

(2) Principal Component Analysis – Projection Pursuit
Method (PCA-PPM) [45]. Although sub-cluster structure
will surely impart variation within the cluster, the direc-
tions of largest variation will not always best reveal the
sub-cluster structure [47]. Projection pursuit calculates the
kurtosis of the projected data distribution on each of the
eigenvectors obtained by PCA. If kurtosis is large, the pro-
jected data distribution presents a single sharp peak,
which indicates no sub-cluster structure [47]. PCA-PPM
projection selects the two eigenvectors whose associated
kurtoses are smallest as projection directions.

(3) Locality Preserving Projection (LPP) [48]. In LPP, the
projection directions are obtained by minimizing a com-
pactness cost function, which is a weighted summation of
the pair-wise square distances between points in the pro-
jection space. The square distances between neighboring
Page 3 of 18
(page number not for citation purposes)

https://cabig.nci.nih.gov/
https://cabig.nci.nih.gov/
https://gforge.nci.nih.gov/projects/visda
http://www.cbil.ece.vt.edu/software/VISDA_Package.zip
http://www.cbil.ece.vt.edu/software/VISDA_Package.zip


BMC Bioinformatics 2008, 9:383 http://www.biomedcentral.com/1471-2105/9/383

Page 4 of 18
(page number not for citation purposes)

VISDA's flowchartFigure 1
VISDA's flowchart.
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points are given large weights while the square distances
between far apart points are given small weights. Thus the
minimization emphasizes keeping the neighboring data
points close in the projection space to preserve the local
data structure. The minimization is achieved by the gener-
alized eigenvalue decomposition [48]. The eigenvectors
are orthogonalized by the Gram-Schmidt process [49] to
form an affine projection matrix.

(4) HC-KMC-SFNM-DCA [7]. DCA refers to Discrimina-
tory Component Analysis, a supervised mode projection
(dimension reduction) method aiming to preserve as
much as possible the discrimination/separability between
known classes [45]. The main idea behind HC-KMC-
SFNM-DCA is to use an unsupervised clustering method
to obtain a partition of the data and then use DCA as a vis-
ual validation of partition separability. If a partition of the
data is indeed consistent with the sub-cluster structure,
the consequent DCA projection will show distinct sub-
clusters. The first three steps in HC-KMC-SFNM-DCA
sequentially execute HC, KMC and SFNM fitting, and use
the clustering result of the previous step to initialize the
next one. When performing HC, the user chooses a dis-
tance threshold to cut the cluster into sub-clusters on the
dendrogram, which initializes sub-clusters and deter-
mines the sub-cluster number. After obtaining the parti-
tion, we take the obtained sub-clusters as known classes
and use DCA to present the separability among them.
DCA here maximizes the weight Fisher criterion [50],
which is a modified version of the Fisher criterion that is
the trace of the multiplication of the inversed within-class
scatter matrix and the between-class scatter matrix in the
projection space [22]. Compared to the Fisher criterion,
the weighted Fisher criterion weights the class pairs in the
between-class scatter matrix, thus confines the influence
of class pairs that are well-separated, and emphasizes the
class pairs that are overlapped to improve over-all separa-
tion of the classes [50]. The maximization of the weighted
Fisher criterion is achieved through eigenvalue decompo-
sition and the two eigenvectors with the largest eigenval-
ues are orthogonalized by the Gram-Schmidt process [49]
to form an affine projection matrix. Please see section
2.1.1 of Additional file 1 for formulas of maximizing the
weighted Fisher criterion.

(5) Affinity Propagation Clustering – Discriminatory
Component Analysis (APC-DCA) [22,51]. Similar to HC-
KMC-SFNM-DCA, APC-DCA follows the idea of using
DCA to evaluate/confirm partitions learned in an unsu-
pervised manner, but based on a different clustering pro-
cedure. By viewing each data point as a node in a network,
APC recursively transmits along edges of the network real-
valued messages, whose magnitudes reflect the current
affinity that one data point has for choosing another data
point as its sub-cluster center, until a good set of sub-clus-

ter centers and corresponding sub-clusters emerges [51].
The messages are updated to search for minima of the cost
function, which is the sum of dissimilarities between data
points and their sub-cluster centers. It was shown that the
affinity propagation method finds the best solution
amongst those in a particularly large proximal region in
the solution space [51,52].

In each of the five projection methods, after the projection
matrix Wk for cluster k is determined, the data projection
is achieved by

where xi is the image of data point i in the projection
space, and μt, k is the mean of cluster k in the original data
space. The subscript 't' indicates that these parameters
model the data in the high-dimensional original data
space. Each point is displayed with an intensity propor-
tional to the posterior probability zi, k (or we can set a
threshold, and only points with posterior probabilities
bigger than this threshold are displayed). Available prior/
domain information about the data is also provided to the
user via additional user interface. For gene clustering,
prior information can be gene annotations, such as gene
ID and the functional category. For sample clustering,
prior information can be array annotations, such as the
experimental condition under which the array was gener-
ated.

Each of these five projection methods preserves different
yet complementary data structure associated with a dis-
tinct type of sub-cluster tendency. PCA preserves direc-
tions with largest variation in the data. PCA-PPM
moderates PCA to consider projection directions on
which the projected data have flat distributions or distri-
butions with thick tails. LPP preserves the neighborhood
structure of the data. HC-KMC-SFNM-DCA and APC-DCA
directly target presenting discrimination among sub-clus-
ters via different unsupervised partition approaches. HC-
KMC-SFNM partitioning is model-based and allows the
user to determine the sub-cluster number, while APC par-
titioning is nonparametric and automatically determines
the sub-cluster number. Because each projection method
has its own, distinct theoretical or experimental assump-
tion of data structure associated with sub-clusters, while
whether the underlying sub-clusters of interest are consist-
ent with these assumptions is data/application depend-
ent, using all of them simultaneously increases the
likelihood that sub-clusters of interest are revealed.

After inspecting all five projections, the user is asked to
select one projection that best reveals the sub-cluster
structure as the final visualization. Human interaction in
choosing the best projection (and hence substructure)

x W t ti k
T

i k= −( )μμ , , (1)
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provides an interface to incorporate human discernment
and domain knowledge in cluster visualization, which
gives potential to avoid confounding, irrelevant, and
uninteresting substructures. The selection of a suitable/
good projection is data/application dependent. Several
guidelines based on human discernment and prior knowl-
edge are as follows: (1) Select a projection in which the
sub-clusters are well-separated and show clear sub-cluster
structure. (2) Select a projection in which no sub-clusters
are simply composed of several outliers. (3) Select a pro-
jection that does not oppose prior knowledge, i.e. if the
user is certain about the relationship between some genes/
samples under the particular experimental condition that
produced the data, he/she can choose a projection that
favours this relationship. In addition, when the data size
is pretty large, PCA and PCA-PPM may be preferred over
HC-KMC-SFNM-DCA, LPP, and APC-DCA, because the
latter three projection algorithms have much higher com-
putational complexity. More details, discussion, and
empirical understanding of these projections can be
found in section 2.1.1 of Additional file 1.

Decomposition of cluster k in its visualization space based on the 
hierarchical SFNM model
We use the two-level hierarchical SFNM model to present
the relationship between the lth and the l + 1th levels of
VISDA's hierarchical exploration. The probability density
function for a two-level hierarchical SFNM model is for-
mulated as:

where Kk, l+1 sub-clusters exist at level l + 1 for each cluster
k at level l, πk is the mixing proportion for cluster k at level
l, πj|k is the mixing proportion for sub-cluster j within clus-
ter k, g(•) is the Gaussian probability density function,
and θt, (k, j) are the associated parameters of sub-cluster j.
We focus on the decomposition of cluster k in its visuali-
zation space. To achieve this, we maximize the expecta-
tion of the conditional log-likelihood of the sub-cluster
model, i.e.

where x = {x1, x2,..., xN|xi ∈ R2, i = 1, 2,..., N} are the pro-
jected points in the visualization space, subscript 'x' indi-
cates these parameters model data in the visualization

space, and θx, (k, j) are the associated parameters of sub-
cluster j. Equation (3) is a weighted log-likelihood, which
can be maximized or locally maximized by the Expecta-
tion Maximization (EM) algorithm [53]. The EM algo-
rithm performs the E-step and M-step iteratively until
convergence. The E-step and M-step for training the hier-
archical SFNM model are given by

where zi, (k, j) is the posterior probability of data point xi
belonging to the jth sub-cluster in cluster k, μx, (k, j) and Σx,

(k, j) are the mean and covariance matrix of sub-cluster j in
cluster k. This training process decomposes cluster k by
keeping the data point's posterior probability of belong-
ing to cluster k unchanged and adjusting its conditional
posterior probabilities of belonging to the lower level sub-
clusters. For details and derivations of the model and the
algorithm, please see section 2.1.2 of Additional file 1.

To get an accurate and biologically meaningful initializa-
tion of the model parameters, which is a key factor for
obtaining a good clustering result, VISDA utilizes human
initialization of sub-cluster means in the visualization
space. The user pinpoints on the visualization screen
where he/she thinks the sub-cluster means should be,
according to his/her discernment of the sub-cluster struc-
ture and domain knowledge. This initialization gives the
potential to avoid learning uninteresting or biologically
irrelevant substructures. For example, if a sub-cluster has
several outliers, the user will most likely initialize the sub-
cluster mean on the "main body" of the sub-cluster but
not on the outliers.

Models with different numbers of sub-clusters are initial-
ized by the user and trained by the EM algorithm. The
obtained partitions of all the models are displayed to the
user as a reference for model selection. The MDL criterion
is also utilized as a theoretical validation for model selec-
tion [29,30]. When the data size is small, the classical
MDL model selection with Gaussian distributions has the
tendency to select complex models in low dimensional
space [54]. Based on our experimental experience and ref-
erence to [54,55], we use a modified formula to calculate
the description length given by
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where Ka and Nk are the number of freely adjustable
parameters and the effective number of data points in the
cluster, respectively, and L(x|θx, k, πk, zk) is given in Equa-
tion (3). This modified MDL formula not only eases the
trend to overestimate the sub-cluster number when the
data size is small, but also is asymptotically consistent
with the classical MDL formula introduced in section
2.1.2 of Additional file 1. To fully take advantage of
human intelligence and domain knowledge, the user is
allowed to override the MDL model selection by specify-
ing a sub-cluster number based on his/her inspection of
all the partitions resulting from models with different
number of sub-clusters. Again, this offers an opportunity
to incorporate human intelligence and domain knowl-
edge in the clustering process. For example, in gene clus-
tering, the user can choose a model in which genes known
to be co-regulated and co-expressed in the particular
experiment fall in the same sub-cluster, even although the
model's description length may not be the smallest, or the
user can refuse a model with sub-clusters formed by a few
outliers.

Initialization and training of the full dimensional model
Each sub-cluster in the chosen model corresponds to a
new cluster at the l + 1th level of the hierarchical explora-
tion. The parameters of the sub-clusters in all the selected
models of lth level are transformed from the visualization
spaces back to the original data space. This transform is
achieved by

where μt, (k, j) and Σt, (k, j) are the mean and covariance
matrix for the jth sub-cluster of cluster k in the original
data space, and Wk is the projection matrix for cluster k, as
introduced in Equation (1). Obviously, these transformed
parameters may not accurately describe the full dimen-
sional distribution. From Equation (2), we can see that
the two-level hierarchical SFNM model can be written in
the form of a standard SFNM model simply by putting πk
inside the second summation, giving a mixture with com-
ponents indexed by (k, j) and mass πkπj|k. Thus we can use
the transformed parameters as initialization for the SFNM
model in the original data space and then further train
this model using the EM algorithm to refine the parame-
ters. Formulas for the SFNM model and the corresponding

EM algorithm are given in section 2.1.3 of Additional file
1. When this training finishes, the l + 1th level in the
exploration hierarchy is generated. If no new clusters are
detected at level l+1 compared to level l, or if the user
believes all interesting cluster structure has been detected,
the algorithm ends.

Algorithm extension for sample clustering
The main clustering and visualization algorithm intro-
duced above is directly applicable for gene clustering,
which is a "data-sufficient" case due to the large ratio of
gene number to sample number. Sample clustering is usu-
ally a "data-insufficient" case that suffers from the "curse
of dimensionality", because in sample clustering the
number of data objects to be clustered is much smaller
than the data dimensionality. Many of the genes are actu-
ally irrelevant respective to the phenotypes/sub-pheno-
types of interest [9,10,35]. Thus we perform unsupervised
informative gene selection as a preprocessing step before
we use the above algorithm to cluster the samples. Non-
informative genes can be divided into two categories. (1)
Irrelevant genes, i.e. those which do not respond to the
physiological event. These genes are normally constantly
expressed over the experimental conditions. (2) Non-dis-
criminative genes, i.e. ones that do not contribute to clus-
ter structure.

Two variation criteria, the variance and the absolute dif-
ference between the minimum and maximum gene
expression values across all the samples, can be used to
identify and then remove constantly expressed genes. For
each criterion, a rank of all the genes is obtained, with
genes of large variation ranked at the top.

Discrimination power analysis measures each gene's indi-
vidual ability both to elicit and to discriminate clusters/
components. These components are generated by fitting a
1-D SFNM model to the gene's expression values using the
EM algorithm. To determine the component number, we
followed the iterative procedure in [56]. The 1-D SFNM
model is initialized with a high model order (much bigger
than the true component number), with randomly cho-
sen means and uniform variances. In each iteration, we
(one-by-one) trial-delete each component and rerun the
fitting algorithm. The component whose removal yields
minimum description length will be permanently
removed. This iterative process ends when only one com-
ponent remains, and the component number is deter-
mined by the MDL principle via comparing the
description lengths of solutions in the sequence. Once the
SFNM models are trained, genes with a single component
are removed, because they do not support any cluster
structure. For the other genes, the accuracy in classifying
samples to components resulting from applying the Max-
imum A Posteriori probability (MAP) rule quantifies the
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gene's discrimination power. The MAP rule assigns a sam-
ple to the component that it most likely belongs to, eval-
uated by the posterior probability learned through the
SFNM fitting. Thus, a rank of genes according to their dis-
crimination power can be constructed.

Based on the variation ranks and the discrimination
power rank, a list of genes with large variations and large
discrimination power can be obtained by taking the inter-
section of the top parts of the ranks. Further details about
these three gene ranking schemes can be found in section
2.2 of Additional file 1.

Algorithm extension for phenotype clustering
As an extension of the main clustering and visualization
algorithm, phenotype clustering follows a similar hierar-
chical, interactive exploration process, shown in Figure 2.
Since the phenotype categories are known, cluster visuali-
zation and decomposition can exploit this information,
which leads to the modified visualization and decompo-
sition scheme indicated by the green blocks with dashed
borders in Figure 2. Suppose that the exploration process
has proceeded to the lth level with Kl phenotype clusters,
each of which contains all the samples from one or multi-
ple phenotypes. For phenotype cluster k (k = 1,..., Kl), if it
contains only one phenotype, we do not need to decom-
pose it; if it contains two phenotypes, we simply split the
cluster into two sub-clusters, each containing the samples
of one phenotype; if it contains more than two pheno-
types, we do the following to visualize and decompose it.
Let Qk and N(q) denote the number of phenotypes in clus-
ter k and the number of samples from the qth phenotype
in cluster k, respectively.

Visualization of cluster k from a locally discriminative gene subspace
We first use supervised discriminative gene selection to
form a locally discriminative gene subspace respective to
the phenotype categories in the cluster. The locally dis-
criminative gene subspace contains the most discrimina-
tive genes, where the discrimination power of a gene is
measured by

where rq is the sample proportion of phenotype q in clus-
ter k, μq and σ q are the mean and standard deviation of the
gene's expression values in phenotype q. The number of
genes in this gene subspace is Qkng, where ng is the number
of selected genes per phenotype, an input parameter of the
algorithm. We use Discriminatory Component Analysis
(DCA) to project the samples from the gene subspace
onto a 2-D visualization space. Because an important out-
come of phenotype clustering is the relative relationships

among the phenotypes that are estimated directly based
on the relative distances between samples of different
phenotypes, to preserve the original and undistorted data
structure, DCA here maximizes the Fisher criterion that
treats all the phenotype pairs equally. The Fisher criterion
is calculated based on the known phenotype categories.
Maximization of the Fisher criterion is achieved by eigen-
value decomposition and the projection matrix is
obtained by orthogonalizing the eigenvectors associated
with the largest two eigenvalues [22,49]. When the sam-
ples are projected onto the visualization space, prior infor-
mation in the form of phenotype labels of samples are
also provided to the user. For further details and formulas,
please see section 2.3.1 of Additional file 1.

Decomposition of cluster k in its visualization space based on the 
class-pooled finite normal mixture model

Phenotype clustering differs from sample/gene clustering
in that it assigns a cluster label to each phenotype in its
entirety (all samples therefrom), not to each sample/gene.
Based on this difference, we use a class-pooled finite nor-
mal mixture to model the projected samples in the visual-

ization space. Let {x(1),..., x(q),..., } denote the

projected phenotypes, where x(q) = { , i = 1, 2,..., N(q)}

is the set of samples from phenotype q. The probability
density function for all samples from phenotype q is

where cluster k at level l is decomposed into Kk, l+1 sub-
clusters at level l + 1, πj and θx, j are the mixing proportion
and parameters associated with sub-cluster j. The model
parameters are learned by the EM algorithm using the for-
mulas introduced in section 2.3.2 of Additional file 1.

Similar to sample/gene clustering, the user is asked to ini-
tialize the sub-cluster means by pinpointing them on the
visualization screen according to his/her understanding
about the data structure and domain knowledge. Models
with different numbers of sub-clusters are initialized by
the user, and trained by the EM algorithm. The resulting
partitions are shown to the user for comparison. The MDL
model selection criterion is also applied for theoretical
validation. Details and formulas of MDL model selection
can be found in section 2.3.2 of Additional file 1. The user
can override the MDL model selection by specifying the
number of sub-clusters according to his/her justification
and domain knowledge. Once the best model is selected,
the phenotypes are assigned to sub-clusters using the MAP
rule.
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After visualizing and decomposing the clusters at level l,
all the sub-clusters become clusters at level l + 1. Thus the
hierarchical exploration process proceeds to the l + 1th
level. If all the clusters at the l + 1th level contain a single
phenotype, the algorithm ends.

A demo application of VISDA on sample clustering
To show how VISDA discovers data structure, we consider
the UM microarray gene expression cancer dataset as an
example and perform sample clustering [57]. This dataset
consists of brain (73 samples), colon (60 samples), lung

The flowchart including the algorithm extension for phenotype clusteringFigure 2
The flowchart including the algorithm extension for phenotype clustering. The green blocks with dashed borders 
indicate the algorithm extensions, i.e. the modified visualization scheme and decomposition scheme.
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(91 samples), ovary (119 samples, 113 for ovarian cancer
and 6 for uterine cancer), and pancreas (10 samples) can-
cer classes. We removed the pancreas category due to its
relatively small size. The total number of genes is 7069.
We applied our unsupervised gene selection method to
choose informative genes. To emphasize the genes with
discrimination power, those which manifest true, under-
lying cluster structure, we used a more stringent require-
ment on a gene's discrimination power than on its
variation. We took the intersection of the top 700 discrim-
inative genes, the top 1600 genes ranked by variance, and
the top 1600 genes from the absolute difference ranking.
A set of 107 genes was thus obtained and used as the input
gene space for sample clustering. Clustering of the 343
samples was performed in a purely unsupervised fashion,
i.e. category labels and the number of categories were not
used by the algorithm and were not known to the user
during the clustering process. After clustering, we use col-
ours to indicate different cancer categories, with the
results shown in Figure 3.

Figure 3a shows the five different projections obtained at
the top level. PCA gives roughly a three-cluster structure
with dispersion of the left cluster and some overlap
between the other two clusters. PCA-PPM shows a two-
cluster structure with significant overlap. The HC-KMC-
SFNM-DCA projection gives a well-separated two-cluster
structure. LPP also produces a two-cluster structure, but
not well-separated. APC-DCA gives roughly a three-cluster
structure with dispersion of the right cluster and overlap
between the other two clusters. For the sake of simplicity,
we select data visualization based on human inspection of
the separability among the clusters. Since the HC-KMC-
SFNM-DCA projection presents the best separated clus-
ters, we select it for the top level visualization and con-
tinue decomposing these clusters. Figure 3b shows the
user's initialization and corresponding obtained parti-
tions of models with different cluster number for the top
level decomposition. Figure 3c shows the tree structure
detected by VISDA. The clusters at the leaf nodes of the
hierarchy form the final clustering result. For the colon
cancer cluster (the third cluster at the third level of the
hierarchy), the one sub-cluster model and the two sub-
cluster model have a description length of 1446.59 and
1445.50, respectively, which are very close. By examining
the two sub-cluster partition, we find that one of the sub-
clusters essentially only contains the two left-most sam-
ples in the cluster, which are apparently outliers. Thus we
choose not to decompose this cluster.

Results
Evaluation of VISDA
In a comparative study of clustering algorithms [23], we
evaluated VISDA by comparing it to four other popular
unsupervised clustering methods – conventional HC,

KMC, sequential SOM, and SFNM fitting methods. The
comparison was made with respect to clustering accuracy
and stability, evaluated on one synthetic dataset and
seven microarray gene expression datasets described in
Table 1 of Additional file 1. For a meaningful and well-
grounded evaluation, we directly compared the sample
clustering results to the ground-truth biological categories
for measurement of algorithm performance. To assure the
quality and suitability of the datasets with respect to the
definitive ground truth for a rigorous and fair compari-
son, the datasets were preprocessed by a supervised
informative gene selection method introduced in [58].
The preprocessed datasets covered both the "data-suffi-
cient" case and the "data-insufficient" case, the latter hav-
ing a small samples-to-genes ratio. The experiment was
conducted based on n-fold cross-validation (n equal to 9
or 10 depending on the sample size), i.e. in each trial,
only an (n-1)/n portion of the samples from each class
were used in the model learning.

Because the clustering results of KMC, SOM and SFNM fit-
ting methods may depend on initialization, for each
cross-validation trial we ran them 100 times with random
initialization and took the best clustering result according
to the associated optimization criterion. For KMC, since
its algorithm tries to minimize Mean Squared Compact-
ness (MSC), which is the average square distance from
each data point to its cluster center, we selected the result
with the minimum MSC. For SOM, we separately tried
minimizing MSC and maximizing Classification Log-
Likelihood (CLL) [23], which calculates the log-likeli-
hood of the model by assigning each cluster a Gaussian
distribution whose parameters are calculated based on the
samples within the cluster. Not like the soft memberships
in mixture modeling, CLL calculates the log-likelihood in
a "hard" manner, where each sample is generated only by
the Gaussian distribution of its cluster. For SFNM fitting,
since the algorithm tries to maximize the likelihood of the
SFNM model, we selected the result with the maximum
likelihood. HC was applied with Euclidean distance and
average linkage function. For HC, KMC, SOM, and SFNM
fitting method, we set the input cluster number at the
number of ground-truth classes. Because VISDA does not
utilize any information about the number of classes and
class labels of the samples, VISDA obtained the cluster
number and clustering partition in a purely unsupervised
fashion. We calculated the frequency that VISDA obtained
the correct cluster number (taken as the number of
ground-truth classes in the dataset) across the cross-vali-
dation trials to evaluate its model selection accuracy. The
partition accuracy, i.e. the percentage of correctly labeled
samples after clustering, was used to evaluate the biologi-
cal relevance of the obtained clusters. For soft clustering,
to calculate the partition accuracy, we transformed the soft
memberships to hard memberships via the MAP rule. The
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An illustration of VISDA on sample clusteringFigure 3
An illustration of VISDA on sample clustering. (a) The five different projections obtained at the top level. Red circles are 
brain cancer; green triangles are colon cancer; blue squares are lung cancer; and brown diamonds are ovary cancer. (b) The 
user's initialization of cluster means (indicated by the numbers in the small circles) and the resulted clusters (indicated by the 
green dashed ellipses). The left, middle, and right figures are for the models of one cluster, two clusters, and three clusters, 
respectively. (c) The hierarchical data structure detected by VISDA. Sub-Cluster Number (CN) and corresponding Description 
Length (DL) are shown under the visualization.
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mean partition accuracy of all cross-validation trials was
calculated and then averaged over all datasets (shown in
Table 1). We also calculated the standard deviation of the
partition accuracy resulted from cross-validation to see
how stable the biological relevance was. The standard
deviation of the partition accuracy was also averaged over
all datasets and shown in Table 1.

VISDA obtained the correct cluster number across the
cross-validation trials with an average frequency of 97%
over all the datasets. This shows that the exploration
based on the hierarchical SFNM model, MDL model selec-
tion in the locally discriminative visualization space, and
human-data interaction for data visualization, model ini-
tialization, and model validation, is an effective solution
for model selection working on high dimensional data.
VISDA outperformed all other methods in average mean
of partition accuracy, which shows that VISDA's clustering
result was the most accurate among the competing meth-
ods. From the average standard deviation of partition
accuracy, we can see that VISDA is also a stable performer
among the competing methods. Besides partition accu-
racy, we also evaluated the accuracy of the recovered par-
ametric class distributions (the first and second order
statistics), where the result is similar [23], i.e. VISDA pro-
vides a stable and most accurate recovery of class distribu-
tions among the competing methods.

Identification of gene clusters from muscular dystrophy 
data and muscle regeneration data
On a muscular dystrophy microarray gene expression
dataset (Table 2 in Additional file 1 gives a brief descrip-
tion of the dataset) [6], we used VISDA to define gene
clusters to discover functional gene groups and gene regu-
lation networks. After performing the clustering, we
superimposed existing knowledge of gene regulation and
gene function from Ingenuity Pathway Analysis database
(IPA, http://www.ingenuity.com) to analyze some of the
obtained clusters that had interesting expression value
patterns. We found that one gene cluster that contained
122 genes was highly expressed in Juvenile DermatoMy-
ositis (JDM) but lowly expressed in all other phenotypes.
JDM is a relatively severe childhood autoimmune disor-
der that is thought to be associated with viral infections
that stimulate muscle destruction by inflammatory cells
and ischemic processes in a small subset of the children
with the virus. IPA showed that this gene cluster pointed

to gene regulatory networks involved in key inflammatory
pathways. In the most significant network (with a nega-
tive log p-value of 77), shown in Figure 4a, specific pro-
teins that are known to be critical for initiating and
perpetuating inflammation and subsequent cell death are
seen as key focus genes (IPA calculated the p-values based
on the hypergeometric distribution, via Fisher's exact test
for 2 × 2 contingency tables.). STAT1 is an important sig-
naling molecule that responds to interferons and other
cytokines. Both TNFSF10 and CASP7 influence cell death
via apoptosis. Consistent with this, patients with JDM
show extensive cell death and failure of regeneration in
their muscle, leading to weakness. This network also
points to drugs that would be expected to inhibit this
process in JDM patients, which can be tested in a mouse
model. Figure 4b shows that this gene cluster was signifi-
cantly associated with organismal injury/abnormalities
and immune response in terms of gene function category.

In another study [46], we used VISDA to define gene clus-
ters in a 27 time point microarray gene expression dataset
of muscle regeneration in vivo based on the mouse
model. After pre-filtering by "present call", 7570 genes
were believed to be significantly present and were thus
input to VISDA for gene clustering. Two of the eighteen
gene clusters detected by VISDA peaked at the 3rd day
time point, which correlated with the expression pattern
of MyoD, a prototypical member of myogenic regulatory
factors that control the staged induction of genes impor-
tant for interpretation of positional cues, proliferation,
and differentiation of myogenic cells. These two clusters
contained a subset of the in vitro MyoD down-stream tar-
gets identified in [59], which characterized the relevance
of in vitro myogenesis to in vivo muscle regeneration.

Construction of TOPs on muscular dystrophy data and 
multi-category cancer data
We used VISDA to cluster phenotypes in the muscular dys-
trophy dataset (Table 2 in Additional file 1 gives a brief
introduction of the dataset) [6]. The dataset includes 13
muscular dystrophy related phenotypes, i.e. ALS, AQM,
BMD, Calpain3, DMD, Dysferlin, Lamin A/C, Emerin,
FKRP, FSHD, HSP, JDM, and NHM [6]. The TOP con-
structed by VISDA with ng (the number of selected genes
per phenotype) equal to 2 is shown in Figure 5. AQM,
JDM, ALS, and HSP were first separated from the rest,
which is consistent with each of them having an underly-

Table 1: Comparison of clustering performance

VISDA HC KMC SOM (MSC) SOM (CLL) SFNM Fitting

Average mean of partition accuracy 86.29% 58.89% 76.47% 76.52% 79.39% 64.47%
Average standard deviation of partition accuracy 4.01% 5.03% 3.92% 3.85% 4.73% 5.07%

The bolded font indicates the best performance respective to a particular measure.
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Analysis results of the detected gene clusterFigure 4
Analysis results of the detected gene cluster. (a) Top scoring gene regulation network indicated by the gene cluster. 
Grey colour indicates that the gene is in the detected gene cluster. Solid lines indicate direct interactions. Dashed lines indicate 
indirect interactions. (b) The negative log p-values of the most significant functional categories associated with the gene cluster. 
These two figures are from the IPA system.
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ing disease mechanism much different from the other
classes. Then, the tree showed two major branches. The
left branch contained BMD, Calpain 3, DMD, Dysferlin,
and FKRP, most of which are the "dystrophic myopa-
thies", inborn single gene disorders causing degeneration/
regeneration of muscle fibers. The right branch contained
Lamin A/C, Emerin, FSHD, and NHM. The two nuclear
envelope disorders, Lamin A/C and Emerin, form their
own group, showing their close relationship reflected at
mRNA profiles. FSHD disrupts chromatin attachment
sites to the nuclear envelope, which supports its co-segre-
gation with Lamin A/C and Emerin in the right branch.

On the 14 class MIT microarray gene expression cancer
dataset with 190 samples (Table 3 in Additional file 1
gives a brief description of the dataset) [24,60], we
applied leave-one-out stability analysis with ng equal to 6.

In each experimental trial of the leave-one-out stability
analysis, one sample was left out and we constructed a
TOP based on the remaining samples. Thus totally 190
TOPs were generated and we took the tree with the highest
frequency of occurrence as the final solution, which best
reflects the underlying stable structure of the data. As a
validation, we compared the most frequent TOP to the
known developmental/morphological relationships
among the various cancer classes, which was published in
[60].

Forty three different TOPs occurred in the leave-one-out
stability analysis. The most frequent TOP occurred 121
times; the second most frequent TOP occurred 11 times;
the third most frequent TOP occurred 7 times; most of the
other TOPs only occurred once. The most frequent TOP
has an occurrence frequency of 121/190 ≈ 63.68%. Con-

The TOP found by VISDA on the muscular dystrophy datasetFigure 5
The TOP found by VISDA on the muscular dystrophy dataset. Rectangles contain individual phenotypes. Ellipses con-
tain a group of phenotypes.
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sidering that some TOPs have only minor differences
compared to the most frequent TOP, the underlying stable
structure likely has even a higher occurrence frequency.
We also applied VISDA on the whole dataset and obtained
the same structure as the most frequent TOP. Figure 6a
shows the known pathological cancer tree [60] and Figure
6b shows the obtained most frequent TOP. We can see
that the most frequent TOP captured some pathological
relationships reflected in mRNA profiles. The neoplasm of
lymphoma and leukemia are hematolymphoid; appropri-
ately, in the most frequent TOP, they were far away from
the other cancer classes whose neoplasm is solid. CNS and
mesothelioma were separated from epithelial tumors. The
ovary cancer and the uterus cancer are mullerian tumors
and closely located in the tree. Breast, bladder and pan-

creas cancer belong to the non-mullerian category and
formed a tight subgroup.

Discussion
VISDA is a data analysis tool incorporating human intelli-
gence and domain knowledge. When applied by experi-
enced users and domain experts, VISDA is more likely to
generate accurate/meaningful clustering and visualization
results. Since different human-data interaction may lead
to different clustering outcomes, to achieve optimum per-
formance, the user needs to acquire experience in using
VISDA on various kinds of data, especially on the dataset
of interest. Multiple trials applying VISDA are suggested
when analyzing a new dataset. By comparing VISDA to
several popular clustering methods, we see that the clus-

Comparison between the most frequent TOP and the pathological relationships among the cancer classesFigure 6
Comparison between the most frequent TOP and the pathological relationships among the cancer classes. (a) 
Published developmental/morphological relationships among the cancer classes. (b) The most frequent TOP constructed by 
VISDA. Rectangles contain one cancer type. Ellipses contain a group of cancers.
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tering outcome of VISDA is stable, probably because
human initialization of model parameters has the poten-
tial to improve the clustering stability compared to the
random parameter initialization applied by some other
methods. Notice that VISDA only requires the user to have
common sense about cluster distributions, cluster separa-
bility, and outliers.

Besides the two kinds of non-informative genes discussed
in the Methods section, "redundant" genes (genes that are
highly correlated with other genes) provide only limited
additional separability between sample clusters. However,
this limited additional separability may in fact greatly
improve the achievable partition accuracy [61]. Thus, we
take removal of redundant genes as an optional step for
sample clustering. If the dimensionality of the gene space
after variation filtering and discrimination power filtering
can not be well handled by the clustering algorithm (i.e. if
the samples-to-genes ratio is not sufficiently large), we
suggest removing highly correlated genes. Here, we pro-
vide a simple scheme to remove redundant genes. In the
gene list resulting from variation filtering and discrimina-
tion power analysis, keep the most discriminative gene
and remove the genes that are highly correlated with it.
Then keep the second most discriminative gene in the
remaining list and remove the genes that are highly corre-
lated with this second most discriminative gene. Keep per-
forming this procedure until no further removal can be
done. The correlation between genes can be measured by
Pearson correlation coefficient or mutual information
normalized by entropy. A threshold needs to be set to
identify the highly correlated genes.

Various visualization techniques, such as dendrogram,
heat maps, and projections, have been applied to present
genomic data structures and clustering outcomes
[2,16,62,63]. Many linear/nonlinear projection methods,
such as PCA [22], random projection [33], variant of
multi-dimensional scaling [62], and projection based on
frequency domain analysis [63], have been used to visual-
ize/analyze genomic data. In VISDA, data are hierarchi-
cally visualized using multiple local data projections, one
at each node of the hierarchy. Such a hierarchical visuali-
zation scheme allows each local data projection to be ful-
filled by relatively simple method, i.e. linear projection,
while the whole visualization hierarchy is capable to
reveal both global and local cluster structures. Since every
clustering and visualization method has its own underly-
ing assumptions about the cluster structure of interest [8-
10,39-41], VISDA provides users with an extensible visu-
alization capability by a projection suite that can incorpo-
rate novel, effective, complementary projection methods
to increase the likelihood of revealing the data/applica-
tion-dependent cluster structure of interest. Besides
enhancing human understanding of the data structure,

data visualization in VISDA has a further function of pro-
viding the basis for introducing human intelligence and
domain knowledge to the clustering process.

One point needs to be noted is that VISDA selects a data
model in the locally discriminative low dimensional visu-
alization space. Although visualization with dimension
reduction may reveal only the main data structure and
lose minor/local data structures within a cluster, these
minor/local structures may become the main data struc-
ture captured at subsequent levels. VISDA discovers hier-
archical relationships between clusters, which allows
analyzing the data at different resolutions/scales.

Larger clusters can be obtained by simply merging small
clusters according to the hierarchy. The discovered hierar-
chical relationships among clusters may reveal important
biological information, for example the developmental/
morphological information revealed by TOPs. The TOP
discovered by VISDA can also be used to construct a hier-
archical classifier to solve the complex task of multiple
diseases diagnosis by embedding a relatively simple clas-
sifier at each node of the TOP, which may obtain good
classification performance [64].

Despite our successful applications of VISDA to real
microarray gene expression data, there are remaining lim-
itations of the reported method. For example, in sample
clustering, dimension reduction via unsupervised inform-
ative gene selection is highly data-dependent and often
achieves only limited success. This is a very challenging
task due to no prior knowledge and potentially complex
gene-gene interactions embedded within high dimen-
sional data. Furthermore, user-data interaction may bring
certain subjectivity into the clustering process if not being
properly orchestrated, and projection visualization may
cause some unrecoverable information loss leading to
only a suboptimum solution, although VISDA's hierarchi-
cal framework can partially alleviate this problem. Lastly,
VISDA presently assumes each cluster follows a Gaussian
distribution largely driven by mathematical convenience.
However, small sample size problem can defeat this
assumption and composite clusters at higher-levels of the
hierarchy are not even theoretically normally distributed
but are more generally mixture distributions.

Our previous publications [23,44] may also help practi-
tioners in using VISDA for genomic data analysis. Refer-
ence [44], the caBIG™ VISDA application note, is a brief
and fast-track "software user guide" that provides users
with information on the procedures and interfaces of
caBIG™ VISDA open-source software. Reference [23]
focuses on a comparative experiment of several clustering
algorithms including VISDA to study their relative per-
formance and suitability for genomic data clustering.
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Although these two papers do not discuss the principles/
algorithms of VISDA, they are helpful to readers interested
in using VISDA for practical tasks of genomic data analy-
sis.

Conclusion
We designed a clustering and visualization algorithm for
discovering structure in high dimensional genomic data.
VISDA can discover and visualize gene clusters, sample
clusters, phenotype clusters, and the hierarchical relation-
ships between the detected clusters. VISDA visualizes data
by structure-preserving projections and provides an inter-
face for human-data interaction, which facilitates incor-
poration of expert domain knowledge and human
intelligence to help achieve accurate and meaningful data
visualization and modeling. The scalable and extensible
VISDA framework can incorporate various existing clus-
tering and visualization algorithms to increase the likeli-
hood of revealing data structure of interest.

Our evaluation study based on microarray gene expres-
sion data showed that VISDA provided an effective model
selection scheme for high dimensional data and outper-
formed several popular clustering methods, i.e. HC, KMC,
SOM, and SFNM fitting, in terms of clustering accuracy.
Applications to muscular dystrophy, muscle regeneration,
and cancer data illustrated that VISDA produced biologi-
cally meaningful clustering results that can enhance users'
understanding about the underlying biological mecha-
nism and stimulate novel hypotheses for further research.

Abbreviations
VISDA: VIsual Statistical Data Analyzer; SOM: Self-Organ-
izing Maps; KMC: K-Means Clustering; HC: conventional
Hierarchical Clustering; MDL: Minimum Description
Length; TOP: Tree Of Phenotypes; SFNM: Standard Finite
Normal Mixture; PCA: Principal Component Analysis;
PCA-PPM: Principal Component Analysis – Projection
Pursuit Method; LPP: Locality Preserving Projection; DCA:
Discriminatory Component Analysis; APC: Affinity Prop-
agation Clustering; EM algorithm: Expectation Maximiza-
tion algorithm; MSC: Mean Squared Compactness; CLL:
Classification Log-Likelihood; IPA: Ingenuity Pathway
Analysis; JDM: Juvenile DermatoMyositis.

Authors' contributions
YZ participated in designing and implementing VISDA,
performing the experiment, and analyzing the experimen-
tal results. HL participated in developing caBIG™ VISDA.
DJM participated in the technical design of VISDA on phe-
notype clustering. ZW implemented the prototype of
VISDA. JX participated in the technical design of the soft-
ware and comparative study. RC and EPH provided bio-
logical interpretation of the datasets and experimental

results. YW participated in designing VISDA and the
experiment, and provided technical supervision.

Additional material

Acknowledgements
The authors want to thank Bai Zhang, Guoqiang Yu, and Yibin Dong for 
help in software implementation and experiment. This work is supported 
by the National Institutes of Health under Grants CA109872, NS29525, 
CA096483, EB000830 and caBIG™.

References
1. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov

JP, Coller H, Loh ML, Downing JR, Caligiuri MA, et al.: Molecular
classification of cancer: class discovery and class prediction
by gene expression monitoring.  Science 1999, 286(15):531-537.

2. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis
and display of genome-wide expression patterns.  Proc Natl
Acad Sci USA 1998, 95(25):14863-14868.

3. Gong T, Xuan J, Wang C, Li H, Hoffman EP, Clarke R, Wang Y: Gene
module identification from microarray data using nonnega-
tive independent component analysis.  Gene Regulation and Sys-
tems Biology 2007, 1:349-363.

4. Wu CJ, Fu Y, Murali TM, Kasif S: Gene expression module discov-
ery using gibbs sampling.  Genome Inform 2004, 15(1):239-248.

5. Miller DJ, Wang Y, Kesidis G: Emergent unsupervised clustering
paradigms with potential application to bioinformatics.  Front
Biosci 2008, 13(1):677-690.

6. Bakay M, Wang Z, Melcon G, Schiltz L, Xuan J, Zhao P, Sartorelli V,
Seo J, Pegoraro E, Angelini C, et al.: Nuclear envelope dystrophies
show a transcriptional fingerprint suggesting disruption of
Rb-MyoD pathways in muscle regeneration.  Brain 2006,
129:996-1013.

7. Zhu Y, Wang Z, Feng Y, Xuan J, Miller DJ, Hoffman EP, Wang Y: Phe-
notypic-specific gene module discovery using a diagnostic
tree and caBIG™ VISDA.  Proc IEEE Int Conf EMBS: New York City
2006:5767-5770.

8. Jain AK, Murty MN, Flynn PJ: Data clustering: a review.  ACM
Comp Surv 1999, 31(3):264-323.

9. Jiang D, Tang C, Zhang A: Cluster analysis for gene expression
data: a survey.  IEEE Trans Know Data Eng 2004, 16(11):1370-1386.

10. Xu R, Wunsch D: Survey of clustering algorithms.  IEEE Trans
Neural Networks 2005, 16(3):645-678.

11. Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL: Model-based
clustering and data transformations for gene expression
data.  Bioinformatics 2001, 17(10):977-987.

12. Pan W: Incorporating gene functions as priors in model-based
clustering of microarray gene expression data.  Bioinformatics
2006, 22(7):795-801.

13. Roth V, Lange T: Bayesian class discovery in microarray data-
sets.  IEEE Trans Biomed Eng 2004, 51(5):707-718.

14. Huttenhower C, Flamholz A, Landis J, Sahi S, Myers C, Olszewski K,
Hibbs M, Siemers N, Troyanskaya O, Coller H: Nearest neighbor
networks: clustering expression data based on gene neigh-
borhoods.  BMC Bioinformatics 2007, 8(250):.

15. Ben-Dor A, Shamir R, Yakhini Z: Clustering Gene Expression
Patterns.  J Comput Biol 1999, 6(3–4):281-297.

Additional file 1
caBIG™ VISDA: modeling, visualization, and discovery for cluster 
analysis of genomic data (supplement). The supplement includes deri-
vations and details of the algorithm, more discussions, and introduction 
of the datasets used in the experiments.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-383-S1.pdf]
Page 17 of 18
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-383-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15712126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15712126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17981579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17981579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16478798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16478798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16478798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11673243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11673243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11673243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16434443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16434443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15132496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15132496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17626636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17626636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17626636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10582567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10582567


BMC Bioinformatics 2008, 9:383 http://www.biomedcentral.com/1471-2105/9/383
16. Monti S, Tamayo P, Mesirov J, Golub T: Consensus clustering: a
resampling-based method for class discovery and visualiza-
tion of gene expression microarray data.  Mach Learn 2003,
52:91-118.

17. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E,
Lander ES, Golub TR: Interpreting patterns of gene expression
with self-organizing maps: methods and application to
hematopoietic differentiation.  Proc Natl Acad Sci USA 1999,
96:2907-2912.

18. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM: System-
atic determination of genetic network architecture.  Nature
Genet 1999, 22:281-285.

19. Dembele D, Kastner P: Fuzzy C-means method for clustering
microarray data.  Bioinformatics 2003, 19(8):973-980.

20. Fu L, Medico E: FLAME, a novel fuzzy clustering method for
the analysis of DNA microarray data.  BMC Bioinformatics 2007,
8(3):.

21. Bishop CM: Neural Networks for Pattern Recognition.  Oxford
University: Clarendon Press; 1995. 

22. Duda RO, Hart PE, Stork DG: Pattern Classification.  2nd edition.
John Wiley & Sons Inc; 2001. 

23. Zhu Y, Wang Z, Miller DJ, Clarke R, Xuan J, Hoffman EP, Wang Y: A
ground truth based comparative study on clustering of gene
expression data.  Front Biosci 2008, 13:3839-3849.

24. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang C, Angelo M,
Ladd C, Reich M, Latulippe E, Mesirov JP, et al.: Multiclass cancer
diagnosis using tumor gene expression signatures.  Proc Natl
Acad Sci USA 2001, 98(26):15149-15154.

25. Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, Wang Y:
The properties of high-dimensional data spaces: implications
for exploring gene and protein expression data.  Nat Rev Can-
cer 2008, 8:37-49.

26. Datta S, Datta S: Methods for evaluating clustering algorithm
for gene expression data using a reference set of functional
classes.  BMC Bioinformatics 2006, 7(397):.

27. McShane LM, Radmacher MD, Freidlin B, Yu R, Li M-C, Simon R:
Methods for assessing reproducibility of clustering patterns
observed in analyses of microarray data.  Bioinformatics 2002,
18(11):1462-1469.

28. Smolkin M, Ghosh D: Cluster stability scores for microarray
data in cancer studies.  BMC Bioinformatics 2003, 4(36):.

29. Rissanen J: Modeling by shortest data description.  Automatica
1978, 14:465-471.

30. Schwarz G: Estimating the dimension of a model.  Ann Statistics
1978, 6:461-464.

31. Graham MW, Miller DJ: Unsupervised learning of parsimonious
mixtures on large spaces with integrated feature and com-
ponent selection.  IEEE Trans Signal Process 2006, 54(4):1289-1303.

32. Bertoni A, Valentini G: Model order selection for bio-molecular
data clustering.  BMC Bioinformatics 2007, 8(S2):.

33. Bertoni A, Valentini G: Discovering multi-level structures in
bio-molecular data through the Bernstein inequality.  BMC
Bioinformatics 2008, 9(S2):.

34. Lange T, Roth V, Braun ML, Buhmann JM: Stability-based valida-
tion of clustering solutions.  Neural Comput 2004, 16:1299-1323.

35. Wang Y, Miller DJ, Clarke R: Approaches to working in high
dimensional data spaces: gene expression microarray.  Brit J
Cancer 2008, 98(6):1023-1028.

36. Xing EP, Karp RM: CLIFF: clustering of high-dimensional
microarray data via iterative feature filtering using normal-
ized cuts.  Bioinformatics 2001, 17(1):306-315.

37. Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet C, Furey TS,
Ares M, Haussler D: Knowledge-based analysis of microarray
gene expression data using support vector machines.  Proc
Natl Acad Sci USA 2000, 97:262-267.

38. Qu Y, Xu S: Supervised cluster analysis for microarray data
based on multivariate Gaussian mixture.  Bioinformatics 2004,
20(12):1905-1913.

39. Chien Y: Interactive Pattern Recognition.  Marcel Dekker; 1978. 
40. Zou J, Nagy G: Human-computer interaction for complex pat-

tern recognition problems.  In Data complexity in pattern recogni-
tion Edited by: Basu M, Ho TK. Springer; 2006:271-286. 

41. Bishop CM, Tipping ME: A hierarchical latent variable model for
data visualization.  IEEE Trans Pattern Anal Mach Intell 1998,
20:282-293.

42. Tipping M, Bishop C: Mixtures of probabilistic principal compo-
nent analyzers.  Neural Comput 1999, 11:443-482.

43. Wang Y, Luo L, Freedman MT, Kung S: Probabilistic principal
component subspaces: a hierarchical finite mixture model
for data visualization.  IEEE Trans Neural Networks 2000,
11(3):625-636.

44. Wang J, Li H, Zhu Y, Yousef M, Nebozhyn M, Showe M, Showe L,
Xuan J, Clarke R, Wang Y: VISDA: an open-source caBIG™ ana-
lytical tool for data clustering and beyond.  Bioinformatics 2007,
23(15):2024-2027. (An application note).

45. Wang Z, Wang Y, Lu J, Kung S, Zhang J, Lee R, Xuan J, Khan J, Clarke
R: Discriminatory mining of gene expression microarray
data.  J VLSI Signal Proces 2003, 35(3):255-272.

46. Zhao P, Seo J, Wang Z, Wang Y, Shneiderman B, Hoffman EP: In vivo
filtering of in vitro expression data reveals MyoD targets.  C
R Biol 2003, 326(10–11):.

47. Hyvärinen A, Karhunen J, Oja E: Independent Component Anal-
ysis.  1st edition. Wiley-Interscience; 2001. 

48. He X, Niyogi P: Locality preserving projections.  In Advances in
Neural Information Processing Systems 16 Edited by: Thrun S, Saul LK,
Schölkopf B. Cambridge, M.A.: MIT Press; 2004. 

49. Meyer CD: Matrix analysis and applied linear algebra.  SIAM
2000.

50. Loog M, Duin RPW, Haeb-Umbach R: Multiclass linear dimension
reduction by weighted pairwise fisher criteria.  IEEE Trans Pat-
tern Anal Mach Intell 2001, 23(7):762-766.

51. Frey BJ, Dueck D: Clustering by passing messages between
data points.  Science 2007, 315:972-976.

52. Weiss Y, Freeman WT: On the optimality of solutions of the
max-product belief-propagation algorithm in arbitrary
graphs.  IEEE Trans Inform Theory 2001, 47(2):736-744.

53. Dempster AP, Laird NM, Rubin DB: Maximum likelihood from
incomplete data via the EM algorithm.  J R Statist Soc, Series B
1977, 34:1-38.

54. Ridder FD, Pintelon R, Schoukens J, Gillikin DP: Modified AIC and
MDL model selection criteria for short data records.  IEEE
Trans Instrum Meas 2005, 54(1):144-150.

55. Liang Z, Jaszczak RJ, Coleman RE: Parameter estimation of finite
mixtures using the EM algorithm and information criteria
with application to medical image processing.  IEEE Trans Nucl
Sci 1992, 39(4):1126-1133.

56. Miller DJ, Browning J: A mixture model and EM-based algo-
rithm for class discovery, robust classification, and outlier
rejection in mixed labeled/unlabeled data sets.  IEEE Trans Pat-
tern Anal Mach Intell 2003, 25:1468-1483.

57. Giordano TJ, Shedden KA, Schwartz DR, Kuick R, Taylor JMG, Lee N,
Misek DE, Greenson JK, Kardia SLR, Beer DG, et al.: Organ-specific
molecular classification of primary lung, colon, and ovarian
adenocarcinomas using gene expression profiles.  Am J Pathol
2001, 159(4):1231-1238.

58. Xuan J, Wang Y, Dong Y, Feng Y, Wang B, Khan J, Bakay M, Wang Z,
Pachman L, Winokur S, et al.: Gene selection for multiclass pre-
diction by weighted fisher criterion.  EURASIP J Bioinform and Syst
Biol 2007.

59. Bergstrom DA, Penn BH, Strand A, Perry RL, Rudnicki MA, Tapscott
SJ: Promoter-specific regulation of MyoD binding and signal
transduction cooperate to pattern gene experssion.  Mol Cell
2002, 9:587-600.

60. Shedden KA, Taylor JM, Giordano TJ, Kuick R, Misek DE, Rennert G,
Schwartz DR, Gruber SB, Logsdon C, Simeone D, et al.: Accurate
molecular classification of human cancers based on gene
expression using a simple classifier with a pathological tree-
based framework.  Am J Pathol 2003, 163(5):1985-1995.

61. Guyon I, Elisseeff A: An introduction to variable and feature
selection.  J Mach Learn Res 2003, 3:1157-1182.

62. Ewing RM, Cherry JM: Visualization of expression clusters using
Sammon's non-linear mapping.  Bioinformatics 2001,
17(7):658-659.

63. Zhang L, Zhang A, Ramanathan M: VizStruct: exploratory visual-
ization for gene expression profiling.  Bioinformatics 2004,
20(1):85-92.

64. Feng Y, Wang Z, Zhu Y, Xuan J, Miller D, Clarke R, Hoffman E, Wang
Y: Learning the tree of phenotypes using genomic data and
VISDA.  Proc IEEE Symp Bioinform and Bioeng: Arlington, VA, USA
2006:165-170.
Page 18 of 18
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10391217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10391217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18508478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18508478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18508478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18097463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18097463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18097463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12424117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12959646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12959646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18283324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18283324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10618406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10618406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15044244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15044244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9950739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9950739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17540678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17540678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17218491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17218491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11583950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11583950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11583950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11931766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11931766
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14578198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14578198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14578198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11448886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11448886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14693813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14693813

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	VISDA algorithm
	Visualization of cluster k by complementary structure-preserving projections
	Decomposition of cluster k in its visualization space based on the hierarchical SFNM model
	Initialization and training of the full dimensional model

	Algorithm extension for sample clustering
	Algorithm extension for phenotype clustering
	Visualization of cluster k from a locally discriminative gene subspace
	Decomposition of cluster k in its visualization space based on the class-pooled finite normal mixture model

	A demo application of VISDA on sample clustering

	Results
	Evaluation of VISDA
	Identification of gene clusters from muscular dystrophy data and muscle regeneration data
	Construction of TOPs on muscular dystrophy data and multi-category cancer data

	Discussion
	Conclusion
	Abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

