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Abstract

Background: Establishment of peptide binding to Major Histocompatibility Complex class |
(MHCI) is a crucial step in the development of subunit vaccines and prediction of such binding could
greatly reduce costs and accelerate the experimental process of identifying immunogenic peptides.
Many methods have been applied to the prediction of peptide-MHCI binding, with some achieving
outstanding performance. Because of the experimental methods used to measure binding or affinity
between peptides and MHCI molecules, however, available datasets are enriched for nonbinders,
and thus highly unbalanced. Although there is no consensus on the ideal class distribution for
training sets, extremely unbalanced datasets can be detrimental to the performance of prediction
algorithms.

Results: We have developed a decision-theoretic framework to construct cost-sensitive trees to
predict peptide-MHCI binding and have used them to 1) Assess the impact of the training data's
class distribution on classifier accuracy, and 2) Compare resampling and cost-sensitive methods as
approaches to compensate for training data imbalance. Our results confirm that highly unbalanced
training sets can reduce the accuracy of classifier predictions and show that, in the peptide-MHCI
binding context, resampling methods do not improve the classifier performance. In contrast, cost-
sensitive methods significantly improve accuracy of decision trees. Finally, we propose the use of a
training scheme that, when the training set is enriched for nonbinders, consistently improves the
overall classifier accuracy compared to cost-insensitive classifiers and, in particular, increases the
sensitivity of the classifiers. This method minimizes the expected classification cost for large
datasets.

Conclusion: Our method consistently improves the performance of decision trees in predicting
peptide-MHC class | binding by using cost-balancing techniques to compensate for the imbalance
in the training dataset.
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Background

Determination of binding between peptide and Major
Histocompatibility Complex class I (MHCI) is a crucial
step in the development of subunit vaccines. The peptide-
MHCI complexes are required for T cell activation and
thus for the initiation of the adaptative immune response.
Although MHCI binding does not alone determine the
immunogenicity of peptides, it plays an important part,
being a major bottleneck that separates immunogenic
peptides from non-immunogenic ones. Hence, the ability
to predict the binding between peptides and MHCI mole-
cules would greatly reduce costs and accelerate the exper-
imental process of identifying immunogenic peptides,
which can then be used in the development of vaccines
and therapies against neoplastic, infectious, and autoim-
mune diseases.

Our primary goal is to guide experimental research in
identifying potential vaccine epitopes. In a given micro-
bial genome, there are tens of thousands of peptides and
the experimental assessment of the affinity between each
peptide and an MHCI molecule represents a significant
cost in terms of time and resources. The investigator has to
consider the benefits of identifying binders versus the cost
associated with experimentally testing nonbinders in
order to decide which and how many peptides will be
tested in the laboratory. This type of concern can be best
addressed by the use of decision-theoretic approaches.
Here we formalize such an approach to training decision
trees to differentiate binders from nonbinders and show
how costs that reflect this experimental tradeoff can be
incorporated into the training of classifiers to increase
their utility.

Myriad approaches have been applied to the prediction of
peptide-MHCI binding. These methods can be divided
into two broad categories: 1) MHCI structure-based meth-
ods, which use crystallized structures of MHCI molecules
to develop computational models of the interaction
between MHCI and peptides [1]; and 2) peptide
sequence-based methods, which infer the physico-chemi-
cal preferences of a particular MHCI allele by analyzing
the amino acid sequence of peptides with known affinity
to it, where peptides with IC50 lower than a certain
threshold, typically 500 nM [2], are classified as binders,
and otherwise as nonbinders. Earlier prediction methods
used the amino acid frequencies in each position of
MHCI-eluted peptides to derive binding motifs and posi-
tion specific scoring matrices (PSSMs). Methods of this
type include SYFPEITHI [3] and BIMAS [4], which have
been publicly available and used extensively by the exper-
imental community. As the number of peptides in the
MHCI databases increased, so did the number of different
machine learning methods that were applied to this prob-
lem, which include artificial neural networks [5], support
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vector machines [6], hidden Markov models [7], Gibbs
sampling [8], and classification trees [9-11].

While some of these methods achieve outstanding per-
formance in predicting binding between peptides and cer-
tain MHCI alleles, all of them suffer from the fact that the
available data for training is heavily biased towards one
class of peptides (either binders or nonbinders). There is
a vast literature on the impact of class distribution of
training sets on the performance of the prediction algo-
rithms (for further readings see Chawla et al., 2004 [12]),
and although there is not a straightforward answer to the
question of what the ideal class distribution of training
datasets is, it has been suggested that a balanced distribu-
tion or the estimated distribution of the target population
should be used. Moreover, it is a well known phenome-
non that highly unbalanced datasets are detrimental to
classifier performance. The imbalance in the peptide-
MHCI binding data depends on the experimental meth-
ods used to produce them: either elution assays, in which
case the dataset consists purely of binders; or binding
assays in which peptides are tested for binding or affinity
to a particular MHCI allele, leading to datasets consisting
mostly of nonbinders. The reason for this imbalance
towards nonbinders is that binders are extremely rare in
nature: It has been estimated that the proportion of pep-
tides in a protein that will bind to a given MHC allele var-
ies between 0.001 and 0.05 [13]. Datasets generated in
different laboratories using different assays and condi-
tions are often inconsistent with each other and thus com-
bination of datasets can be very difficult.

Here we investigate how best to use unbalanced datasets
to train algorithms for the prediction of peptide-MHCI
binding. Although there is no universally agreed upon
method for dealing with unbalanced data, several tech-
niques have been proposed to deal with this issue and
have been demonstrated to improve prediction accuracy
depending on the context in which they are used [12].
Elkan [14] showed how to make a standard learning algo-
rithm yield cost-sensitive results when trained with an
unbalanced dataset. Another successful strategy is referred
to as cost-sensitive methods, in which weights are used to
compensate for the imbalance in the ratio of the two
classes. Other methods pre-process the data to achieve a
balanced class distribution. In particular two resampling
methods stand out: 1) Undersampling, where random
cases of the majority class are deleted until both classes
have the same number of cases; and 2) Oversampling,
where random cases of the minority class are duplicated
until both classes have the same number of cases. Our pri-
mary goal is to determine whether or not the accuracy of
peptide-MHCI binding prediction can be improved by the
use of methods that compensate for the training data
imbalance, such as resampling and cost-sensitive meth-
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ods. The results presented herein suggest that resampling
procedures, such as undersampling and oversampling, do
not consistently improve the utility of classifiers used in
the context of peptide-MHCI binding. The cost-sensitive
method, however, significantly improves prediction accu-
racy when the training data is biased towards nonbinders.
These results are derived from analysis using decision
trees. The underlying mathematical treatment is, however,
quite general, and can be applied to any classifier capable
of cost-sensitive learning, including most of the classifiers
used in peptide-MHCI binding prediction.

Methods

Approach

The development of subunit vaccines is a multi-step proc-
ess; at each stage, the investigators must decide whether a
particular peptide warrants further investment or should
be omitted from further experimentation. These decisions
must be informed, either explicitly or implicitly, by con-
sideration of the costs incurred in continuing the experi-
ments and of the potential reward for a positive discovery.
One must also estimate the probability that a given deci-
sion will be erroneous, either as a false positive (continu-
ing to invest in a peptide that will prove to be unsuitable)
or a false negative (discontinuing tests on a peptide that
would have worked). Let the cost of misclassifying a
binder be denoted x, (for type 2 error) and that for mis-
classifying a non-binder, x;. We refer to «, as the "real-
world" cost, as it can be interpreted as the number of non-
binders an investigator is willing to test in the laboratory
in order to find one binder. Finally, suppose that we can
parameterize a family of classifiers with the continuous
vector 6. Then the cost, K, incurred in making a decision
on a peptide ¢ using the classifier T(6) is

K(¢|0) = 7.(p) k¢ (9] 0) + z(p) K10, (9] O), (1)

where 7, and 7 are indicators of true class and ¢, (- |¢) and
c.(+|6) are indicators of the classification induced by T(6).
The expected decision cost over all peptides is

EK(g)=pk; ., (q)+(1-p)k 1 (a) (2

where 7 is the proportion of binders in the population
and ; is the expected rate of type i errors. We would like to
find the classifier T* that minimizes this expected cost. In
the training context, we use the "training cost function",
K(¢|0), which has the same form as the decision cost
described above, but differs from it in the fact that both
the false positive 1, and false negative A, costs are now
tunable parameters:

Ki(¢l0) = 7,(@)c(p) 4, + z(p)c.(9)Ar- (3)
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Because we only ever have access to finite datasets to train
classifiers, the training cost from using such classifiers can
be decomposed into two parts: the decision-making cost
described in Eq. 1 and the residual, due to the deviation
of the training set D from the whole population:

Ke(D16) = nfp2,1,(0)+(1-p)21(0)}
£ Y {r(9)a8e_(910)+_(9)5c. (9| 0)}

¢eD

(4)
where 7 is the size of the training dataset, p is its propor-
tion of positives and the classification error is defined on
positive (negative) peptides as

() (90) =1 (#|6) - 51y(0) (5)
We may further abbreviate this expression to

Ki(D[6) =n {pA,(6) + (1 -p)A11(0)} + R(D; 6, ).
(6)

The expected decision cost described in Eq. 2 is mini-

mized at 6 where
d Jt Jt
0= EK(0) = mc, 3792(9) +(1-m)K, 3791(9)'
(7)
Similarly, the training cost function is minimized at 6 *
where

D 1107 2o 2 0715 (1o 2101+ R (D"
0= LD10%)=phy S2(07)+ (1= ) S0+ 5 (Di6", ).

"0
(8)
Denote the value of @ that minimizes the expected deci-
sion cost by 0, and that that minimizes the training cost

function by 6* = 6 + 1/n 56. Now differentiation and Tay-
lor expansion yield the sufficient condition for the mini-
mum of the training cost function to approach 0 as R(6)/
n— 0:

P I‘TP’LAI. 9)

1-n K1
This expression defines what we refer to as the "balancing
cost", A2 The basic intuition behind the balancing cost

is that its use results in both classes having equal impor-
tance in the training of the classifier. It is helpful to note
that: 1) As the real-world false negative cost «, increases,
so does the balancing cost; and 2) As the proportion of

Page 3 of 12

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:385

positives p in the training set increases in relation to the
population positive frequency 7, the balancing cost
decreases (see figure 1). Finally, we have

2 2. T

oR 01y 0“1
pA +(1-pA ——= ,

01" 262 ' 902

o (10)
e}

50 =—

with the right-hand side evaluated at 0, which provides a
first-order correction for finite datasets. Figure 1 displays
the relation between population and training sample pos-
itive proportions and costs as described in Eq. 9 and can
serve as a guideline of what weights to assign to peptides
of different classes given the class distribution in the train-
ing set and the relative importance of positives versus neg-
atives in the real-world application.
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Datasets

The peptide binding data used to train and test the deci-
sion trees were obtained from a publicly available data-
base published by Peters et al. [2], where the peptide
affinity to a particular MHCI molecule is measured by one
of two assays, and classified as binder when its IC50 is less
or equal to 500 nM, and nonbinder otherwise. Decision
trees were constructed for each one of 35 alleles in the
dataset. The cost-sensitive and resampling experiments
(described below) were performed for five alleles: A0203,
A1101, A3101, B0702 and B1501. The numbers of pep-
tides in the datasets for these five alleles are shown in table
1.

Cost Adjustments

Seven training sets for each allele studied were generated,
such that all training sets for a given allele had the same
number of observations but varying proportions p of pos-
itives, namely 5%, 10%, 25%, 50%, 75%, 90% and 95%.
These training sets were created as follows. First, 25% of
the binders and 25% of the nonbinders were randomly

log(A2)

Figure |

log(x>)

Theoretical relation between 1, and EK(6). Theoretical relationship between the training false negative cost (4,) that
minimizes the expected cost of a classifier (EK(6)) for a given type 2 error cost (x;). The dotted lines represent one standard

deviation from the mean. Here x; = 1, 4, = | and 7= 0.5.
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Table I: Number of binders and nonbinders in Peters et al. [2]
datasets for 5 alleles.

allele binders nonbinders
A0203 639 804
All0I 695 1290
A3101 427 1442
B0702 210 1052
BI501 179 799

selected and set aside as a testing set. The remaining 75%
of the binders and of the nonbinders formed the "training
superset", from which the peptides for the various training
sets were sampled. The total number of peptides in each
of the seven training sets was fixed and equal to the
number of peptides of the minority class in the training
superset. The minority class was the positive for all 5 alle-
les that we tested. Finally, the training sets were formed by
randomly sampling without replacement positive and
negative peptides from the training superset such that the
described class distribution was reached. The numbers of
binders and nonbinders in the resulting training sets are
shown in table 2.

The goal of this set of experiments was two-fold: 1) To
investigate the relationship between class distribution and
classifier performance, and 2) To learn how can misclassi-
fication costs be used to improve prediction accuracy for a
given class distribution of the training set. We emphasize
that our goal is not to improve upon existing computa-
tional methods, but rather to show that the performance
of a single classifier can be improved with the use of cost-
sensitive techniques. Misclassification costs were used as
weights with the purpose of artificially changing the class
distribution of the training dataset. The false negative cost
(4,) can be interpreted as the weight given to the peptides
in the positive class, and similarly false positive cost (1,)
is the weight given to the negative class. The overall scale
of the training cost function (Eq. 6) is arbitrary, so we
have fixed 4, = 1 and varied A, between 1/20 and 20 in

Table 2: Training sets used in the cost-sensitive experiment

A0203 Allol A310l B0702 BI501

%pos B NB B NB B NB B NB B NB

05 24 456 26 495 16 304 7 150 6 128
10 48 432 52 469 32 288 I5 142 13 121
25 120 360 130 391 80 240 39 I8 33 IOl
50 240 240 261 261 160 160 79 79 67 67
75 360 120 391 130 240 80 I8 39 101 33
90 432 47 469 52 288 32 142 15 121 13
95 456 24 495 26 304 16 150 7 128 6

Number of binders (B) and nonbinders (NB) in training sets.
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order to investigate the relationship between costs and
class distribution.

Previous works (e.g., [15]) have suggested that among the
best class distributions for learning is the balanced distri-
bution, one in which all classes are equally represented.
We assume that given an unbalanced training set, a bal-
ancing misclassification cost can be used to achieve an
artificially nearly-balanced class distribution. The balanc-

ing cost, A5, defined in Eq. 9 can be interpreted to be the

A, that weights the positive peptides to be the same
number as the negatives and therefore compensates for
the imbalance ratio of the two classes. Consider the sim-
plest scenario, where 4, =1, ;= 1, kK, =1 and 7= 0.5, then
the balancing cost reduces to

Py )
Pop

We are particularly interested in how classifiers trained
with this simplified balancing cost perform compared to
the best classifiers for a given allele, as well as compared
with classifiers trained with unit costs (4, = 1 and 4, = 1).

Resampling

Undersampling

The undersampling method consists of randomly elimi-
nating peptides of the majority class from the training set
until both classes have the same number of examples. The
training sets were constructed in a similar manner to the
cost-modifying experiment. First, we set aside 25% of
binders and nonbinders into the testing set. The remain-
ing binders were put into the training set together with the
same number of nonbinders, which were randomly sam-
pled without replacement from the nonbinders training
superset. One of the issues concerning undersampling is
the loss of information that results from the process,
which can be aggravated when particularly important ele-
ments are removed from the training set. To get around
this problem, we used 10-fold crossvalidation and the
results presented here are the average of the 10 experi-
ments.

Oversampling

The oversampling method consists of randomly replicat-
ing peptides of the minority class into the training set
until both classes have the same number of examples. The
training sets were constructed as follows. First, we set aside
25% of binders and nonbinders into the testing set. All
remaining peptides were put into the training set together
with d peptides from the minority class which were sam-
pled with replacement, where d is the difference between
the number of peptides in the the training set belonging
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to the majority and minority classes. Hence, each peptide
of the minority class is represented at least once and pos-
sibly multiple times in the training set. Similarly to the
undersampling procedure, we used 10-fold crossvalida-
tion and the results presented here are the average of the
10 experiments.

Decision trees

The present study applies tree-based models to the pep-
tide-MHCI binding prediction problem. We have chosen
to use decision trees for the simplicity in their interpreta-
tion and also because they have not been thoroughly
explored in the context of peptide-MHCI binding. Moreo-
ver, decision and classification trees have become the
canonical method for comparison of techniques used to
deal with unbalanced datasets in the machine learning
community. Finally, there seems to be a natural corre-
spondence between the importance of the different resi-
due positions in a peptide and the hierarchical way in
which decision trees are constructed.

Tree generation

Breiman et al. [16] provides an excellent and detailed
description of classification and regression trees. Briefly,
given a dataset in which each object, ¢, is represented by a
(7 (#), x(¢)) pair, where x(¢) is a vector containing
attributes of the object and 7 is an indicator function of
the class of the object, a tree-based classifier recursively
partitions the data's attribute space into sub-regions,
called nodes, in which the response variable is increasingly
more homogeneous. These trees are created in two steps:
(1) induction of a large tree; and (2) pruning of the large
tree into gradually smaller subtrees (here we use the cost-
complexity pruning [16]). Finally, one subtree must be
chosen from the sequence of subtrees generated by the
pruning process. In the present study, we chose the tree
that minimizes the training cost function (Eq. 6) when
applied to the test set.

The construction of a tree requires (1) a set of splits, which
are binary questions with mutually exclusive and exhaus-
tive outcomes used to partition the data, where the ques-
tions are coined in terms of the attributes of the objects in
the dataset; and (2) a split function used to quantify the
goodness of a split, by measuring the change in the homo-
geneity of the response variable in the tree due to splitting
a node into two subsets based on the given split.

Splits and split function

In the problem at hand, the training dataset consists of
peptides ¢, where 7{¢) is the class of the peptide (either
binder or nonbinder) and x(¢) is the linear sequence of
amino acids of the peptide, with x;being the jt amino acid
from the amino terminal end of the peptide. The binary
questions about the sequence of peptides can be phrased
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in several distinct ways, and each one of them generates a
different class of splits, called motifs, that can be used in
the construction of trees. We used motifs based on the
anchor positions, which are represented by a single amino
acid with a fixed position in the peptide, such that every
amino acid is represented in every position of the peptide.
The amino acids, in turn, can be represented in one of two
ways: 1) by the traditional amino acid single-letter code.
For example, alanine is represented by "A", arginine by
"R" and so forth; and 2) by their physico-chemical prop-
erties, namely molecular weight, hydropathicity, volume,
isoelectric point, polarity, ability to form hydrogen bonds
and chain type (aliphatic, aromatic) as previously shown
[17].

The split function used was the training cost described in
Eq. 3.

Results

Cost Adjustments

The first goal of this set of experiments was to investigate
the relationship between class distribution and classifier
performance. Our results suggests that for a fixed training
set size, decision trees perform best when trained with
datasets of nearly balanced class distribution. Figure 2
shows the performance of classifiers trained with datasets
of the same size but different class distributions and train-
ing costs for alleles A1101 and B0702 (see Additional file
1 for the results for the other three alleles). Note that as
the proportion of positives in the training set increases,
the false negative rate decreases and the false positive rate
increases as can be seen by the subtle shift in the curves
from left to right.

Our second goal was to determine whether or not predic-
tion accuracy of a given classifier can be improved by the
use of cost-sensitive techniques and, if so, to establish the
relationship between classifier performance and training
costs. Our results demonstrate that misclassification costs
can be used to improve prediction accuracy. In fact, for
each one of the alleles we tested there was a cost 4, that
performed significantly better than the unit cost, as can be
seen by the increase in AUC shown in table 3. Although
our goal is not to improve upon the performance of exist-
ing methods, we also show in table 3 the AUC for 4 other
methods as described in [2] for purposes of comparison.

Note in figure 2 that for the training sets with majority of

nonbinders, 12 consistently reduced the total error rate

as compared to the unit cost (1, = 1). The impact of 1}

on the performance of classifiers trained with binders-
enriched datasets was not consistent, being better than
unit cost for some classifiers and worse for others. In addi-
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A1101

1.0

0.8

0.6

0.4

Total error rate (FPR + FNR)

0.2

0.0

05 00 05 1.0
FPR - FNR

Figure 2
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B0702

1.0

0.8

0.6

Total error rate (FPR + FNR)
0.4

0.2

0.0

-1.0 -0.5 0.0 0.5 1.0
FPR - FNR

Classifier performance vs. class distribution. Comparison of the performance of classifiers built with training sets of
same size but different proportions of positives for alleles A1101 (left panel) and B0702 (right panel). Each point in a curve rep-
resents a classifier constructed with a different false negative training cost. The classifier constructed with the unit cost (4, = 1)
in each curve is marked with a solid circle and that constructed with the balancing cost is marked with a star. The curve for the
perfect classifier would lie on the dotted line. The y-axis shows the total error rate of a classifier, which is the same as the clas-
sifier cost (K) when the type | and type 2 misclassification costs are identical (x; = &, = 1). FNR: false negative rate. FPR: false

positive rate.

tion to representing an improvement over the unit cost, in
a few cases A, coincided with the minimizing cost, that
is, the most accurate classifier for a given allele and train-
ing set was the one trained with 1, . However, in most

cases, the balancing cost over-compensated for the imbal-
ance in the class distribution, such that it was larger than
the minimizing cost (see figure 3)

We then compared the performance of trees trained with
the complete dataset using either the unit cost or 15 (the
red and green ROC curves in figure 4, respectively). The

use of A7 resulted in AUC at least as large as those for unit

cost, such that /l;_3 improved the ROC curves as compared
to the unit cost in the majority of the cases. One interest-
ing feature of the use of A3 is that it consistently shifts the

ROC curve toward increasing sensitivity at the price of
decreasing specificity, which is a desirable tradeoff when
binders are rare. Thus, even in the cases when the increase

in AUC is not substantial, the use of A2 can still represent

an improvement over unit cost due to the shift it causes to
the ROC curve.

Resampling

The results obtained using the balanced undersampled
and oversampled training sets did not represent an
improvement over those using the complete unbalanced
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Table 3: Comparison of classifiers performance as measured by AUC
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allele Trees, unit 4, Trees, best 4, ARB* SMM* ANN* External Tool*
A0I101 .903 951 964 .980 982 .955
A0201 796 .842 934 952 957 922
A0202 770 770 .875 899 .900 793
A0203 746 781 884 916 921 .788
A0206 732 747 .872 914 927 735
A0301 763 .763 .908 .940 937 851
Al10l 841 .859 918 .948 951 869
A2301 742 .782 NA NA NA NA
A2402 .685 .748 718 .780 825 770
A2403 673 .846 NA NA NA NA
A2601 .606 811 907 931 956 736
A2902 .783 .847 NA NA NA NA
A3001 741 861 NA NA NA NA
A3002 777 810 NA NA NA NA
A3101 .825 .833 .909 .930 928 829
A3301 .636 .827 .892 925 915 .807
A6801 756 761 .840 885 .883 7172
A6802 699 714 .865 .898 899 643
A6901 614 813 NA NA NA NA
B0702 .887 911 .952 964 .965 942
B080I .547 .835 936 943 955 766
B1501 759 .823 .900 952 941 816
B180I .745 .833 573 853 .838 779
B2705 753 .892 915 .940 938 926
B3501 712 771 851 889 875 792
B4001 .587 897 NA NA NA NA
B4002 718 778 .541 842 .754 775
B4402 .588 762 .533 .740 778 783
B4403 647 .804 461 770 763 .698
B4501 679 .824 NA NA NA NA
B5101 .664 792 .822 .868 866 .820
B5301 795 819 871 882 899 861
B5401 .654 796 847 921 .903 799
B5701 756 936 428 871 826 767
B5801 815 .864 899 964 961 .899

The second and third columns correspond to the decision trees described in the present work. Note the improvement in the performance of the
trees with the use of training costs. *Values extracted from table 2 of Peters et al., 2006.

training sets (see figure 4 and Additional file 2). For alleles
A0203, A1101 and B0702, the ROC curves for the trees
trained with the entire dataset and those trained with the
re-sampled dataset were indistinguishable from one
another, whereas for alleles A3101 and B1501, the use of
undersampling severely damaged the accuracy of the
trees.

Real-world costs versus training costs

We built decision trees with the training data described in
table 1 using different values of false negative cost (4,),
and evaluated them on a test set using the "real-world"

cost k,. We call iz the training cost that minimizes the

total cost of a classifier on the test set for a given «;,. Figure

5 shows the relationship between iz and x,. Note that

although the results are relatively noisy, in general the
same trend shown in theory can be observed from this

empirical data (see figure 1). The 7[2 increases with x, and

as the proportion of positives in the training set increases,
the line shifts to the right, indicating that for a particular

value of «,, the suggested ):2 decreases.

Discussion

Prediction of peptide-MHCI binding has great potential to
accelerate and reduce the cost of subunit vaccine develop-
ment. One of the issues concerning the prediction of
MHC-peptide binding is that binders are much less abun-
dant than nonbinders, and thus much harder to find
experimentally. This circumstance typically leads to
highly unbalanced training sets, which can hinder the per-
formance of algorithms trained with them. In fact, such
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Balancing cost vs. minimizing cost. Comparison of balancing cost (solid black line) and the minimizing costs (symbols) for

each one of the five alleles.

training sets lead to a significant increase of type 2 errors
and thus make it more difficult still to find binders.

Our results show that highly unbalanced training sets do
indeed reduce the accuracy of predictions made with deci-
sion trees and that these predictions improve as the train-
ing sets become more balanced. We have examined three
approaches that aim at improving classifier accuracy by
compensating for the imbalance in the class distribution
of the training sets: undersampling, oversampling and a
cost-sensitive method. Overall, resampling did not
improve the performance of the decision trees. In fact, in
several cases classifiers trained with undersampled train-
ing sets performed much worse than those trained with
the full dataset. This could have been caused by the loss of
information relevant to the training process. For this rea-
son, undersampling methods may only be appropriately
used with datasets in which the majority class contains a
lot of redundancy, in which circumstance undersampling
has been shown to outperform other random resampling
methods in four distinct datasets [18]. Another potential
drawback of undersampling, and in broader terms of ran-

dom resampling methods, is that they may yield noisy
results due to the variability introduced in the process by
the randomness of the sampling procedure.

In contrast to undersampling, using misclassification
costs as a means to artificially counterbalance data bias
led to significant improvements in the performance of the
decision trees in the majority of the cases. Although cost-
sensitive procedures do not add any extra information to
the training set, they seem to be more advantageous than
random resampling techniques because they do not cause
loss of information as does undersampling and do not
have the extra variability introduced by the random sam-
pling process. Several other studies have shown cost-mod-
ifying methods to be advantageous. For example,
Japkowicz and Stephen [19] performed a systematic com-
parison of these methods in both artificially-generated
and real-world domains, showing that cost-modifying
methods yield better results than resampling techniques.
Fundamentally, the cost-sensitive method described here
can be straightforwardly applied to any classifier that is
trained using datasets that include both classes of pep-
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Comparison of unit cost, balancing cost, undersampling and oversampling. ROC curves for alleles A1 101 (left
panel) and B0702 (right panel) comparing the results of trees constructed with the oversampled training set (black curve), the
undersampled training set (red curve), and the full training set without training costs, that is, 1, = 4, = | (green curve) and with
the balancing training cost, that is, 4, = | and 4, = (I - p)/p (blue curve). The ROC curves were constructed by varying the
threshold used to label a node from 0 to | and evaluating its sensitivity and specificity at each threshold.

tides, binders and nonbinders. For instance, the individ-
ual weights of a weight matrix can be derived by
minimizing the cost function (Eq. 3) over these weights.
The indicator function ¢ ,)(¢) can be defined by the score
function's being above or below a given threshold, where
the scoring function is typically the sum of the scores of
each amino acid in each position of a peptide. Similarly,
this cost function can be incorporated into a neural net-
work by differentially weighting the output depending on
the class of the training example and allowing it to be used
in the learning process by the backpropagation procedure
[20,21]. Likewise, for support vector machines, the cost
function can be implemented through the definition of
the "soft margin" [22], allowing the SVM to misclassify
more examples of one class than examples of the other
class.

In addition to showing that peptide-MHCI binding pre-
dictions can be improved by the use of cost-sensitive deci-
sion trees, we have investigated the use of the balancing

cost, A2, as a rule-of-thumb to train classifiers. We have

shown that although A, is not always the A, that mini-

mizes the total cost of the classifier, it consistently outper-
forms the unit cost (1, = 4,) when the training set is

enriched for nonbinders.

Moreover, we have showed that the use of 1, shifts the

ROC curves towards areas of higher sensitivity in relation
to ROC curves generated with unit cost, which can be
highly desirable in situations such as epitope discovery
projects.

Thus, although the relationship between training costs
and class imbalance is relatively noisy, and further studies
should be conducted before a complete guideline of what
training costs should be used for a particular peptide-
MHCI binding dataset, our results allow us to suggest that
a balancing cost should be used for datasets enriched for
nonbinders, and the unit cost should be used for binders-
enriched training sets.

Conclusion
The vaccine development process is costly and time-con-
suming, requiring decisions to be made at each step and it
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Empirical relation between /{2 and EK(6). Optimal false negative training cost (iz) as a function of type 2 error cost (x3).

Classifiers were trained at multiple values of 1, and tested at «;, (compare with figure ). This was done for each of the five

alleles and the 4, shown in the curves are the average of the minimizing 4, for each allele.

lends itself nicely to a decision-theoretic approach, which
we have described here. In particular, at the epitope dis-
covery stage, there are real costs associated with the risk of
missing a positive and with the experimental verification
of nonbinders. Here we have described a decision-theo-
retic framework for the prediction of peptide-MHCI bind-
ing and have provided a guideline on how to incorporate
real-world costs together with misclassification costs at
the training level in order to maximize prediction accu-
racy and push it in the desired direction.
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classifier constructed with the unit cost (A, = 1) in each curve is marked
with a solid circle and that constructed with the balancing cost is marked
with a star. The curve for the perfect classifier would lie on the dotted line.
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are identical (; = x, = 1). FNR: false negative rate. FPR: false positive
rate.
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Comparison of unit cost, balancing cost, undersampling and oversampling
for alleles A0203, A3101 and B1501. ROC curves for alleles A1101 (left
panel) and B0702 (right panel) comparing the results of trees constructed
with the oversampled training set (black curve), the undersampled train-
ing set (red curve), and the full training set without training costs, that
is, Ay = A, =1 (green curve) and with the balancing training cost, that is,
Ay=1and h,= (1-p)/p (blue curve). Compare to figure 4. The ROC
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0 to 1 and evaluating its sensitivity and specificity at each threshold.
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