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Abstract
Background: Many proposed statistical measures can efficiently compare protein sequence to
further infer protein structure, function and evolutionary information. They share the same idea of
using k-word frequencies of protein sequences. Given a protein sequence, the information on its
related protein sequences hasn't been used for protein sequence comparison until now. This paper
proposed a scheme to construct protein 'sequence space' which was associated with protein
sequences related to the given protein, and the performances of statistical measures were
compared when they explored the information on protein 'sequence space' or not. This paper also
presented two statistical measures for protein: gre.k (generalized relative entropy) and gsm.k
(gapped similarity measure).

Results: We tested statistical measures based on protein 'sequence space' or not with three data
sets. This not only offers the systematic and quantitative experimental assessment of these
statistical measures, but also naturally complements the available comparison of statistical
measures based on protein sequence. Moreover, we compared our statistical measures with
alignment-based measures and the existing statistical measures. The experiments were grouped
into two sets. The first one, performed via ROC (Receiver Operating Curve) analysis, aims at
assessing the intrinsic ability of the statistical measures to discriminate and classify protein
sequences. The second set of the experiments aims at assessing how well our measure does in
phylogenetic analysis. Based on the experiments, several conclusions can be drawn and, from them,
novel valuable guidelines for the use of protein 'sequence space' and statistical measures were
obtained.

Conclusion: Alignment-based measures have a clear advantage when the data is high redundant.
The more efficient statistical measure is the novel gsm.k introduced by this article, the cos.k
followed. When the data becomes less redundant, gre.k proposed by us achieves a better
performance, but all the other measures perform poorly on classification tasks. Almost all the
statistical measures achieve improvement by exploring the information on 'sequence space' as
word's length increases, especially for less redundant data. The reasonable results of phylogenetic
analysis confirm that Gdis.k based on 'sequence space' is a reliable measure for phylogenetic analysis.
In summary, our quantitative analysis verifies that exploring the information on 'sequence space' is
a promising way to improve the abilities of statistical measures for protein comparison.

Published: 23 September 2008

BMC Bioinformatics 2008, 9:394 doi:10.1186/1471-2105-9-394

Received: 9 April 2008
Accepted: 23 September 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/394

© 2008 Dai and Wang; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 19
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/394
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18811946
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:394 http://www.biomedcentral.com/1471-2105/9/394
Background
Over the past few decades, major advances in the field of
molecular biology, coupled with advances in genomic
technologies, have led to an explosive growth of biologi-
cal sequences databases. For example, there are several
well-known databases about protein: Pfam [1] (a second-
ary database for multiple alignments and profile hidden
Markov models), SCOP [2] (a secondary database con-
taining protein family and structural information), Swiss-
Prot [3] (primary database of protein sequences), and Pro-
tein Information Resource (PIR) [4] (primary database of
protein sequences). This deluge of databases, in turn, pro-
duces new questions to analyze protein sequences such as
how to classify protein sequences, induce their evolution-
ary information, and predict their structures.

Among protein sequence analysis, some important com-
putational methods are similarity search, phylogenetic
analysis and sequence classification. The similarity search
[5-7] is to search a database of known function sequences
and uses the structures and functions of the most closely
matched known sequences to analyze the structure and
function of query sequence. Phylogenetic analysis [8-12]
is the study of the evolutionary history among species. It
can also provide useful information for pharmaceutical
researchers to determine which species share the medici-
nal qualities [13]. Classification protein [14,15] is to get a
biologically meaningful partition. It has several advan-
tages: when proteins are grouped into a family, it can pro-
vide us some clues about the general features of this
family and evolutionary evidence of proteins, and further
infer the biological function of a new sequence by its sim-
ilarity to some function-known sequences. Moreover, pro-
tein classification can be used to facilitate protein three-
dimensional structure discovery, which is very important
for understanding proteins' functions. However, these
computational methods heavily rely on the (dis)similarity
measures defined among biological sequences.

Because of the importance of research into (dis)similarity
measures, numerous efficient algorithms have been devel-
oped, but challenges remain. Moreover, we believe that
further improvements in the (dis)similarity measures will
allow us to design more effective tools, which can help us
to look back more deeply in evolutionary time. One kind
of the most common dissimilarity measures in this area is
edit distance by aligning two sequences. It is defined as
the required number of insertions, deletions, and replace-
ments of characters from the first protein sequence to
obtain the second protein sequence. But this measure is
encountered with difficulties: (i) computation with regard
to large biological databases [16,17]; (ii) the score
schemes chosen [16]. Therefore, alignment-free measures
are actively pursued to overcome the limitations of pro-
tein analysis by alignment.

Up to now, many efficient alignment-free measures for
sequences comparison have been proposed, but they are
still in the early development compared with alignment-
based methods. One of the comprehensive reviews [16]
reported several concepts of (dis)similarity measures,
such as Euclidean distance [18], Mahalanobis distances
[19], Kullback-Leibler discrepancy [20], Cosine distance
[21] and Pearson's correlation coefficient [22]. Recently,
several novel alignment-free measures have been
designed for protein sequences analysis, such as S1 and S2
[23], W-metric [14], Universal Similarity Metric [15],
Local decoding [24], CLUSS [25] and Long Short-Term
Memory [26].

Among the statistical measures, each sequence is mapped
into an n-dimensional vector according to its k-word fre-
quencies. Linear Algebra theory is further employed to
define the similarity score between sequences represented
in vector spaces. The kld extended by Wu et al. (2001) is
computed in terms of two vectors of relative frequencies
of k-words over a sliding window from two given DNA
sequences. However, in an application where some entries
of vectors are equal to 0 or 1, kld becomes unsuitable. In
this paper, we present two statistical measures to over-
come the limitation of the measure kld. The contents can
be summarized as follows:

1. We present a scheme to build protein 'sequence space'
based on the score or amino acid substitution matrices
and calculate k-word frequencies of protein 'sequence
space'.

2. Two statistical measures gre.k and gsm.k, as the extended
Jensen-Shannon Divergence, are proposed. They are
based on k-word frequencies and Jensen-Shannon Diver-
gence. Although these two concepts are not new, their
generalizations result in the novel aspect of these meas-
ures. Particularly, the statistical measure, Gdis.k, is proved
to be a valid distance measure.

3. Our measures are applied to extensive tests, e.g., protein
sequence classification and phylogenetic analysis. The
performances of our measures are compared with align-
ment-based measures and the existing statistical meas-
ures. Through the experiments, we want to address the
following questions with the aid of well known statistical
index: (A) how well our statistical measures perform com-
pared with the existing statistical measures and align-
ment-based ones; (B) which statistical measure performs
better when exploring the information on protein
'sequence space'; (C) whether the classification abilities of
statistical measures depend on the choice of score matri-
ces; (D) whether our measure, Gdis.k, is a valid distance
measure for phylogenetic analysis.
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Results and discussion
Classification of protein sequences
The proposed statistical measures are used to classify pro-
tein sequences. Several benchmark data sets of non-
homologous protein structures have been developed in
the last few years [27-30]. In this study, we have chosen
the 36 protein domains of [27], the Rost and Sander data
set (RS) and the 86 prototype protein domains of [28].
The Chew-Kedem data set (Additional file 1) was intro-
duced in [27] and further studied in [31]. It consists of 36
protein domains drawn from PDB entries of three classes
(alpha/beta, mainly-alpha, mainly-beta). Although this
data set has been extensively used, the main draw back of
this data is small size and high redundant. The Rost and
Sander data set (RS126) (Additional file 2) was designed
for the secondary structure prediction of proteins with a
pair-wise sequence similarity of less than 25% [32], and it
was used as a test data to evaluate the performances of
similarity measures [33]. Here, we not only compare the
proteins' secondary structures, but analyse the perform-
ance of (dis)similarity measures according to the proteins'
classification as given by SCOP, release 1.69 [34]. We
adopt this manually curated database as our gold stand-
ard containing expert knowledge for class level. This data
set is trimmed to exclude sequences belonging to classes
with <5 elements, thus a data set of 121 protein
sequences, denoted by RS, is obtained. The Sierk-Pearson
data set (Additional file 3), which consists of a non-redun-
dant subset of 2771 protein families and 86 non-homol-
ogous protein families from the CATH protein domain
database [35], was introduced in [28]. We estimate the
homology of the data by employing CD-HIT program,
which clusters protein databases at given sequence
homology threshold [36]. Running CD-HIT with 70%
homology threshold reveals that there are 29, 120, 86
sequences for data CK, RS and SP, respectively, below the
homology threshold. This results clearly indicate that CK
is high redundant, RS is low redundant, and SP is less
redundant.

The experiments aim at evaluating the classification abil-
ity of the alignment-based measures and the statistical
measures. The evaluation procedure is based on a binary
classification of each protein pair, where 1 corresponds to
the two protein sequences sharing the same class, 0 other-
wise.

Given a data with size n, a n × n similarity/distance matrix
can be obtained via each measure. The entries of the upper
triangular similarity/distance matrix constitute a similar-

ity vector of length , which is used as prediction.

Also, we can get a vector of length  consisted of 1 and

0 as class labels. A perfect measure would completely sep-
arate negative from positive set. Of course, this does not
happen in practice, and the classes are interspersed. The
ROC curves permit to assess the level of accuracy of this
separation without choosing any distance threshold for
the separation point. In particular, the AUC will give us a
unique number of the relative accuracy of each measure.

The measures evaluated are: alignment-based measures,
our statistical measures (gre.k and gsm.k) and the six statis-
tical measures outlined in Method section (ed.k, cos.k, se.k,
W.k, s1.k and s2.k), where the alignment-based measures
are Clustal X, Needleman-Wunsch (global alignment) or
Smith-Waterman (local alignment) raw scores, with no
correction for statistical significance, using ten score
matrices (BLOSUM40, BLOSUM45, BLOSUM62,
BLOSUM80, BLOSUM100, PAM40, PAM80, PAM120,
PAM200, PAM250) and linear gap penalties or affine gap
penalties, with a gap penalty of 8. All statistical measures
based on k-word frequencies of protein sequence and pro-
tein 'sequence space' run with k from 1 to 4, where protein
'sequence space' is constructed based on the score matrix
(BLOSUM40, BLOSUM45, BLOSUM62, BLOSUM80,
BLOSUM100, PAM40, PAM80, PAM120, PAM200,
PAM250). For each measure, separate tests are done with
each combination of parameter values, and the best com-
bination is chosen to represent the score in the perform-
ance. ROC curves are computed to evaluate and compare
the performances of our methods and other (dis)similar-
ity measures.

The ROC curves obtained for the classifications are pre-
sented in Figures 1, 2, 3. Figure 1(a), Figure 2(a) and Fig-
ure 3(a) denote the ROC curves of alignment-based
measures and the statistical measures based on k-word fre-
quencies of protein sequences. Figure 1(b), Figure 2(b)
and Figure 3(b) denote the ROC curves of alignment-
based measures and the statistical measures based on k-
word frequencies of protein 'sequence space'. The better
(dis)similarity measures have plots with higher values of
sensitivity for equal values of specificity, resulting in
higher values for the areas under the curves. The AUC
value is typically used as a measure of overall discrimina-
tion accuracy. Table 1 provides the areas under ROC
curves (AUC) obtained from all the (dis)similarity meas-
ures for data sets CK, RS and SP.

Question A
In the CK experiment, Figure 1 and Table 1 show that
alignment-based measures perform better than align-
ment-free measures. NW-affine.b45 outperforms other
alignment-based measures, its area under ROC curve is
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0.860. Among the statistical measures based on k-word
frequencies of protein sequences, gsm.2 is clearly more
efficient than other measures. Its area under ROC curve is
0.791. The next best measure is the cos.1, with the area
under ROC curve 0.729, and the other measures lag
behind. For the statistical measures based on k-word fre-
quencies of protein 'sequence space', gsm.4.b100 is signif-
icantly better than other statistical measures, the se.3.b100
followed.

In the RS experiment, Figure 2 and Table 1 indicate that
some statistical measures perform as well as alignment-
based measures. By exploring the information on protein
'sequence space', the statistical measure, gsm.k, performs
better than alignment-base measures. For the alignment-
based measures, NW-affine.b40 performs better than
other measures. As for the statistical measures based on k-
word frequencies of protein sequences, cos.1 outperforms
the other measures. Among the statistical measures based
on k-word frequencies of protein 'sequence space',

gsm.3.b40 is significantly better than all other measures,
its area under ROC curve is 0.627, and the next best meas-
ure is gre.4.b100.

In the SP experiment, Figure 3 and Table 1 illustrate that
some statistical measures defined by k-word frequencies
of protein sequences outperform alignment-based meas-
ures. When the information on protein 'sequence space' is
added, all the statistical measures, except for se.k and s2.k,
perform better than alignment-base measures. For the
alignment-based measures, SW measures perform better
than NW measures. As for the statistical measures based
on k-word frequencies of protein sequences, gre.1 outper-
forms other measures, which is followed by cos.1 and
eu.1. Among the statistical measures based on k-word fre-
quencies of protein 'sequence space', the area under ROC
curve of gre.1.p40 is 0.575, better than other statistical
measures, and the next best measures are the cos.1.p40 and
eu.1.p40.

ROC curves for data CKFigure 1
ROC curves for data CK. ROC (a) for our measures, alignment-based measures and other statistical measures, all the statis-
tical measures are based on k-word frequencies of protein sequence, with the parameter values as suffix. ROC (b) for our 
measures, alignment-based measures and other statistical measures, all the statistical measures are based on k-word frequen-
cies of protein 'sequence space', with the parameter values as suffix. All the abbreviations of (dis)similarity measures are illus-
trated in the "List of abbreviations" section. A random classifier would generate equal proportions of FP and TP classifications, 
which corresponds to the ROC diagonal (dashed line).
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From the above three experiments, we can see that align-
ment-based measures have a clear advantage when the
data is high redundant. The most efficient statistical meas-
ure is the novel gsm.k introduced by this report. When the
data becomes less redundant, gre.k proposed by us
achieves a better performance, but all the alignment-
based and the existing measures perform poorly on all
classification tasks. The inspection of the ROC curves
themselves (Figures 1, 2, 3) further illustrates these com-
parisons between (dis)similarity measures.

Question B
The main goal of construction of protein 'sequence space'
is to improve the classification ability of (dis)similarity
measures by extracting the information on related protein
sequences. However, it should be noted that not all the
(dis)similarity measures are suitable for this scheme. In
order to find which statistical measure is suitable for this
scheme, we define a function DAUC (measure, score

matrix, k) to evaluate whether the classification ability of
(dis)similarity measures improve or not,

where AUC (measure, score matrix, k) denotes the area
under ROC curve of the statistical measure based on the k-
word frequencies of protein 'sequence space', which is
constructed based on the score matrix; AUC (measure, k)
denotes the area under ROC curve of measure defined by
the k-word frequencies of protein sequence.

Judging from definition of DAUC, it is easier to recognize
that if DAUC ≥ 0, utilizing protein 'sequence space'
improves the classification ability of the (dis)similarity
measures. The DAUC values for the data CK, RS and SP are
presented in Figures 4, 5, 6.

DAUC measure score matrix k AUC measure score matrix k    ( , , ) ( , , )=
−−AUC measure k ( , ),

(1)

ROC curves for data RSFigure 2
ROC curves for data RS. ROC (a) for our measures, alignment-based measures and other statistical measures, all the statis-
tical measures are based on k-word frequencies of protein sequence, with the parameter values as suffix. ROC (b) for our 
measures, alignment-based measures and other statistical measures, all the statistical measures are based on k-word frequen-
cies of protein 'sequence space', with the parameter values as suffix. All the abbreviations of (dis)similarity measures are illus-
trated in the "List of abbreviations" section. A random classifier would generate equal proportions of FP and TP classifications, 
which corresponds to the ROC diagonal (dashed line).
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As would be expected, the DAUC values of the different
measures (Figures 4, 5, 6) show two clear trends: (i) the
DAUC values increase from k = 1 to k = 4 for all three data
sets. When the length of word is equal to 4, almost all the
statistical measures' classification abilities are improved.
It should be noted that the classification discrimination of
statistical measures based on higher order word frequen-
cies, such as eu.k, se.k and cos.k, worsens [14], because the
high dimension of the frequency vectors and the relative
low dimension of the sequences length itself cause the fre-
quency vector F to be very sparse. Interestingly, the con-
struction of protein 'sequences space' maintains the
accuracy and overcomes the difficulty arising from higher
order word; (ii) it is interesting to note that there is a
dependency between usefulness of protein 'sequence
space' and the level of data's redundant. When the data is
high redundant such as CK, the 'sequence space' is more
similar. Consequently, the (dis)similarity measures based
on 'sequence space' achieve a little improvement (Figure 4

(k = 4)). But the accuracy of classification is also improved
with word's length increasing. As for the less redundant
data such as RS and SP, all the statistical measures based
on 'sequence space' achieve significantly improvement
when word's length increases to 4 (Figures 4, 5 (k = 4)).

Question C
Using protein 'sequence space' contributes to the accuracy
of protein classification. However, the construction of
protein 'sequence space' relies heavily on the score matrix.
In order to evaluate the influence of different score matri-
ces, the function MAUC(measure, score matrix) is defined
by

where AUC (measure, score matrix, k) denotes the area
under ROC curve of the statistical measure based on the k-

MAUC(measure, score matrix)

max AUC(measure, score mat
k 4

=
≤ ≤1

rrix,k)( ) , (2)

ROC curves for data SPFigure 3
ROC curves for data SP. ROC (a) for our measures, alignment-based measures and other statistical measures, all the statis-
tical measures are based on k-word frequencies of protein sequence, with the parameter values as suffix. ROC (b) for our 
measures, alignment-based measures and other statistical measures, all the statistical measures are based on k-word frequen-
cies of protein 'sequence space', with the parameter values as suffix. All the abbreviations of (dis)similarity measures are illus-
trated in the "List of abbreviations" section. A random classifier would generate equal proportions of FP and TP classifications, 
which corresponds to the ROC diagonal (dashed line).
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word frequencies of protein 'sequence space' that is built
based on the score matrix. The MAUC values of all the sta-
tistical measures based on ten score matrices for three data
sets are presented in Figure 7. Figure 7 largely confirms
that the measures possess different performances based
on different score matrices. The changes of DAUC for the
data CK, RS and SP are similar. For BLOSUM score matrix,
BLOSUM40 and BLOSUM100 perform better in improve-
ment of the statistical measures' classification abilities. As
for PAM score matrix, PAM120 or PAM250 improves the
classification ability of all the (dis)similarity measures on
the high redundant data more obviously, except for the
measures eu.k and gre.k. PAM40 or PAM80 contributes to
improve the classification ability of the (dis)similarity
measures more obviously on the less redundant data.

Phylogenetic analysis
Since Gdis.k is a statistical distance measure, it is further
tested to analyze phylogenetic relationships. Given a set
of protein sequences, their phylogenetic relationships can
be obtained through the following main operations:
firstly, the k-word frequencies of protein 'sequence space'
are calculated; secondly, the statistical distances are calcu-
lated and arranged into a distance matrix; finally, the phy-
logenetic relationships is obtained by neighbor-joining
program in the PHYLIP package [37].

A data set includes 68 SMC proteins, 5 Rad50 proteins and
5 MukB proteins (Additional file 4), which have been
widely studied [38-42]. Our distance measure is applied
to this data, and the results are shown in Figure 8. To
assess the robustness of an estimated tree under perturba-
tions of the input alignment, it is customary to perform a
bootstrap analysis, where entire columns of the alignment

Table 1: The entries of AUC for Data CK, RS and SP

CK RS SP
Method Area Method Area Method Area

NW-linear.b45 0.808 NW-linear.b40 0.605 NW-linear.b62 0.509
NW-affine.b45 0.860 NW-affine.b40 0.614 NW-affine.b40 0.540
SW-linear.b45 0.850 SW-linear.b40 0.600 SW-linear.b62 0.548
SW-affine.b45 0.850 SW-affine.b40 0.600 SW-affine.b62 0.548

Clustal X 0.807 Clustal X 0.555 Clustal X 0.535

k-word FPSa k-word FPSa k-word FPSa

Method Area Method Area Method Area

cos.1 0.729 cos.1 0.609 cos.1 0.569
eu.1 0.700 eu.1 0.607 eu.1 0.570
se.2 0.701 se.1 0.500 se.1 0.495

W.1.b45 0.652 W.1.b100 0.601 W.1.p120 0.559
s1.3 0.708 s1.2 0.581 s1.2 0.535
s2.3 0.708 s2.2 0.578 s2.3 0.530
gre.3 0.673 gre.1 0.607 gre.1 0.572
gsm.2 0.791 gsm.1 0.594 gsm.1 0.524

k-word FPSSb k-word FPSSb k-word FPSSb

Method Area Method Area Method Area

cos.3.p120 0.655 cos.1.p40 0.604 cos.1.p40 0.571
eu.1.p40 0.640 Eu.4.p80 0.603 eu.1.p40 0.570
se.3.b100 0.726 se.1.p250 0.501 se.2.p250 0.545
W.1.b45 0.652 W.1.b100 0.601 W.1.b100 0.559
s1.2.b40 0.667 s1.4.b40 0.607 s1.2.b100 0.554
s2.2.b40 0.667 s2.4.b40 0.607 s2.3.p40 0.545
gre.1.p40 0.683 Gre.4.b100 0.615 gre.1.p40 0.575

gsm.4.b100 0.776 gsm.3.b40 0.627 gsm.2.b100 0.557

The comparison of the areas under ROC curves (AUC) obtained from all the (dis)similarity measures for data CK, RS and SP. k-word FPSa denotes 
the k-word frequencies of protein sequences. k-word FPSSb denotes the k-word frequencies of protein 'sequence space'. All the abbreviations of 
(dis)similarity measures are illustrated in the "List of abbreviations" section.
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are resampled with replacement. The bootstrap technique
is employed to evaluate the tree topologies by resampling
the sequence 100 times. We obtain the phylogenetic rela-
tionships drawn by MEGA program [11], bootstrap val-
ues, lower than 50, are hidden. Generally, an independent
method can be developed to evaluate the accuracy of phy-
logenetic relationships, or the validity of phylogenetic
relationships can be tested by comparing it with authori-
tative ones. Here, we adopt the latter one to test the valid-
ity of our measure.

Question D
Our results are quite consistent with the accepted taxon-
omy and authoritative ones [40-42] in the following three
aspects. First of all, all the organisms are clearly separated
from each other. Among the SMC proteins, it is consist-
ently observed that SMC1 and SMC4 are grouped closely
(there are the larger SMC subunits of the cohesin and con-
densin SMC heterodimers, respectively), and the smaller
subunits, SMC3 and SMC2, appear to group closely.
SMC5 and SMC6 are grouped together, which is conso-
nant with that they heterodimerize as part of a DNA repair

complex [42,43]. Secondly, it is obvious from this tree
that the closest relatives to the SMC proteins are the Rad50
proteins, followed by MukB proteins. Many of these
Rad50 superfamily proteins have the conserved N-termi-
nal FKS (or FRS) motif (located before the Walker A site),
which is presented in most of the SMC proteins [41].
Finally, among the SMC proteins, it is observed that SMC1
protein and SMC4 protein are closer to SMC proteins, fol-
lowed by SMC2, SMC3, SMC5 and SMC6 [41,42]. It sug-
gests that the duplication events giving rise to each
subfamily must have occurred either before or very soon
after the origin of eukaryotes. Since the rate of accepted
amino acid substitution varies among different eukaryotic
taxa within each subfamily. Condensin SMCs appear to
show a higher substitution than cohesin SMCs, the mean
distances within subfamilies of these proteins (averaged
across all condensin and cohesin SMCs for each pairwise
comparison between different organisms) are about half
(0.54 ± 0.134) the corresponding distances between
SMC5 and SMC6 proteins [41]. These reasonable results
confirm that Gdis.k is a reliable distance measure for phy-
logenetic analysis.

DAUC values for data CKFigure 4
DAUC values for data CK. The DAUC values of seven statistical measures for data CK. All statistical measures based on k-
word frequencies of protein 'sequence space' run with k from 1 to 4, where protein 'sequence space' is constructed according 
to ten score matrices. One graph presents each word length (from 1 to 4).
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Conclusion
Prior to this research, the statistical measures are perceived
as adequate for analysis of biological data mainly because
of their flexibility and scalability with data set size. In par-
ticular, some of them are quantitatively compared for the
recognition of SCOP relationships [14]. This article
presents a novel way to compare protein sequences by
exploring the information on 'sequence space' and two
new statistical measures: gre.k and gsm.k. It offers the first
systematic and quantitative experimental assessment of
statistical measures based on protein sequence and pro-
tein 'sequence space', which naturally complements the
many available comparisons based on protein sequences.

The accuracy of each (dis)similarity measure to classify
protein sequence is assessed through the experiments on
high redundant and less redundant data sets. The compar-
ative index AUC is a good measure of overall accuracy of
a classification scheme. The proposed statistical distance
measure, Gdis.k, is further tested to analyze phylogenetic
relationships.

As for the high redundant data, alignment-based meas-
ures have a clear advantage. gsm.k, followed by cos.k, is
clearly more efficient among the existing statistical meas-
ures (Figure 1 and Table 1). When the data becomes less
redundant, all the statistical measures, except for se.k and
s2.k, outperform the alignment-based measures by explor-
ing the information on protein 'sequence space', and gre.k
proposed by us achieves the best performance (Figure 3
and Table 1). The scheme for constructing 'sequence
space' can provide more information than the protein
sequence only and contributes to the accuracy of protein
classification, especially for the less redundant data sets
such as RS and SP. Almost all the statistical measures
based on 'sequence space' achieve significantly improve-
ment when word's length increases to 4 (Figures 4, 5, 6).
In addition, the reasonable results of phylogenetic analy-
sis illustrate the validity of our distance measure for phyl-
ogenetic analysis.

Overall our comparison study highlights the necessity for
alignment-free measures to extract more information as
possible. Thus, this understanding can then be used to

DAUC values for data RSFigure 5
DAUC values for data RS. The DAUC values of seven statistical measures for data RS. All statistical measures based on k-
word frequencies of protein 'sequence space' run with k from 1 to 4, where protein 'sequence space' is constructed according 
to ten score matrices. One graph presents each word length (from 1 to 4).
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guide development of more powerful measures for pro-
tein sequence comparison with future possible improve-
ment on evolutionary, structure and function study. But,
it is worthy to note that although exploring the informa-
tion on 'sequence space' improves the classification ability
of some (dis)similarity measures, they all perform very
poorly, near random classification values of 0.5 for less
redundant data. That is to say, they may be useless in prac-
tice. So we expect a further investigation on the statistical
methods, especially for low redundant datasets

Methods
Word statistics
Word statistics in protein sequence

There is a large body of literatures on word statistics [45],
where sequences are interpreted as a succession of sym-
bols and are further analyzed by representing the frequen-
cies of its small segments. A k-word is a series of k
consecutive letters in a sequence. The k-word statistical
analysis consists of counting occurrences of k-words in a
given sequence. For a sequence s, the count of a k-word w,

denoted by c(w), is the number of occurrence of w in the
sequence s. The standard approach for counting k-words
in a sequence of length m is to use a sliding window of
length k, shifting the frame one base at a time from posi-
tion 1 to m-k+1. In this method, k-words are allowed to
overlap in the sequence. In this way, a sequence can be

represented by an n-dimensional vector  made up of k-

word counts

where n is the number of all possible k-words. For exam-
ple, consider the protein sequence s = VCST, we can
obtain the vector made up of 2-word counts

The frequencies of k-words, , can he calculated by

Ck
s

C c w c w c wk
s

k k k n= ( )( ), ( ), , ( ) ,, , ,1 1 (3)

C c VC c CS c STs
2 1 1 1= ( ) =( ), ( ), ( ) ( , , ). (4)

Fk
s

DAUC values for data SPFigure 6
DAUC values for data SP. The DAUC values of seven statistical measures for data SP. All statistical measures based on k-
word frequencies of protein 'sequence space' run with k from 1 to 4, where protein 'sequence space' is constructed according 
to ten score matrices. One graph presents each word length (from 1 to 4).
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Word statistics in protein 'sequence space'
The number of possible protein sequences is enormous.
When a protein sequence is given, we are interested in its
related proteins, and we denote them as the 'sequence
space' of the given protein.

Substitution matrices represent similarity of amino acids,
where each entry mij of a substitution matrix [mij] repre-
sents the 'normalized probability' (score) that amino acid
i can mutate into amino acid j. Let i ℵ j denotes that the
amino acids i and j are similar. Usually, two amino acids
i and j are considered similar if mij > 0. That is to say

i ℵ j if mij > 0 ∀ i, j ∈ Ω (6)

where Ω = {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}.
Note that the substitution matrices are symmetric matri-
ces, i.e., a being similar to b implies that b is similar to a.
But this similarity of amino acids is not a transitive rela-
tion. For example, a is similar to b and b is similar to c, but
a is not similar to c. Therefore, 20 amino acids are not pos-
sibly classified into several similarity classes according to
this property.

We shall bypass the above similarity classes and consider
a new star set which is easily to implement. A star set
assumes that the properties are known between vertices
and center. We can construct a star set including all the
vertices and the center, and specifically write the center as
the first element of the set to distinguish one set from the
others. For example, S is similar to A, T and N in
BLOSUM62 substitution matrix, so S is the center and
they can constitute a star set {S, A, T, N} presented in Fig-
ure 9. For writing convenience, we write the star set {S, A,
T, N} as ℵS = {x | x ℵ S, x ∈ Ω}. With the aid of star set,
20 amino acids can be partitioned into 20 star sets pre-

F f w f w f w

c wk
m k

c wk
m k

k
s

k k k n= ( )
=

− + − +

( ), ( ), , ( )

( , )
,

( , )
,

, , ,1 1

1
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,
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MAUC values for data sets CK, RS and SPFigure 7
MAUC values for data sets CK, RS and SP. The MAUC values for the data CK, RS and SP, one for each data. All the sta-
tistical measures are based on k-word frequencies of protein 'sequence space', with ten score matrices to build protein 
'sequence space'.
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The diagram of phylogenetic relationshipsFigure 8
The diagram of phylogenetic relationships. Phylogenetic relationships are obtained by neighbor-joining program based 
on our statistical distance measure Gdis.k using all six SMC subfamilies, as well as the related MukB and Rad50. Bootstraps are 
based on 100 replications, and bootstrap values, lower than 50, are hidden.
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sented in Table 2 based on BLOSUM62 substitution
matrix.

Our work derives a way to build 'sequence space' with the
help of star set. From the definition of star set, we know
that each amino acid corresponds a star set. For example,
the star set of the amino acid S is ℵS = {S, A, T, N} accord-
ing to BLOSUM62 substitution matrix. Given two protein
sequences P = p1p2 � pn and Q = q1q2 � qn,

∀ pi ∈ P, qi ∈ Q, if pi ∈ ℵqi ⇒ P ℑ Q (7)

where P ℑ Q denotes that the protein sequences P and Q
are related. Given a protein sequence s, its 'sequence
space', denoted by SPs, is defined as follows:

SPs = {P | P ℑ s, length(P) = length(s)} (8)

where P is a protein sequence, length(P) denotes the
length of the protein sequence P. The protein 'sequence
space' can be constructed as follows: for each protein
sequence, beginning with the first amino acid, we scan
through the protein sequence and substitute the star sets
for amino acids at each position, respectively. Thus a spe-
cial set of protein sequences is obtained, which is denoted
as the 'sequence space' of the protein sequence. For exam-
ple, given a protein sequence s = VCST, the star sets of V,
C, S, and T are {V, M, I, L}, {C}, {S, A, T, N} and {S, A, T,
N} according to BLOSUM62 substitution matrix, and the
'sequence space' of protein s is {V, M, I, L}-{C}-{S, A, T,
N}-{T, S}.

Once the protein 'sequence space' is built, the k-word fre-
quencies of 'sequence space' can be computed similarly. A
segment of k symbols from a finite alphabet, A with 20 let-

ters, is designated a k-word. The set Wk = (wk,1, wk,2, �, wk,

Y) consists of all possible k-words that can be extracted

from protein 'sequence space', and has Y elements, where
Y = 20k. The count of k-words in protein 'sequence space',

denoted by 

can be calculated by taking a sliding window with k-wide
and scanning through the protein 'sequence space'. For
example, considering the protein sequence s = VCST, its
'sequence space' is {V, M, I, L}-{C}-{S, A, T, N}-{T, S},
we can get a vector of 2-word counts

Similarly, one can then calculate k-word frequencies of

protein 'sequence space', denoted as , by

Statistical distance measures
Previous (dis)similarity measures
We first describe the six previous statistical measures for
biological sequences.

Many statistical measures for sequence comparison are to
fix a short word length k, compute the frequencies of all k-
words in each sequence, and assess the similarity of the
two frequency vectors.

1. Euclidian distance (ed.k)

The Euclidian distance is one of the most common dis-
similarity measures of biological sequences. The dissimi-
larity score between two protein sequences X and Y is the
Euclidian distance between their k-word frequencies
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Representation of a star setFigure 9
Representation of a star set. a: the diagram of star set, S 
is similar to A, T and N in BLOSUM62 substitution matrix, 
and S is the midpoint; b: the star set consists of the midpoint 
S and vertices A, T and N.

 

a b

A T

S

N

{S, A , T , N }

Table 2: The 20 star sets

Matrix Star set

BLOSUM62 {AS} {C} {DNE} {EDQK} {FYW}
{G} {HNY} {IMLV} {KEQR} {LMIV}
{MILV} {NSDH} {P} {QERK} {RQK}
{SATN} {T S} {VMIL} {WFY} {YHFW}

With help of the star set, 20 amino acids are partitioned into 20 star 
sets based on substitution matrix BLOSUM62.
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 and

[18]

2. Cosine of the angle (cos.k)
In order to derive estimation of relatedness from the vec-
tor definitions of biological sequences, Stuart et al. (2002)
proposed the pair-wise cosine for generating accurate gene
and species phylogenies from whole genome sequences.

Cosine is a standard measure of vector similarity, and its
application for this purpose can be understood intui-
tively.

3. Standardized Euclidean distance (se.k)
The above measures explore the use of Euclidean dis-
tances and correlations between k-word frequencies repre-
sentations of sequences. Standardized Euclidean distance
takes into account the data covariance structure

where S = [sij] represents the covariance matrix of k-word
frequencies. The standard Euclidean distance forces cov
(fi, fj) = 0 for i ≠ j. Therefore, in this distance measure the
correlations between different k-words are ignored and
only the same k-word variances are accounted for. The
standard Euclidean distance was first proposed for
sequence comparison by Wu et al. (1997).

4. Kullback-Leibler discrepancy (kld)
Let P1 and P2 be two probability frequencies on a universe
X, the Kullback-Leibler divergence (kld) or the relative
entropy, denoted as kld(P1, P2), of P1 with respect to P2 is
defined by the Lebesgue integral [46],

Although relative entropy is not a true metric, it satisfies
many important mathematical properties. Wu et al.
(2001) have applied Kullback-Leibler discrepancy to com-
pare DNA sequences based on the frequencies of all k-
words.

5. W-metric (W.k)
In an application where the covariance matrices S chosen
in standard Euclidean distance is replaced by amino acid
substitution matrices, Vinga et al. (2004) proposed and
demonstrated the use of W-metric as a novel k-word com-
position metric

where W is amino acid substitution matrices such as BLO-
SUM and PAM. W.k is a distance defined between protein
sequences, which bridges between alignment-based met-
rics and measures based solely on k-word composition.

6. S1 and S2 (s1.k and s2.k)

S1and S2 are statistical measures for protein sequences

based on the concept of comparing the similarity between
the k-word appearances [23]. If the set

 and

 consist of all possible k-words

that can be extracted from proteins X and Y, respectively,
S1 and S2 can be computed by

where |Match( , )| is the total number of k-words

shared by two proteins X and Y, constant c is a normaliz-

ing factor; |Word( )| and |Word( )| denote the

total numbers of occurred k-words in proteins X and Y.

Novel statistical distance measures
We describe two novel statistical measures for protein
sequences comparison based on k-word frequencies.
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1. Generalized relative entropy (gre.k)
Relative entropy is the most important concept in both
statistical biology and information theory. It has been
explored as similarity measures such as kld and SimMM
[17,20] to compare biological sequences. However, in an
application where Pk is equal to 0 or 1, kld(P1, P2) → ∞. So
the similarity measure kld becomes unsuitable. For such
an application, we generalize relative entropy with the
help of Jensen-Shannon Divergence, denoted by gre.k, by

Now, if  is equal to 0 and 1,

So gre.k can deal with all kinds of k-word frequencies.

2. Gapped similarity measure (gsm.k)

From the definition of gre.k, it is worthy to note that the
frequencies of k-words that are present in both sequences
have different impact on the gre.k. But the frequencies of
k-words that are present in only one sequence have no

contribution to gre.k. Because if  or  is

equal to 0,

Similarly, the measures S1 and S2 focus on the appearances
of k-words but ignore their frequencies. Motivated by
extracting the information from all the k-words, we inves-
tigate a novel statistical measure for protein sequence
comparison, called the gapped similarity measure

In the definition of function score, the frequencies of all
the k-words in protein sequence are considered. Indeed,
the measure gsm.k is the edit score between k-word fre-
quencies of the two protein sequences X and Y. If a k-word
w appears in the two sequences, the edit score is

. If a k-word w appears

in protein sequence X not Y, it seems that the k-word w is
deleted from the protein sequence Y, we choose the max-
imum value of function

 as the gap penalty

according to followed proposition.

Proposition. If and

 are two k-word fre-

quency vectors of length n,

Proof: To find its maximum, we rewrite

Since , we can get

Thus

Similarly, the symmetric form of gsm.k, denoted as Gdis.k,
between two sequences X and Y is defined by
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A distance metric, D(·,·), should satisfy the following
conditions:

1. D(S, Q) ≥ 0, where the equality is satisfied iff S = Q
(identity).

2. D(S, Q) = D(Q, S)(symmetry).

3. D(S, Q) ≤ D(S, T) + D(T, Q)(triangle inequality).

In the appendix, we prove that the statistical measure,
Gdis.k, defined above satisfies the three conditions and is,
therefore, a valid distance metric.

Evaluation methods
Similarity/dissimilarity measures are compared by consid-
ering how well they classify protein sequences, as well as
by computing receiver operator characteristic (ROC)
curves. ROC goes back to signal detection and classifica-
tion problems and is now widely used [47]. This approach
is employed in binary classification of continuous data,
usually categorized as positive (1) or negative (0) cases.
The classification accuracy can be measured by plotting,
for different threshold values, the number of true posi-
tives (TP), also named sensitivity or coverage versus false
positives (FP), or (1-specificity), encountered for each
threshold, properly normalized [Eq. 22].

A ROC curve is simply the plot of sensitivity versus (1-spe-
cificity) for different threshold values. The area under a
ROC curve (AUC) is a widely employed parameter to
quantify the quality of a classificator because it is a thresh-
old independent performance measure and is closely
related to the Wilcoxon signed-rank test [48]. For a perfect
classifier, the AUC is 1 and for a random classifier the
AUC is 0.5

Availability
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Appendix
The proof of valid distance metric

Lemma 1. For a real convex function f in its domain [a, b],

∀ xi ∈ [a, b], λi > 0 (i = 1, 2, �, n), , Jensen's ine-

quality can be stated as:

Proof: Let , x0 ∈ [s, b]. We expand f(x)

around x0, and by Taylor's theorem, we have that

Since f(x) is a real convex function f in its domain [a, b],
f" (ξ) > 0. Thus we have

f(x) ≥ f(x0) + f'(x0)(x - x0).

For all xi ∈ [a, b], we can obtain that

Multiplying the above inequalities with λi, we have

Summing the above inequalities,

Thus, we obtain that

Proposition 1. ∀ x, y > 0,

Proof: Let f(x) = xlnx, x > 0, we calculate f'(x) and f"(x),

Thus f(x) is a real convex function.

According to Lemma 1, we have

Then

If and

 are two k-word fre-

quency vectors of protein sequences X and Y, respectively,
we define similarity score, denoted by ss.k, as follows:
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Proposition 2.

Proof: Firstly, we need to show that

Case 1:  =  = 0, it satisfies the above ine-

quality.

Case 2: The entry of  or  is equal to zero.

Without loss of generality, assume  = 0 and

 ≠ 0, we can easily get that

Case 3:  ≠ 0 and  ≠ 0. Using the Proposition

1, we can easily obtain the inequality (24).

To find its maximum, we use the Proposition in Method
section to get that

Theorem 1. The statistical measure Gdis.k(X,Y) is a dis-
tance metric.

Proof: Again, by definition ss.k(X, Y) and Proposition 2,
we can obtain that it satisfies two important mathematical

properties: (1) positivity: Gdis.k(X, Y) ≥ 0 and Gdis.k(X, Y)

= 0 ⇔  = ; (2) symmetry: Gdis.k(X, Y) = Gdis.k(Y,

X). We now need to show that Gdis.k(X, Y) ≥ 0 satisfies the
triangle inequality:

Gdis.k(X, Y) ≤ Gdis.k(X, Z) + Gdis.k(Z, Y).

Case 1:  =  = , it satisfies the triangle inequality.

Case 2: Among three k-word frequency vectors, two vec-

tors are equal. Without loss of generality, assume  ≠

 and  = , we can easily obtain that

Gdis.k(X, Y) ≤ Gdis.k(X, Z) + Gdis.k(Z, Y).

Case 3:  ≠  ≠ . From the definition of ss.k and

Proposition 2, we have

Since

Gdis.k(X, Y) = ss.k(X, Y)/n + 2 ≤ 4.

Thus

Gdis.k(X, Y) ≤ Gdis.k(X, Z) + Gdis.k(Z, Y).
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