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Abstract
Background: The discovery of biomarkers is an important step towards the development of
criteria for early diagnosis of disease status. Recently electrospray ionization (ESI) and matrix
assisted laser desorption (MALDI) time-of-flight (TOF) mass spectrometry have been used to
identify biomarkers both in proteomics and metabonomics studies. Data sets generated from such
studies are generally very large in size and thus require the use of sophisticated statistical
techniques to glean useful information. Most recent attempts to process these types of data model
each compound's intensity either discretely by positional (mass to charge ratio) clustering or
through each compounds' own intensity distribution. Traditionally data processing steps such as
noise removal, background elimination and m/z alignment, are generally carried out separately
resulting in unsatisfactory propagation of signals in the final model.

Results: In the present study a novel semi-parametric approach has been developed to distinguish
urinary metabolic profiles in a group of traumatic patients from those of a control group consisting
of normal individuals. Data sets obtained from the replicates of a single subject were used to
develop a functional profile through Dirichlet mixture of beta distribution. This functional profile is
flexible enough to accommodate variability of the instrument and the inherent variability of each
individual, thus simultaneously addressing different sources of systematic error. To address
instrument variability, all data sets were analyzed in replicate, an important issue ignored by most
studies in the past. Different model comparisons were performed to select the best model for each
subject. The m/z values in the window of the irregular pattern are then further recommended for
possible biomarker discovery.

Conclusion: To the best of our knowledge this is the very first attempt to model the physical
process behind the time-of flight mass spectrometry. Most of the state of the art techniques does
not take these physical principles in consideration while modeling such data. The proposed
modeling process will apply as long as the basic physical principle presented in this paper is valid.
Notably we have confined our present work mostly within the modeling aspect. Nevertheless
clinical validation of our recommended list of potential biomarkers will be required. Hence, we
have termed our modeling approach as a "framework" for further work.
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Background
Mass spectrometry is an analytical technique for identify-
ing compounds based on their mass to charge (m/z) ratio.
It can also be used to quantify the amount of a compound
in that the abundance of ions at a given m/z is propor-
tional to the amount of the correlative compound present.
With recent advances in this technology a new direction in
bioinformatics has emerged for the identification of
biomarker patterns that can be used for diagnosis, prog-
nosis or monitoring disease status. The underlying
hypothesis is that the mass spectral profile of patients will
differ significantly from that of healthy individuals (con-
trols). As might be expected, the methods used for assess-
ing "significant difference" vary widely. Starting from
different clustering algorithms [1], wavelet based feature
extraction [2-5] and other methods have been suggested
to understand this "significant difference". However none
of these models the physical process that generated the
data. Several other problems [6] regarding instrument
sensitivity and reproducibility of the data set underlying
these approaches remain unresolved. A major concern
expressed in the literature [7] is the calibration of the mass
spectrometer. The data generated by mass spectrometry of
urine, blood or serum is composed of the ions of com-
pounds or fragments of compounds identified by their
mass-to-charge ratio (m/z) and the abundance of each ion
as depicted in Figure 1. Due to inherent analytical varia-
bility the same ions in replicates of a sample will have
slightly different measured m/z values. Different binning/
alignment [7,8] algorithms and clustering techniques [1]
have been suggested to properly correlate ions between
samples, prior to analysis. While all of these methods are
ad hoc it is of interest to model the data with instrument
variability as part of the model building process itself. In
the present study we address the feasibility of using high
resolution mass spectrometry to identify and quantify

metabolites as potential biomarkers in the urine of acute
trauma patients compared with control urine samples. We
postulate that not only are we likely to find specific
metabolites that could be used as prognostic indicators of
patient outcome, we could also begin to understand the
mechanisms responsible for the development of disease
progression and outcome in acute trauma patients.

The enormous amount of data generated by mass spectro-
metric analysis requires sophisticated statistical tech-
niques to differentiate between the urinary metabolic
profile of traumatized individuals and healthy individu-
als. A typical mass spectrum contains thousands of points
(m/z values) while subject numbers are quite low. We
propose a semiparametric framework to model individual
mass spectra obtained from each subject over all repli-
cates. The model or functional form thus developed is
termed as subject profile. We have explored different
model validation criteria in this regard. Mass spectral pro-
files of the combined control group and individual
patients are compared through a survival relative intensity
function (SRIF). A deviation or irregularity in the pattern
of the patients from that of the control group indicates
possible effects due to trauma. Aided with this knowledge,
a mechanism based on predictive relative abundance is
recommended to identify potential biomarkers associated
with trauma. Though we have shown efficacy of our
method for metabonomics this same approach could be
easily extended for other domains, as long as the physical
mechanism that generates data remains the same.

The rest of the paper is organized as follows. We first
develop the semiparametric framework in the Methods
section. Choice of prior and development of posterior
sampling schemes are discussed next. Following that we
describe predictive relative abundance criteria and con-
struction of SRIF for biomarker discovery framework.
Then we illustrates different model validation and com-
parison criteria. We tested our proposed methodology
with actual data in the Results and Discussions section.
We then provide a brief discussion and direction for
future work.

Methods
0.1 Semiparametric Framework

We begin with a raw mass spectrometer data set. Some of
the very low intensity ions are removed to eliminate pos-
sible noise. Details are instrument specific and hence dis-
cussion on this is postponed for the time being and will
be revisited in subsection 0.5. Suppose our data came
from N subjects, where each subject could be either trau-
matic or control. Data for a single subject will have r rep-
licates. Let Di denotes a ni × 2 dimensional spectrum for

the i-th replicate, where i = 1, 2, ..., r. For each spectrum

A sample ES/TOF MS spectrumFigure 1
A sample ES/TOF MS spectrum.
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 will have two components. First com-

ponent dt indicates observed relative abundance/intensity

at an associated position t, for . Due to

the inherent variability of the mass-spectrometer, intensi-
ties may get registered at slightly different positions even
within the replicates of a single subject. For the computa-
tional stability associated with Markov chain Monte Carlo
(MCMC) described latter on, we have log-transformed all
the observed m/z values. In the present context T denotes
the time-of-flight for the particles detected in a mass spec-
trometer. Since a monotone function converts time-of-
flight T to an m/z value, they have a one to one corre-
spondence and we would not differentiate between them
in our future analysis. We can further assume that f(t)
denotes the probability density function of the stochastic
process underlying T. The h(t) termed as intensity func-
tion, which denotes the instantaneous rate of ions hitting
the detector at time t. This in turn denotes instantaneous
rate of change in the density function f(t), i.e.,

 which is identical to the haz-

ard function we observe in survival analysis literature. If
h(t) is high, it indicates hitting rate or detection rate is also

high. In particular h(t)Δt is the approximate probability of

hitting the detector in (t, t + Δt], given that the ion has not
arrived at the detector (hence not detected) up to time t.
We will not differentiate between the event of arrival of
the ions at the detector of the mass spectrometer and the
actual detection (current flow). In reality there is a very
tiny time lag between these two events. The function h(t)
has two desirable properties

Moreover at any instance t, the area under the curve hi (t)

is given by . It is possible to calculate the

approximate value of H (t) from any given spectrum. For
modeling H (t) we will use the representation theorem for
monotone functions [9] on [0, 1]. However note that H :

�+ → �+. To convert its range in the [0, 1], we would con-
sider the transformation

Note that H* : �+ → [0, 1]. Having transformed the mean
intensity into the interval [0, 1] we would like to approxi-

mate , where ηl are weights

satisfying  for all replicates and I B(.; rl, sl)

denotes the incomplete beta function. Collecting the

weights into η = (η1, η2, ... ηm) a Dirichlet prior can be

assigned. The (rl, sl) are chosen to ensure that Beta c.d.f's

have equally spaced means and are centered around

(t). (t) is a suitable function which maps the time

scale into [0,1]. The related issue of choosing (t) need
to be resolved by selecting a plausible central function
around which the H* function is distributed. If we con-
sider cumulative intensity function, parallel to the cumu-
lative hazard function of the survival analysis literature

[10] then we can take . We would like to

use Extreme value, Double exponential and Normal dis-

tribution for 0(t) and perform model comparison. We

consider different choices of 0(t) as

• Extreme value : ,

; γ = (α, β) and β > 0,

• Double Exponential : ,

 and

β > 0,

• Normal : ,

; γ = (μ σ), σ > 0.

The 0(t) is serving the role of a central function and a

flexible choice of this will enable us to capture non-stand-
ard patterns in the profile in a microscopic sense. Note
that
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where  Straight forward calculation

parallel to survival analysis literature shows that

0.2 Likelihood Construction
If we have n many distinct intensity values detected by the
detector and tj denotes the observed time of flight (TOF)
for the j-th (j = 1, ..., n) batch of dj many ions, then the like-
lihood is

In the present context we do not know the exact number
of ions, rather we will observe dt the relative intensity or

relative amount of current flow detected by the mass spec-
trometer at t-th m/z value. However considering the ideal-
ized experiment, the amount of current flow is
proportional to the number of ions detected at any asso-
ciated position and hence used here as a proxy. The
observed m/z value (t) will have time stamp at

, for the i-th replicate. The complete data

likelihood for a subject having r replicates can be
expressed as

An interesting departure from the regular hierarchical
model setup is that the above likelihood does not inte-
grate all the subjects at once. The same model is fitted for

different subjects by integrating over all subject specific
replicates to capture subject specific variations. Note that

γ, the vector of parameters associated with (t) and f (γ)
is a corresponding suitably chosen prior. Clearly, likeli-

hood is a function of mixing weights η = (η1, η2, ... ηm).

With the above data likelihood specific choice of (t)

and adjoining suitable priors to the η and γ, a complete
Bayesian hierarchical model setup is completed. We fur-
ther elucidate the choice of different priors and explicit
steps for numerical calculation in next section.

Prior Choices and Numerical Implementation
With the notation of earlier section the joint posterior dis-
tribution of the parameters of interest namely Θ = (η, γ)
under suitable prior on η and γ is given by

The flexibility of our approach comes from modeling the

η, which gives subject-specific information. It is natural to

model η as f (η|φη), is the Dirichlet prior drawn from

Dirichlet (φη 1), where we take a fixed scalar hyper-param-

eter , as in our case m = 5. As pointed out by [10]

this choice combined with evenly spaced beta distribution
parameter, namely rl and sl will give rise to a model cen-

tered around (t).

We fix m = 5, {rl} = (1, 2, 3, 4, 5) and {sl} = (5, 4, 3, 2, 1)

which will produce five evenly spaced beta distributions.
Five beta mixtures should not be mixed with the coarse-
ness of the MS data. It should be noted that the present
modeling effort is concentrated on the hazard space where
five beta mixtures are used as an artifact with different
choice of centering functions to capture wide range of
intensity functions. A flexibility analysis of the presented
model is also included in the supplementary material (see

Additional file 1). Parameters associated with γ are either
location or scale parameters. For the location parameter

(α or μ) we have chosen a Gaussian prior with sufficiently
large variance. Since the observed relative intensity even
in the log scale does not go below 2 (minimum resolution
is 100 daltons in the mass spectrometer), some truncation
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is necessary to achieve this goal. We have used truncated
normal distribution (truncated any value that goes below
0). From a practical point of view this decision makes
MCMC sampling scheme to converge much faster while
used in conjunction with normal proposal. For scale

parameter (β or σ2) initially an inverse gamma prior is
assigned. Though this works well for Extreme value distri-
bution, for other two cases we found that MCMC chain is
very slow from jumping one state to another. Thus for
those cases, a log transformation is used for the scale
parameter which also helps to symmetrize the posterior
distribution. A normal proposal is used for this trans-
formed case. Nevertheless the posterior distribution is
always complex and implementation of this Bayesian pro-
cedure requires MCMC sampling scheme. In general it is
difficult to show log-concavity of the conditional poste-

rior distribution of η in its each component. Keeping this
in mind and for the computational flexibility we would

make a transformation for η. Since the support of each ηl

is [0, 1] we make change of variable for (η1, η2, η3, η4) to

(θ1, θ2, θ3, θ4), where  for l = 1, ..., 4. Note

that we need to specify only four of the ηl's as

. The inverse transformation is

, with Jacobian . The above

transformation makes it easier to specify the proposal
density, although one can construct Metropolis chain for
the untransformed parameter. The proposal distribution

is normal , where initial estimates are

obtained through Nelder-Mead downhill simplex algo-
rithm. To accelerate convergence from the output of the

first algorithm we got a new estimate of  as

, where g indexes Monte Carlo

samples. The sampling scheme implemented is a varia-
tion of the grouped Gibbs sampler [11,12], which
requires drawing:

1. θ ~ π (θ|γ, ), with acceptance probability

 and then transform back θ

η,

2. μ ~ π (μ|η, σ p, D),

3. σ ~ π (μ|η, μ, p, D).

Since full conditionals are not in conventional form we
approximate them by sampling with a Metropolis step
within the Gibbs sampler. Under this setup η and γ are
updated sequentially and monitored for convergence fol-
lowing post burn-in period. We would like to mention at
this point that log-transformation of the observed m/z
values are done for greater numerical stability of the
MCMC algorithm only.

Predictive Calculation
We have a two folded objective namely subject diagnos-
tics and potential biomarker identification. Notably sub-
ject diagnostic is a global summarization while biomarker
(m/z values) identifications are more localized in nature.
For this we proposed two criteria namely Survival Relative
Intensity Function (SRIF) and Predictive Relative Abun-
dance (PRA). SRIF is calculated at low resolution, the very
essence being global estimation of subject profile (a rep-
resentative curve describing overall rough shape) for gen-
eral subject diagnostic. PRA is directed to identify
potential biomarkers associated with anomalous m/z val-
ues at much finer resolution. This two step breakdown of
estimation at different resolution is essential for successful
information retrieval from highly irregular MS data.

0.3 Predictive Relative Abundance

For prediction purposes we would like to introduce a few

more notations. Let  denote the total rel-

ative intensity observed at the i-th replicate.  is the

number of ions at risk of hitting the detector at a time just
prior to time t in the i-th replicate. We can easily calculate

. True relative abundance at the t-th

m/z value for the i-th replicate is denoted as . An esti-

mate of  termed as predictive relative abundance can be

found through

A good estimate should have small difference between 

and its observable counterpart dt. A mean square based

criterion is being provided in the supplementary material
(see Additional file 1), exploiting this difference for model
fitting purpose. In case we have drawn G many MCMC
samples then an average MC estimate will be
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To get an estimated value of h(t) through equation (1) the

only requirement is the differentiability of (t), which in

turn depends upon the differentiability of 0(t). Hence

once the parameter in Θ is estimated through MCMC, we

can easily calculate . Under the assumption that con-

trol group is homogeneous, posterior distribution for
each model parameter should have similar distribution
across all controls. To illustrate more, consider a single

parameter only (say α). We obtain posterior samples from
all control subjects separately and then mix them together

under the hypothesis that posterior distribution of α is
same for all controls. This gives us resultant posterior dis-

tribution combining all controls for α. This pooled sam-

ple is then used to construct , and its 95% credible

interval. This will give us a upper and lower bound within
which an observed relative abundance (dt) at any m/z

value should be lying for any normal subject. We hypoth-
esize that deviation from the above will indicate possible
effects of trauma.

0.4 Product-Limit type Estimate of SRIF
The probability that an individual ion has not arrived
(hence not being detected) until time t is given by S(t)(=
P(T > t)). This will be termed as survival relative intensity
function (SRIF) or so called profile function. We have
entertained a product-limit (Kaplan-Meier type) estimate
of S(t) defined as

For any subject this is an observable quantity. However
since we can estimate and more importantly get a confi-

dence bound of the estimate of dt through , an estimate

of the SRIF for the i-th replicate of a subject will be

Where i is the indicator of the corresponding replicate
number. A Monte-Carlo estimate of S(t) will be

Since  is a function of Θ, so does S(t). Once the overall

pulled estimates of the parameters of Θ based on the con-
trol group is obtained, we would like to treat S(t) thus
obtained from the control group as the representative sur-
viving relative intensity function (SRIF) of a normal indi-
vidual being. Similar to the relative abundance case we
would like to draw 95% credible interval for the ideal SRIF
obtained from the control group. For a patient, we would
like to compare this ideal SRIF band with that of the indi-
vidually observed SRIF obtained through equation (6).

As mentioned earlier, SRIF will give us an overall visual
idea about an individual's well-being. Depending upon
this initial health identification status, we will recom-
mend further investigation through predictive relative
abundance bound described earlier (subsection 0.3), for
identifying abnormal relative abundance associated with
specific individual m/z value. Thus identified m/z values
are further recommended for compound level identifica-
tion as potential biomarker associated with traumatic dis-
order. Some additional discussion regrading the nature
and computation of SRIF and PRA is also provided in the
supplementary material (see Additional file 1).

Different Model Comparison Criteria
In the present context we have entertained three different
model choices, which necessitates model comparison for
getting the best fitted model. We have explored both Baye-
sian as well as some frequentist model selection criteria.
While some of them are readily applicable, some requires
modification to be meaningful for mass spectrometry data
set. We have used Conditional Predictive Ordinate (CPO),
Bayes Factor, Bayesian Information Criterion and a vari-
ant of Mean Square Based Criterion for model assessment.
To check predictive accuracy, a new measure namely Con-
ditional Predictive Intensity/Hazard Function (CPIF) has
been developed. We have also discussed in details differ-
ent estimation strategy involving Monte Carlo approxima-
tion of the above measures. For the sake of space statistical
justification and calculation behind all of these criteria are
placed in the supplementary material (see Additional file
1). We would like to note that DIC is not being explored
in this paper as it is under severe scrutiny for its lack of
interpretation in different scenario. However its imple-
mentation is not difficult and can be easily done if
required.
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Results and Discussion
0.5 Data Description: Trauma Data Set

Acute trauma with associated hemorrhage, shock and sep-
sis, often produces a generalized inflammatory response
resulting in organ dysfunction and organ failure. Acute
trauma is associated with high mortality rates and is
among the leading causes of death in Americans between
the ages of 1 and 44 [13]. In this paper we explore the fea-
sibility of using a high resolution mass spectrometry to
identify and quantify metabolites in the urine of acute
trauma patients and compare these with control urine
samples. The rationale behind this approach is that such
data would provide a "metabonomic profile" that could
be used for real-time analysis of acute trauma patient sta-
tus. It should be noted that trauma is not a disease and is
very much heterogenous in nature. Each trauma patient
likely to be unique. This points out that though normal
subjects can be combined to develop a standard "metabo-
nomic profile", patients may not necessarily be combined
unless we can create some homogenous traumatic disor-
der in laboratory controlled environment. Our goal is to
determine whether a patient profile is anomalous in com-
parison to standard metabonomic profile and then detect
patient specific signals for individual trauma patients.
With these goals in mind we have retrospectively analyzed
urine samples collected from 6 normal healthy individu-
als and 6 patients with different degree of acute trauma.
Each urine sample was analyzed in triplicate (r = 3). Every
patient is coded as "P-DG", while for every control it is "C-
DG". Creatinine concentrations were measured [14] in
each urine sample and each sample was analyzed by elec-
trospray ionization on a Micromass Q-TOF2 mass spec-
trometer using lisinopril as a calibration and quantitative
internal standard. Mass spectra were collected in positive
ionization mode from 100 to 1600 daltons. Mass spectral
data was collected in the continuum mode and processed
by MassLynx (Micromass) software to generate centroid
spectral data consisting of accurate m/z values and ion
intensities. The data used in the present study were gener-
ated by eliminating all ions that were less than or equal to
three times the instrument noise and dividing the inten-
sity of each ion by the concentration of creatinine in the
respective urine sample. The normalization of the ion
intensities to the creatinine concentration was necessary
to compensate for urine dilution in different individuals.
Ion resolution in this system was between 9200 and 9800

(Δm1/2/m) and m/z reproducibility was less than +/- 20

ppm. The m/z derived from a specific compound may
therefore vary by the reproducibility of the method if the

ion is resolved from the ions produced by other com-
pounds. As described in section 0.1, we have entertained

three different model choices; Model 1: 0(t) corre-

sponds to Extreme value, Model 2: 0(t) corresponds to

Double Exponential and Model 3: 0(t) corresponds to

Normal distribution. All of these models have seven
parameters, which need to be estimated through MCMC.
The first 5,000 iterations were thrown out as burn-in
period, then an additional 50,000 iterations were
obtained out of which we accepted only every 50-th itera-
tion, creating 1000 samples from the posterior distribu-
tion. This was used to compute all necessary statistics
namely posterior mean, 95% credible interval and other
measure related to model comparison. Every MCMC
chains were tested for convergence by Geweke's [15] con-
vergence diagnostic and autocorrelation plot through R
software. Several combinations of hyperparameter values
were tried. We report the results for prior distribution of
the location parameter as N (2, 10) and for scale parame-
ter as IG (2, 10), so that priors do not drive the inference.

0.6 Model Comparison Results

Different model parameter estimates, standard deviation
and their 95% highest posterior density (HPD) credible
intervals are placed in the supplementary material (see
Additional file 1) and can easily accessed by interested
reader. We performed rigorous model selection on the
basis of different criteria described earlier. On the basis of
log of Pseudo Marginal Likelihood, Bayes factor and BIC,
clearly Model 2, based upon Double Exponential distribu-
tion is outperforming other models. For some situations
Model 1 was doing better. Notably for MSE and cross val-
idation based approach Model 1 was doing better and
Model 2 was close second. Model 3 based on normal dis-
tribution is not performing well. To save space all model
selection results are placed in the supplementary material
(see Additional file 1). Though the results are not reported
here, we have also tried a mixture of two normal distribu-
tion, but this choice produces no improvement. We
acknowledge that the decision of choosing the best model
is subjective, especially considering so many different
model selection criteria all together and in fact there may
not be any unique and unanimous model choice in the
real world. However, combining all the criterion we sug-
gest the Double Exponential based model as being best
model choice for subject diagnostic and bio-marker detec-
tion purpose. Notably Model 1 is also a strong contender
and other mixture model based approach may be taken
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for modeling 0(t). However we would like to investi-

gate them else where in future.

0.7 Subject Diagnostic and Mechanism for Biomarker 
Identification
Once we have selected a model we have a two goals.
Through the SRIF function we can determine whether the
observed subject SRIF deviates outside the 95% credible
interval constructed from controls. The underlying
hypothesis is that for a normal subject the observed prod-
uct limit estimate of SRIF remains within the credible
interval, while for patients it will deviate outside the cred-
ible interval. An obvious advantage of our semiparametric
Bayesian modeling approach is that we are producing
95% credible interval which will not be present in tradi-
tional Kaplan-Mier type estimate. In Figure 2 we have
plotted SRIF for the control C-DG72. Since the observed
SRIF lies completely inside the 95% credible interval, this
gives an ideal picture we should expect for a normal indi-
vidual. Note that control individuals are just normal
human being, and that their behavior is far from the realm
of laboratory controlled experimental environment. For
that reason small degree of deviation in the SRIF even
among the controls may be observed and expected due to
inherent and unavoidable biological variation. However
among the patients the degree of deviation in SRIF is
much higher. An example of this is depicted in Figure 3 for

patient P-DG51. Similar results are obtained for other
patients (see Additional file 1). Notable 95% credible
interval for SRIF is not same across all figures. This is due
to the fact that observed intensities were registered at dif-
ferent m/z values for all samples (even among replicates)
and credible interval is only constructed at those regis-
tered values given the sample. More explanation on this is
also provided in the supplementary material (see Addi-
tional file 1).

Next we have plotted predictive relative abundance for
patient P-DG51 (Figure 4). The shaded area denotes 95%
credible interval drawn as outlined in section 0.3. For all
replicates there are several m/z values that are falling out-
side this shaded region. Our goal is to collect these outly-
ing m/z values and recommend them for further chemical
identification as potential biomarkers. Similar conclusion
could be drawn for other patients (can be found in the
Additional file 1). As a final example we have drawn sim-
ilar figures for control C-DG72. We have obtained 95%
credible interval through remaining five controls and all
of the m/z values are inside this interval (Figure 5).

Conclusion
In this paper we have demonstrated a novel semiparamet-
ric modeling technique for analyzing metabonomic data
of acute trauma subjects using mass spectrometry. We
have proposed modeling the intensity function, using a
mixture of incomplete Beta functions. Also rather than
traditional point based modeling we have modeled the
whole curve or subject profile through this approach. Dif-
ferent model comparison criterion were used for selecting
the best model, both from a classical and Bayesian point
of view. We have used a mixture of five Betas for our mod-
eling purpose. A more flexible approach will be to use var-
iable number of mixture components, which will
necessitate use of the reversible jump MCMC algorithm.

We would also like to emphasize the advantages of mod-
eling a profile. First, spatial correlations that may exist
among chemically related m/z values will be automati-
cally incorporated into the model. Secondly, due to inher-
ent instrument variability, specific or static m/z values
may loose their true meaning when compared across dif-
ferent subjects. This again questions the traditional point
by point comparison of m/z values across different sam-
ples. In fact researchers already perceived this problem
and for that reason most [1,7,16] mass spectrometry
based modeling begins with an alignment or clustering
algorithm. Our method is general enough to be applicable
with or without alignment. In the absence of any align-
ment, credible intervals constructed will be wider. This is
reasonable considering principles of signal to noise
strength. However utmost care should be taken before
making any such alignment as wrongly aligned m/z values

�H

Survival Relative Intensity Function plot for control C-DG72Figure 2
Survival Relative Intensity Function plot for control C-DG72. 
The shaded region denotes 95% credible interval. Note that 
subject C-DG72 is not being used in this particular credible 
interval construction hence it supports cross validation. Ide-
ally for normal individual we will expect the SRIF to be com-
pletely inside the credible interval constructed from 
remaining normal subjects.
Page 8 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:38 http://www.biomedcentral.com/1471-2105/9/38

Page 9 of 12
(page number not for citation purposes)

Survival Relative Intensity Function plot for patient P-DG51Figure 3
Survival Relative Intensity Function plot for patient P-DG51. Large deviation from the 95% confidence band is an indication of 
irregular metabolic behavior and thus needs further investigation.
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Predictive Relative Abundance plot for patient P-DG51Figure 4
Predictive Relative Abundance plot for patient P-DG51. Those m/z values falling outside (either too large or too small) of 95% 
credible interval are potential biomarkers for traumatic disorder.
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Predictive Relative Abundance plot for control C-DG72Figure 5
Predictive Relative Abundance plot for control C-DG72. Note that credible interval are constructed using only other five con-
trols. None of the m/z values are outside credible band, which is quite expected for controls.
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will result in large false positives, irrespective of the effi-
cacy of latter used methods.

Authors' contributions
SG is the lead author and conceived the idea of modeling
TOF-MS data in survival analysis framework. All computer
programming and other derivations are primarily done by
him. DFG helped conceive the sampling protocols and
design of the study and participated in writing and editing
of the manuscript. DD participated in the refinement of
the statistical modeling as well in editing the manuscript.
DJH helped in the analytical analysis of the samples and
helped conceive the sampling protocols and design of the
study. All authors have read and approved the final man-
uscript.

Additional material

Acknowledgements
We would like to thank Grant V. Bochicchio and R. Adams Cowley of Uni-
versity of Maryland for their help in data collection. Funding for this 
research was partially provided by the National Institute of Health (R01 
ES011630), a UCONN Faculty Large Grant and the Office of Naval 
Research (N00014-00-1-0792, N00014-99-1-0905 and N00014-99-1-
0606).

References
1. Tibshirani R, Hastie T, Balasubramanian N, Scott S, Gongyi S, Albert

K, Quynh-Thu L: Sample classification from protein mass spec-
trometry, by peak probability contrasts.  Bioinformatics 2004,
20:3034-3044.

2. Timothy WR, Yutaka Y: Multiscale Processing of Mass Spec-
trometry Data.  Tech. Rep. Working Paper 230, UW Biostatistics
Working Paper Series, Fred Hutchinson Cancer Research Center 2004.

3. Kwon DW, Tadesse MG, Sha N, Pfeiffer RM, Vannucci M: Identify-
ing Biomarkers from Mass Spectrometry Data with Ordinal
Outcome.  Cancer Informatics 2006, 3:19-28.

4. Randolph TW, Tasui Y: Multiscale processing of mass spec-
trometry data.  Biometrics 2006, 62:589-597.

5. J M, Combes RK, Baggerly K, Kobayasi R: Feature extraction and
quantification for mass spectrometry data in biomedical
application using the mean spectrum.  Bioinformatics 2005,
21:1764-1775.

6. Coombes RK, Morris SM, Hu J, Edmonson RS, Baggerly AK: Serum
proteomics profiling – a young technology begins to mature.
Nature Biotechnology 2005, 23:291-292.

7. Yutaka Y, McLerran D, Bao-Ling A, Marcy W, Thornquist M, Ziding F:
An Automated Peak Identification/Calibration Procedure
for High-Dimensional Protein Measures From Mass Spec
trometers.  Journal of Biomedicine and Biotechnology 2003, 4:242-248.

8. Kazmi AS, Ghosh S, Shin DG, Hill DW, Grant FD: Alignment of
high resolution mass spectra: Development of a heuristic
approach for metabolomics.  Metabolomics 2006, 2:75-83.

9. Diaconis P, Ylvisaker D: Quantifying prior opinions.  In Bayesian
Statistics 2 Edited by: Bernardo JM, Berger JO, Smith AFM. Amster-
dam: North-Holland; 1985:133-156. 

10. Gelfand A, Mallick BK: Bayesian analysis of proportional haz-
ards model built from monotone functions.  Biometrics 1995,
51:843-852.

11. Geman S, Geman D: Stochastic relaxation, Gibbs distribution
and the Bayesian restoration of images.  IEEE Trans. on Pattern
Anal. and Mach. Intel 1987, 6:721-741.

12. Gelfand AE, Smith AFM: Sampling-based approaches to calcu-
lating marginal densities.  Journal of the American Statistical Associ-
ation 1990, 85:398-409.

13. Anderson RN, Smith BL: Deaths: leading causes for 2001.  Natl
Vital Stat Rep 2003, 52(9):1-85.

14. Greenblatt DJ, Ransil BJ, Harmatz JS, Smith TW, Duhme DW, Koch-
Weser J: Variability of 24-hour urinary creatinine excretion
by normal subjects.  Journal of Clin Pharmacol 1976, 16(7):321-328.

15. Geweke J: Evaluating the accuracy of sampling-based
approaches to calculating posterior moments.  In Bayesian Sta-
tistics 4 Edited by: Bernardo JM, Berger JO, Dawid AP, Smith AFM.
Oxford University Press; 1992. 

16. Ghosh S, Dey D, Hill D, Grant FD: Statistical Approach to
Metabonomic Analysis of Rat Urine Following Surgical
Trauma.  Journal of Chemometrics 2006, 20:87-98.

Additional file 1
Additional modeling results and discussions are provided in a separate 
supplemental file.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-38-S1.pdf]
Page 12 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-38-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15226172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15226172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16918924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16918924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15673564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15673564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15673564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15765078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15765078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7548703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7548703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14626726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=947964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=947964
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	0.1 Semiparametric Framework
	0.2 Likelihood Construction

	Prior Choices and Numerical Implementation
	Predictive Calculation
	0.3 Predictive Relative Abundance
	0.4 Product-Limit type Estimate of SRIF

	Different Model Comparison Criteria
	Results and Discussion
	0.5 Data Description: Trauma Data Set
	0.6 Model Comparison Results
	0.7 Subject Diagnostic and Mechanism for Biomarker Identification

	Conclusion
	Authors' contributions
	Additional material
	Acknowledgements
	References

