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Abstract

Background: Most microarray experiments are carried out with the purpose of identifying genes
whose expression varies in relation with specific conditions or in response to environmental
stimuli. In such studies, genes showing similar mean expression values between two or more
groups are considered as not differentially expressed, even if hidden subclasses with different
expression values may exist. In this paper we propose a new method for identifying differentially
expressed genes, based on the area between the ROC curve and the rising diagonal (ABCR). ABCR
represents a more general approach than the standard area under the ROC curve (AUC), because
it can identify both proper (i.e., concave) and not proper ROC curves (NPRC). In particular, NPRC
may correspond to those genes that tend to escape standard selection methods.

Results: We assessed the performance of our method using data from a publicly available database
of 4026 genes, including 14 normal B cell samples (NBC) and 20 heterogeneous lymphomas
(namely: 9 follicular lymphomas and || chronic lymphocytic leukemias). Moreover, NBC also
included two sub-classes, i.e., 6 heavily stimulated and 8 slightly or not stimulated samples. We
identified 1607 differentially expressed genes with an estimated False Discovery Rate of 15%.
Among them, 16 corresponded to NPRC and all escaped standard selection procedures based on
AUC and t statistics. Moreover, a simple inspection to the shape of such plots allowed to identify

the two subclasses in either one class in 13 cases (81%).

Conclusion: NPRC represent a new useful tool for the analysis of microarray data.

Background

Microarray technology allows to analyze the expression of
thousands of genes in a single experiment [1]. The identi-
fication of genes whose expression changes in pathologi-
cal conditions or upon exposure to stimuli, such as
pharmacologic treatment, is a very common aim of micro-
array-based studies. In this respect, different statistical

tests, generally based on measures of distance between
classes, have been so far proposed [2-4]. Among them,
two parameters of Receiver Operating Characteristic
(ROC) curves, namely the area under the curve (AUC),
and the partial area at a selected high specificity threshold
(pAUC), have been applied for such a purpose [4-8]. A
ROC curve represents the relationship between the true
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positive fraction (TPF) and the false positive fraction
(FPF) resulting from a set of binary classification tests
based on each possible decision threshold value [5,9]. TPF
is commonly known as Sensitivity, while FPF corresponds
to 1 - Specificity. When a ROC curve is drawn using a spe-
cific gene expression profile, AUC estimates the probabil-
ity that a subject randomly selected from one class (e.g., a
group of individuals affected by a specific disease) has an
expression value higher than a subject randomly selected
from the other class (e.g., healthy individuals) [6].

In case of unimodal distributions in the two classes with
similar variance and different mean, the corresponding
ROC curve tends to lie completely above the diagonal line
and to be concave ("proper" ROC curve, e.g., Curve I in
Figure 1). In the case of two unimodal distributions with
similar mean and variance in the two classes, the corre-
sponding ROC curve will approach the rising diagonal
(Curve II in Figure 1). This particular ROC curve is often
named the "chance line", because it represents the set of all
the possible statistical tests with equal probability for a
true positive and a false positive result, i.e., corresponding
to the set of results expected by chance alone. In such a
case AUC will tend to 0.5. However, AUC values close to
0.5 may also be obtained from genes differentially
expressed among two classes, when the presence of a hid-
den bimodal or multimodal distribution in either class
causes the ROC curve to cross the chance line [10], like the
not concave (not proper) Curve III and Curve IV in Figure
1. Bimodal or multi-modal distributions within a class
may indicate the presence of unknown subclasses with
different expression values [10]. As a consequence, the
identification of such subclasses may provide useful
insights about biological mechanisms underlying physio-
logic or pathologic conditions. However, most expression
profiles corresponding to not proper ROC curves (NPRC)
are likely to be discharged by the commonly used feature
selection methods (including AUC, pAUC and Student's t
statistics), because either mean or median values tend to
be similar between the considered groups.

To allow the identification of different kind of differen-
tially expressed genes, we have developed a new statistical
method of feature selection based on the area between the
ROC curve and the rising diagonal (ABCR). Furthermore,
to separate NPRC (like Curve III and Curve IV in Figure 1)
from both uninformative and proper ROC plots (like
Curve I and Curve I, respectively) we have developed a
new approach based on the combination of standard fea-
ture selection procedures based either on AUC or on ¢ test
with a new statistical test based on a simple variant of
ABCR (TNRC = Test for Not-proper ROC Curves).

The performance of our method was evaluated by com-
paring the gene expression profiles in two different
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classes, using data from a publicly available data base
including 4026 gene expression profiles [11]. Class A
included 14 different samples of normal circulating B cells
(NBC), class B included 20 heterogeneous lymphomas.
Class A and B both included two subclasses, namely: 6
heavily stimulated and 8 slightly stimulated or unstimu-
lated samples in class A (Table 1); 9 follicular lymphomas
(FL) and 11 chronic lymphocytic leukemias (CLL) in class
B.

The aim of this study is to illustrate a new comprehensive
approach based on the combination of both standard
(AUC) and new (ABCR and TNRC) ROC parameters.
Moreover, we show how not proper ROC curves, identi-
fied by TNRC, may allow at the same time both to select
differentially expressed genes that tend to escape standard
statistical tools, and to point out the presence of hidden
subclasses with biological or clinical meaning. For such
purposes, we selected the genes with the highest ABCR
value corresponding to an a priori chosen False Discovery
Rate (FDR) [12]. Among the expression profiles selected
by ABCR we identified over-expressed and under-
expressed genes using either the Area Under the ROC
curve (AUC) or the Student's ¢t statistic, which both repre-
sent standard methods for feature selection in microarray
analysis [3,4,8]. NPRC were identified by high values of
TNRC statistic. A conventional unadjusted p value of 0.05
was used as threshold in each analysis. Furthermore, we
conducted a detailed analysis of each selected NPRC, to
assess the concordance between the observed gene expres-
sion and the presence of hidden subclasses (see Material
and Methods for more details).

The FDR of both standard (AUC and t value) and new pro-
posed statistics (ABCR and TNRC) was also estimated
under some different distribution hypotheses and at dif-
ferent sample size by using artificial data sets containing
4000 simulated gene expression profiles in two classes.
Finally, the distribution of ABCR and TNRC at some dif-
ferent sample size under the null hypothesis of no differ-
entially expressed genes between two classes was
estimated by extensive random permutation analysis.

Results

We grouped all the genes discussed below as follows: lym-
phocyte/macrophage related genes (group 1), major his-
tocompatibility complex related genes (group 2), genes
involved in malignant cell transformation (group 3),
genes related to nucleic acid metabolism or DNA tran-
scription (group 4), and gene encoding various enzymes/
kinases and other proteins (group 5). In spite of some
overlap, this classification allows to subdivide the tested
genes according to their functional features.
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Theoretical (dotted lines) and empirical (solid lines) ROC curves (panel A) and the corresponding distribution
of gene expression values (panel B). Empirical ROC curves were obtained using 50 samples randomly selected from each
class.

Page 3 of 30

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:410

Table I: Pattern of stimulation of the 14 normal circulating B
cells in class A

N Pattern of stimulation

Heavily stimulated cells
Blood B cells;anti-IlgM+CD40L low 48 h
Blood B cells;anti-IlgM+CD40L high 48 h
Blood B cells;anti-lgM+CD40L 24 h
Blood B cells;anti-IgM 24 h
Blood B cells;anti-IgM+IL-4 24 h
Blood B cells;anti-IlgM+CD40L+IL-4 24 h
Slightly or not stimulated cells
Blood B cells;anti-IgM+IL-4 6 h
8 Blood B cells;anti-IgM 6 h
9 Blood B cells;anti-IlgM+CD40L 6 h
10 Blood B cells;anti-lgM+CD40L+IL-4 6 h
11 Blood B cells;memory CD27+
12 Blood B cells;naive CD27-
13 Blood B cells
14 Cord Blood B

oA WN —

Note: sample number (N) corresponds to the original location of
each sample in the original data set: http://llmpp.nih.gov/lymphoma/

data/figure | /ffigure | .cdt.

Our method identified 1607 genes with the highest value
of ABCR at a selected FDR of 15%. The estimated selection
probability ranged from 40% to 100% (median value:
79.5%). Figure 2A shows the results of the selection pro-
cedure combining the new proposed TNRC statistic with
the standard AUC on the subset of 1607 genes selected by
ABCR. Area | includes 16 genes with a statistically signifi-
cant TNRC value (blue circles), while areas II and III col-
lect 1524 genes with a statistically significant AUC value.
In particular, genes in area II (green circles) were found to
be under-expressed in class A compared with class B,
while genes in area III (red circles) were found to be over-
expressed in class A. No genes corresponding to NPRC
were identified by AUC statistic and vice versa. However,
67 genes (empty circles in Figure 2A) were not identified
by either AUC or TNRC. The large majority of them (n =
57) had a borderline statistically significant value of AUC
(p value between 0.05 and 0.10), but not for TNRC, while
2 genes had a borderline p value for TNRC, but not for
AUC. The analysis was repeated using ¢ statistic in place of
AUC, and the corresponding results are summarized in
Figure 2B. Also in this case, no gene with statistically sig-
nificant TNRC value was identified by the standard statis-
tical method (i.e., t value). However, the separation
between this two different kind of differentially expressed
genes was less evident than that obtained by using AUC
(Figure 2A). Moreover, a larger number of genes (n=112)
remained unclassified (empty circles), including some
genes with a very low value for both TNRC and ¢ statistics.

Table 2 shows the 16 genes with the highest TNRC value,
corresponding to the blue circles in Figure 2A and 2B.

http://www.biomedcentral.com/1471-2105/9/410

Among them, 4 had an unknown function. The others
belonged to group 1 (genes n. 1-3, and n.13), group 3
(genes n. 4 and, 8), group 4 (gene n. 5), or group 5 (genes
n. 6,7, 11, 12, and 15) [13]. Values of TNRC parameter
ranged from 0.082 to 0.2, while the corresponding ABCR
values ranged between 0.202 and 0.253. Interestingly, the
first three selected genes in Table 2 included all the clones
of the gene for Immunoglobulin J chain in the original
data set. Furthermore, the gene n. 6 (VRK2 kinase) was
present in another clone in the same data set (gene n. 12).

Table 3 shows the 16 top genes selected by the standard
ROC analysis based on AUC values among the 1607 genes
reported in Figure 2A. Genes were sorted on the basis of
the corresponding pure accuracy (i.e., the probability to
correctly rank two samples, one randomly extracted from
class A and one from class B), which is estimated by AUC
for proper curves lying above the chance line, and by 1 -
AUC for proper curves lying below. Genes in Table 3 also
corresponded to the 16 highest values of ABCR. Eleven
genes showed an AUC < 0.5 and they were accordingly
considered as under-expressed in FL, CLL in comparison
with NBC, while the remaining 5 genes showed an AUC >
0.5 and were considered as over-expressed. Among the
under-expressed genes two belonged to group 1 (genes n.
9 and n. 15), 1 to group 3 (gene n.5), 4 to group 4 (genes
n.2,n.4,n.6andn.14), 3 to group 5 (Genes n.3, n. 8 and
n. 16), and 1 had an unknown function (gene n. 13).
Among the over-expressed genes, 1 belonged to group 1
(genen. 7), 1 to group 4 (gene n. 12), and 3 had unknown
functions (genes n. 1, n. 10, and n. 11) [13]. AUC ranged
between 0 and 0.02 in under-expressed genes, and
between 0.986 and 1 in over-expressed genes. ABCR val-
ues ranged between 0.479 and 0.5.

All the analyses were repeated varying the FDR threshold.
At FDR = 10%, 1454 genes were identified by ABCR.
Among them, 1439 (99%) were called over- or under-
expressed on the basis of AUC statistic, 4 genes corre-
sponding to NPRC were identified by TNRC and 11 were
not identified by either statistic. Among these latter, 8 had
a borderline statistical significant value for AUC and 1 for
TNRC. Also in this case, no genes identified by AUC were
also selected by TNRC and vice versa. Finally, using FDR =
20% for ABCR, 1866 genes were selected. Among them,
1524 (82%) were selected by AUC, 24 by TNRC, and 318
remained not classified, including 272 genes with a bor-
derline statistical significance for AUC and 3 for TNRC.
Also in this case no genes were identified as differentially
expressed by both AUC and TNRC.

Because the main sources of heterogeneity were known a
priori for both class A (NBC), which included differently
stimulated cells, and for class B, which included samples
from two different malignant diseases (namely, FL and
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Figure 2

TNRC value for the 1607 top genes selected by ABCR at FDR = 15%, as a function of AUC (Panel A) and t statis-
tics (Panel B). Area | includes genes corresponding to not proper ROC curves (blue circles); Area Il includes genes under-
expressed in malignant cells (green circles); Area lll includes genes over-expressed in malignant cells (red circles); empty circles
correspond to unselected genes. Solid lines represent the thresholds corresponding to p = 0.05 for TNRC (horizontal line in
Panel A and in Panel B), for AUC (vertical lines in Panel A) and for t statistic (vertical lines in Panel B). Broken lines represent
the expected value under the null hypothesis for AUC (Panel A) and for t statistics (Panel B).
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Table 2: Comparison between 14 NBC and 20 heterogeneous lymphomas — genes selected by ABCR and TNRC statistics

N Gene ID Gene name ABCR TNRC Group

| GENE3389X Immunoglobulin | chain 0.2250 0.2000 |

2 GENE3390X Immunoglobulin | chain 0.2096 0.1954 |

3 GENE3388X Immunoglobulin | chain 0.2143 0.1858 |

4 GENE3323X BCL7A 0.2069 0.1836 3

5 GENE3407X Histone deacetylase 3 0.2122 0.1694 4

6 GENE75X VRK2 kinase 0.2015 0.1552 5

7 GENEI 141X MAPKKKS 0.2105 0.1390 5

8 GENEI817X BL34 0.2171 0.1314 3

9 GENE2395X Unknown 0.2025 0.1310 Unknown
10 GENE2696X Unknown 0.2531 0.1224 Unknown
I GENE3521X Similar to KIAAO050 0.2051 0.1122 5

12 GENE74X VRK2 kinase 0.2043 0.0954 5

13 GENE2287X MRC 0X-2 0.2046 0.0940 |

14 GENE3541X Unknown 0.2436 0.0900 Unknown
15 GENEI362X Syndecan-2 0.2031 0.0816 5

16 GENE2673X Unknown 0.2034 0.0816 Unknown

Group I: lymphocyte/macrophage related genes; Group 2: major histocompatibility complex related genes; Group 3: genes involved in malignant
cell transformation; Group 4: genes related to nucleic acid metabolism or DNA transcription; Group 5: genes encoding various enzymes/kinases

and other proteins. ABCR: Area between the ROC curve and the rising diagonal; TNRC: Test for not-proper ROC curves.

CLL), we carried out a detailed analysis of each ROC curve
obtained from the expression values of genes listed in
Table 2 (Figures 3, 4, 5, 6,7, 8,9, 10, 11, 12, 13, 14, 15,
16, 17 and 18). Figures from 3 to 18 were ordered accord-
ing to the ranks of the corresponding genes in Table 2, i.e.,
Figure 3 refers to the expression of gene n. 1, Figure 4 cor-
responds to gene n. 2, and so on. Each plot reports both
the origin of samples in class B (i.e., either FL or CLL) and
the two major subclasses within NBC class, according to
Table 1 (i.e., heavily stimulated and slightly or not stimu-
lated cells). Moreover, each plot was arbitrarily split into

two parts to roughly separate samples with high (left side)
and with low (right side) expression level. Finally, the
ROC curves in Figures 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14,
15, 16, 17. 18 were classified as "sigmoid-shaped" (like
Curve IIT in Figure 1) and "inversely sigmoid-shaped"
(like Curve IV in Figure 1).

Six out of the 16 genes in Table 2 corresponded to sig-
moid-shaped curves (Figures 7, 8, 13, 14, 17, and 18).
Four curves allowed to identify the two hidden subgroups
of highly stimulated and slightly or not stimulated B cells,

Table 3: Comparison between 14 NBC and 20 heterogeneous lymphomas - top 16 genes selected by ABCR and AUC statistics

N Gene ID Gene name ABCR AUC Group
| GENE2495X + Unknown 0.5000 1.0000 Unknown
2 GENEI217X - NFkB2 0.5000 0.0000 4

3 GENEI602X - protein kinase (zpk) 0.5000 0.0000 5

4 GENEI 91X - CREM 0.5000 0.0000 4

5 GENEII7IX - Similar to spi-1 0.4964 0.0036 3

6 GENEI219X - IkB alpha 0.4964 0.0036 4

7 GENE3795X + AIM2 0.4964 0.9964 |

8 GENEI730X - Sgk 0.4929 0.0071 5

9 GENEI 170X - CD83 0.4929 0.0071 |

10 GENE3702X + Unknown 0.4893 0.9893 Unknown
I GENE2494X + Unknown 0.4857 0.9857 Unknown
12 GENE3280X + elF-2B alpha subunit 0.4857 0.9857 4

13 GENEI160X - Unknown 0.4857 0.0143 Unknown
14 GENE589X - elF-3 0.4821 0.0179 4

15 GENEI 172X - CcDh83 0.4786 0.0214 |

16 GENE324X - Nak | 0.4786 0.0214 5

Group I: lymphocyte/macrophage related genes; Group 2: major histocompatibility complex related genes; Group 3: genes involved in malignant
cell transformation; Group 4: genes related to nucleic acid metabolism or DNA transcription; Group 5: genes encoding various enzymes/kinases

and other proteins. ABCR: Area between the ROC curve and the rising diagonal; AUC = Area under the ROC curve; "+" = overexpressed; "-"

underexpressed.
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Figure 3

Not proper ROC curve corresponding to the expression of gene n. | in Table 2 (GENE3389X: Immunoglobulin |
Chain). Comparison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and 11
CLL samples). Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table |). NBC samples are numbered
according to Table I.
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Figure 4

Not proper ROC curve corresponding to the expression of gene n. 2 in Table 2 (GENE3390X: Immunoglobulin |
Chain). Comparison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and 11
CLL samples). Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table |). NBC samples are numbered

according to Table I.
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Figure 5

Not proper ROC curve corresponding to the expression of gene n. 3 in Table 2 (GENE3388X: Immunoglobulin |
Chain). Comparison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and 11
CLL samples). Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table |). NBC samples are numbered
according to Table I.
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Figure 6

Not proper ROC curve corresponding to the expression of gene n. 4 in Table 2 (GENE3323X: BCL7A). Compar-
ison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and || CLL samples). Hst
= Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table |). NBC samples are numbered according to Table I.

Page 10 of 30

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:410

High expression

http://www.biomedcentral.com/1471-2105/9/410

Low expression

1.0

0.75 -

Sensitvity (TPF)
=
wn
|

0.25

e
O{7HOHI3Hi0

11

512-
8

B e i | Y B

. NBC-Hst

® CLL

NBC-Sst
FL

0 0.25

0.5 0.75 1.0

1-Specificity (FPF)

High expression

Low expression

Figure 7

Heavily Slightly/not
Stimulated Stimulated

6

0

P<0.001

Not proper ROC curve corresponding to the expression of gene n. 5 in Table 2 (GENE3407X: Histone deacety-
lase 3). Comparison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and 11
CLL samples). Hst = Highly stimulated NBC; SSt = Slightly or not stimulated NBC (Table |). NBC samples are numbered

according to Table I.
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Not proper ROC curve corresponding to the expression of gene n. 6 in Table 2 (GENE75X: VRK2 kinase). Com-
parison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and || CLL samples).
Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table |). NBC samples are numbered according to Table I.
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Figure 9

Not proper ROC curve corresponding to the expression of gene n. 7 in Table 2 (GENEI 141 X: MAPKKKS).
Comparison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and || CLL sam-
ples). Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table 1). NBC samples are numbered according to

Table I.
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Figure 10

Not proper ROC curve corresponding to the expression of gene n. 8 in Table 2 (GENE1817X: BL34). Compari-
son between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and I | CLL samples). Hst
= Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table |). NBC samples are numbered according to Table I.
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Figure 11

Not proper ROC curve corresponding to the expression of gene n. 9 in Table 2 (GENE2395X: unknown). Com-
parison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and || CLL samples).
Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table |). NBC samples are numbered according to Table I.
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Figure 12

Not proper ROC curve corresponding to the expression of gene n. 10 in Table 2 (GENE2696X: unknown). Com-
parison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and || CLL samples).
Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table |). NBC samples are numbered according to Table I.

Page 16 of 30

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:410

High expression

http://www.biomedcentral.com/1471-2105/9/410

Low expression

1.0

0.75 -

Sensitvity (TPF)
=
wn
|

0.25

.| i NBC-Hst
° 13 NBC-Sst
1 : @ FL
11Hi2]
| ® CLL
025 0.5 0.75 1.0
1-Specificity (FPF)

High expression

Low expression

Figure 13

Heavily Slightly/not
Stimulated Stimulated

3

4

P=0.999

Not proper ROC curve corresponding to the expression of gene n. |11 in Table 2 (GENE3521X: Similar to
KIAA0050). Comparison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and
Il CLL samples). Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table I). NBC samples are numbered

according to Table I.
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Not proper ROC curve corresponding to the expression of gene n. 12 in Table 2 (GENE74X: VRK2 kinase).
Comparison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and || CLL sam-
ples). Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table 1). NBC samples are numbered according to

Table I.
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Figure 15

Not proper ROC curve corresponding to the expression of gene n. 13 in Table 2 (GENE2287X: MRC OX-2).
Comparison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and || CLL sam-
ples). Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table 1). NBC samples are numbered according to

Table I.
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Figure 16

Not proper ROC curve corresponding to the expression of gene n. 14 in Table 2 (GENE3541X: Unknown).
Comparison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and || CLL sam-
ples). Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table 1). NBC samples are numbered according to
Table 1.
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Not proper ROC curve corresponding to the expression of gene n. 15 in Table 2 (GENE1362X: Syndecan-2).
Comparison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and || CLL sam-
ples). Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table 1). NBC samples are numbered according to

Table I.
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Figure 18

Not proper ROC curve corresponding to the expression of gene n. 16 in Table 2 (GENE2673X: Unknown).
Comparison between class A (14 samples of NBC) and class B (20 heterogeneous lymphomas, including 9 FL and || CLL sam-
ples). Hst = Highly stimulated NBC; SSt= Slightly or not stimulated NBC (Table 1). NBC samples are numbered according to
Table 1.
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with no error for Figure 7 (corresponding to the expres-
sion of Histone deacetylase, gene n. 5 in Table 2), 1 error for
Figures 8, 14 (both corresponding to clones of VRK2
kinase, genes n. 6 and n. 12, respectively) and 17 (corre-
sponding to Syndecan-2, gene n. 15). All the remaining 10
genes in Figure 3 corresponded to inversely-sigmoid
shaped curves and they allowed to separate the two hid-
den subclasses within class B (FL and CLL), with the only
exception of Figure 16 (gene n.14, unknown function). In
more detail, the identification of the two hidden sub-
classes was made with no error in 2 cases (Figure 9, corre-
sponding to gene MAPKKKS5, n. 7, and Figure 11, gene n.
9 with unknown function), with 1 error in 3 cases (Figure
3 and Figure 5, corresponding to two clones of Immu-
noglobulin J chain, genes n.1 and n.3, respectively, and Fig-
ure 6, BCL7A, gene n. 4), with 2 errors in 3 cases (Figure
4, gene n. 2, Immunoglobulin J chain; Figure 10, gene n. 8,
BL34; Figure 15, gene n. 13, MRC OX-2), and 4 errors in 1
case (Figure 12, gene n. 10, unknown function). In sum-
mary, only 3 out of 16 ROC curves (Figures 13, 16 and 18)
were not associated with the presence of a priori known
hidden subclasses.

Figure 19 (A-C) shows the results of the analysis of simu-
lated data sets, reporting, for comparison purposes, the
performance of ABCR, TNRC and the commonly used
AUC statistic. As expected, for all the considered statistics
FDR tended to decrease by increasing the sample size, the
mean difference (MD) between groups and the number of
selected genes. The performance of ABCR and AUC was
similar in each analysis, while FDR estimates were system-
atically higher for TNRC than for the other two statistics.
Finally, Figure 20 shows the expected values and variance
for the two new proposed ROC parameters (ABCR, panel
A, and TNRC, panel B) estimated under the null hypothe-
sis by 104 simulations based on a random permutation
analysis. For both statistics the estimated expected value
tended to the theoretical one (i.e., 0 in both cases) increas-
ing the sample size, while the variance tended to rapidly
decrease, indicating that both ABCR and TNRC are asymp-
totically unbiased and consistent estimators.

Discussion

In this paper we have illustrated a new feature selection
method using a combination of standard (AUC) and new
(ABCR and TNRC) statistical tools based on ROC curves
properties. In particular, ABCR represents a new compre-
hensive test to identify both proper and not proper ROC
curves. Because ABCR is a measure of the distance
between the cumulative distributions of the two classes
under study (as demonstrated in the Material and Meth-
ods section), it may be used to potentially identify any
kind of differentially expressed genes. AUC represents a
well known useful tool to identify under- and over-
expressed genes in the comparison between two classes
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[4,7,8,12], while TNRC represents a new tool to specifi-
cally identify NPRC. As illustrated in Figure 2A, where
genes selected by ABCR were separated on the basis of
AUC and TNRC values, all the genes identified by TNRC
tended to escape feature selection based on AUC and vice
versa. This behavior was also confirmed when AUC was
replaced by t statistic, another standard feature selection
tool [3,4], and when two different thresholds for FDR
were used (10% and 20%, respectively). These results
strongly point out that TNRC can identify differentially
expressed genes that are hardly identifiable by standard
statistical tools.

The large majority of genes selected by ABCR were identi-
fiable by AUC or ¢ statistic and, accordingly, they resulted
either under- or over-expressed in lymphoma cells com-
pared with NBC. NPRC represented a very small fraction
of the selected genes. This finding might be due to the fact
that TNRC statistic tends to identify gene expression pro-
files that are different in two or more subclasses within
one class compared with another, a condition that may be
quite rare in real data. However, as indicated by results of
simulation analysis (Figure 19) the main limit of TNRC is
probably its low statistical power. Simulation analysis was
based on a very simplified scenario, because data were
generated from a few variety of statistical distributions
(namely: normal and bi-normal functions, with similar
variance and different means) and the correlation
between gene expression profiles was not taken into
account. However, in spite of such limitations, the com-
parison between TNRC, ABCR and AUC clearly indicated
a poor performance of TNRC compared with the two lat-
ter statistics (Figure 19). As a consequence, in microarray
experiments with small sample size TNRC can probably
recover only a minor proportion of differentially
expressed genes that have escaped standard feature selec-
tion methods. However, as illustrated in Figure 2A and 2B,
TNRC represents a complementary tool for microarray
data that may supplement information from standard sta-
tistical analysis. Moreover, the rapid improvements in
microarray technology and the consequent availability of
chips with a low cost and a high quality might allow a very
extensive application of TNRC method in the next future.

We have arbitrarily chosen the conventional threshold of
p = 0.05 to separate different kinds of gene expression pro-
files (Figure 2A and 2B). It is evident from figure 2A,
where only ROC parameters were used, that varying the
selected thresholds, almost all unselected genes may have
been included in one out of the three considered catego-
ries (namely: under-expressed, over-expressed and corre-
sponding to NPRC, respectively). Using ¢ statistic in place
of AUC (Figure 2B) a less clear separation between such
genes was obtained, leaving a higher number of expres-
sion profiles as not classified. In particular, some genes,
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Figure 19

Mean Difference

False Discovery Rate of ABCR (green line), TNRC (blue line) and AUC (red line) as a function of the mean differ-
ence between class, the sample size in each class and the number N of selected genes. Median and interquartile
range are displayed. Panel A: N = 5; panel B: N = 20; Panel C: N = 50.
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Sample size

Sample size

Mean and variance estimates for ABCR and TNRC under the null hypothesis as a function of the number of
samples in each class (equal sample size). Each estimate was obtained from 104 random permutations.
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corresponding to the central low region of the plot (empty
circles), showed low values of both TNRC and ¢ statistics.
This finding is not surprising, because such genes were
selected on the basis of ABCR statistic, which may take
high values even in the presence of a small difference
between mean values in the two classes that cause ¢ statis-
tic to approach zero, a phenomenon that may be due to
one or more outliers.

Our results confirmed the hypothesis that NPRC (identi-
fiable by TNRC) may correspond to genes, whose expres-
sion profile is influenced by the presence of hidden
subgroups in either class. In particular, when applied to
the comparison between the semi-artificial class B, which
included FL and CLL samples, and the class A, which
included 14 NBC (6 heavily and 8 slightly or not stimu-
lated samples), 13 out of 16 selected genes were able to
separate almost perfectly the two hidden subgroups
within either one class. In particular, the first three
selected profiles in Table 2, corresponding to three clones
of the same gene (Immunoglobulin J chain), highlighted the
over-expression of all FL samples and the under-expres-
sion of all CLL samples (as indicated by the inversely-sig-
moid shaped curves in Figure 3, 4 and 5), with only one
exception, i.e., a sample of over-expressed CLL. Interest-
ingly, this sample was the same in the three clones
(namely "CLL-52" in the original paper) [11]. ] chain is a
137-amino acid protein that is synthesized in B lym-
phocytes and subserves 2 known functions: linking
immunoglobulin monomers (IgM to pentamers, IgA to
dimers) and binding polymeric immunoglobulin to secre-
tory component [14]. Differential expression of the Immu-
noglobulin J chain gene in FL vs B-CLL has not been
reported so far and its functional significance is unknown.
The possibility that our findings reflect a statistical artifact
is made unlikely by the concordant results obtained from
the analysis of three different clones of the gene (Table 2).
Further studies will help to better define this issue. Among
the sigmoid shaped curves, which indicate the presence of
two hidden sub-classes within NBC samples, the gene
with the highest TNRC value was indicated as Gene3407X
(n. 5 in Table 2) and corresponded to the Histone deacety-
lase 3. The corresponding ROC plot (Figure 7) allowed to
perfectly separate Hst from Sst cells. Histone deacetylase 3
(HDACS3) shares functional features with HDAC1 and
HDAC2. These include deacetylation of histone sub-
strates, promoter targeted transcriptional repression and
physical association with the DNA binding factor YY1
[15]. HDCA3 forms a stable complex with nuclear recep-
tor corepressor (N-CoR) and silencing mediator of retin-
oic and thyroid receptors (SMRT). Beside to the direct
effect on histone deacetylation, the HDAC3-N-CoR com-
plex can exert broader functions in regulating chromatin
structure. Aberrant expression and/or localization of
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HDCA3 have been reported in various solid tumors and
myeloid leukemia [15].

TNRC is a supervised method of statistical analysis that, as
illustrated above, may help in the identification of hidden
subgroups, a task in general performed by unsupervised
clustering. This latter technique has been proven to be
very useful in microarray data analysis [1], because it may
exploit the correlation between different gene expressions,
and may identify genes that are likely to escape supervised
feature selection, including TNRC and standard analysis
based on AUC or t values. In particular, a different expres-
sion profile within a very small sub-class (e.g., two or
three samples) is in general hardly identifiable by super-
vised tests, due to their low statistical power in the pres-
ence of small sample size in either one class. Conversely,
unsupervised methods tend to generate false clusters even
in the presence of random values from uniform probabil-
ity functions, a behavior that probably represents the
major limit of such technique. Moreover, single expres-
sion profiles corresponding to NPRC may completely
escape unsupervised selection method if they are weakly
or not correlated to other gene expressions, but they are
potentially identifiable by TNRC. Further studies are
needed to find suitable strategies to combine unsuper-
vised methods with supervised techniques, including our
proposed approach, in microarray data analysis. Finally,
the possible use of the new proposed statistics, and in par-
ticular of ABCR, to select genes useful for classification
methods [16] should also be explored.

Conclusion

In this paper we have illustrated a new approach for fea-
ture selection in microarray data analysis based on a com-
bination of new and standard statistical tools exploiting
the properties of ROC curves. Our method may identify
both proper ROC plots, using the conventional AUC sta-
tistic, and NPRC, corresponding to high values of the new
proposed TNRC parameter. AUC is a well known useful
tool to identify over- and under-expressed genes, while
TNRC can identify differentially expressed genes that tend
to escape standard statistical analysis. We have shown that
a simple visual inspection at the plot of a NPRC, selected
by TNRC, may allow to identify hidden subclasses with
potential clinical and biological insight. For these reasons,
our results indicate that NPRC represent a new flexible
and useful tool for the analysis of gene expression profiles
from microarray experiments.

Methods

Data sets

We applied our new method for feature selection both to
real and to simulated data sets. We selected a set of real
data of gene expression by extracting 34 samples from the
large data base by Alizadeh and collaborators [11], pub-
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licly available at the following web site address: http://
llmpp.nih.gov/lymphoma/data/figurel/. This database
included 4026 gene expression profiles from a variety of
96 samples of lymphomas or non neoplastic cells. We
obtained a first group (named "class A") from 14 samples
of normal circulating B cells (NBC) that had been stimu-
lated in different ways (Table 1; see also Figure 4 in the
original paper). On the basis of such stimulation pattern
we defined a priori two major subclasses within class A,
i.e., 6 highly stimulated and 8 slightly or not stimulated
samples (Table 1). We obtained a second semi-artificial
group (named "class B") of 20 heterogeneous lymphomas
by pooling 9 samples of follicular lymphomas (FL) and
11 samples of chronic lymphocytic leukemia (CLL). A var-
iable proportion of missing values for gene expression
was present in each considered group. In particular, in
class A the median proportion of missing values was 6.1%
(range: 0.42% - 31.8%), and in class B was 4.7% (range:
0.17% - 22.5%). We estimated missing data by the
method proposed by Troyanskaya and collaborators [17],
using k = 12 nearest neighbor genes.

We obtained a set of artificial data bases by randomly gen-
erating normally distributed data with different means
and equal variance in each class or subclass. For instance,
we labeled a class of samples as "controls" and a second
class of samples as "cases"; we obtained a set of not differ-
entially expressed genes generating similar expression
profiles in cases and in controls by randomly extracting
simulated values from a normal standard distribution
(mean = 0 and variance = 1). We obtained another set of
over-expressed genes by extracting values from the same
distribution, and by adopting different means for cases
and controls; the mean difference (MD) between the two
classes ranged from 0.5 to 3.0. Finally, we obtained a third
set of differentially expressed genes, corresponding to not
proper ROC curves, by splitting the cases into two sub-
classes (one including "under-expressed" values and one
including "over-expressed" values, respectively, in com-
parison with the control class); in such a simulation proc-
ess, we generated data from normal distributions with
different means and equal variance (see as an example,
Curve III in Figure 1).

Each simulated data matrix included 4000 genes. We
recursively regenerated each artificial data base for 1000
times, allowing the sample size to vary between 15 to 50
in each class and the number of differentially expressed
genes from 5 to 50 in each group (class or subclass, where
present).

We performed all analyses by an ad hoc program devel-
oped in Visual Basic.net academic version (Microsoft.net
framework ver. 1.1.4322), available on request. We
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obtained random numbers for bootstrap procedures and
for data sets generation by the RAN1 algorithm [18].

Definition of TNRC and ABCR statistics

Consider a study involving n subjects, classified by a
binary outcome Y taking values in {0,1}. For example in
a case-control study design, individuals with Y = 1 may be
affected by a specific disease, while individuals with Y = 0
may be the unaffected controls [5]. Suppose that a varia-
ble of interest (e.g., the expression level of a given gene) is
measured in all the n subjects of the study. If n is the

number of individuals with Y = 0, denote with X;, X, ...,

X, thevalues assumed by the variable of interest in this

, W

group of subjects; similarly, denote with W, W,, .., W,

the values measured in the n, individuals with Y = 1.

The empirical ROC curve can then be defined by consid-
ering different threshold values ¢ for the variable of inter-
est and by computing the true and the false positive
fractions, denoted by TPF(c) and FPF(c), respectively, in
the sample at hand [5]. It can be seen that:

n
.2 I(WjZC)

ng
> I(Xj2c)
TPF(c) = /= '

, FPF(c)==L
no

where [ is the indicator function providing I(X;>¢) = 1 if
X;> ¢, and I(X; 2 c¢) = 0 otherwise [5]. TPF corresponds to
the sensitivity of a diagnostic test, while FPF corresponds
to 1 - specificity. Since some of the X; may be equal, let
{c1, s €y, } De the set of the my different values assumed
by X; for i = 1, .., n, ordered in a decreasing way
(c1>cy>>cp 1 >, ). With these definitions, the
ROC curve is given by the two dimensional graph
obtained by connecting the points (FPF(c;,), TPF(c;,)) with
straight lines, when k = 0, 1, ..., m,, being ¢, any value
greater than X;and Wjforanyi=1, .., njandanyj=1, ..,
n,. It can be easily seen that (FPF(c,), TPF(c,)) = (0,0)
whereas (FPF(c,, ), TPF(c,, )) = (1,1).

Let AUC, be the partial area under an ROC curve between
the consecutive abscissa points FPF(¢, ;) and FPF(c;,), for k
=1, ..., my, computed according to the standard trapezoi-
dal rule. The total area AUC under the ROC curve is then
given by
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my my

AUC=2AUCk :Z(TPF(ck)+TPF(ck_1))-(FPF(ck)—FPF(ck_l))/2
k=1 k=1

When TPF(¢,) = FPF(¢,) = k/myfor k = 0, 1, ..., m,, every
threshold ¢, is not able to provide a valid classification for
the two groups of subjects, i.e., the class is assigned by
chance. In this case we obtain a particular ROC curve,
named chance line, corresponding to the rising diagonal,
whose partial area AUC,, will be denoted by A, and is given
by

2m0
It should be observed that AUC = 0.5 for the chance line.

The area AUC under the ROC curve gives a measure of the
difference between the two distributions that generated
the samples {X;} and {W,}. The greater is the value of
AUC, the higher is the difference between the two distri-
butions [5]. However, in some cases the ROC curve is not
proper and crosses the chance line in one or more points.
In these cases, even if the value of AUC is close to 0.5, the
two distributions can differ significantly.

To recover these situations, the TNRC statistic (TNRC =
Test for Not-proper ROC Curves) is introduced, by
employing the following definition:

1Mo
TNRC = ) |AUC, - A |-|aUC-05] (1)
k=1

Since in a proper ROC curve we have AUC,, > A,, for every
k=0,1, .., my equation (1) gives TNRC = 0. As a special
case, this holds also for the chance line.

In addition, it can be easily seen that the value of TNRC is
always non negative since

m, m,
2|AUCk—Ak|2 Z(AUCk—Ak) —|AUC-0.5]
k=1 k=1

The first part of the TNRC statistic corresponds to the area
between the ROC curve and the rising diagonal (ABCR =
Area Between the Curve and the Rising diagonal):

Mo
ABCR = Z|AUCk — Ay 2)
k=1

ABCR is a measure of the distance between the two cumu-
lative distributions Py(x) and P,(w) that generated the
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samples {X;} and {W;}. This can be viewed by consider-
ing the theoretical expression of the ROC curve, which is

given by Ql(Q(}l(z)) for 0 <z < 1, being Qy(x) = 1 -

Py(x) and Q,(w) = 1 - P,(w) [5]. In this case, ABCR is given
by:

.‘”Ql(QSI(Z))‘z‘dzz‘]f‘]‘Pl(X)‘l+Po(x)‘Po(x)dx:T‘Pl(x)‘Po(x)‘ﬂo(x)d"
(3)

having performed the change of variable z = Q,(x) = 1 -
Py(x). As expected, the term at the right hand side of (3) is
just the L,(p,) distance between the two distributions
Py(x) and P, (w), where p, is the probability density of the
sample {X;}.

The distribution of ABCR and TNRC under the null
hypothesis of equal gene expression in the two considered
classes was estimated by 104 random permutations at dif-
ferent sample size, and sample mean and variance of both
estimators were computed.

Feature selection

As shown in the previous paragraph, the new described
ROC parameter ABCR represents a measure of the dis-
tance between the distributions of gene expressions in the
two considered classes. Then it may be useful to identify
differentially expressed genes that may correspond both
to proper and to not proper ROC curves. We performed a
first step of feature selection by ranking all genes on their
values of ABCR. The first k genes corresponding to an esti-
mated False Discovery Rate (FDR) of 15% were retained;
the analyses were also repeated using two different FDR
thresholds (i.e., 10% and 20%). FDR represents the pro-
portion of gene expression profiles wrongly selected
among the k top ones [12,19,20]; we obtained a conserv-
ative FDR estimation by 200 random permutations of the
labels identifying either one class. Briefly, for each itera-
tion, we computed the number v of values higher than the
ABCR value corresponding to the kth top selected gene.
The mean of v from all permutations divided by k pro-
vided an estimate of FDR [12,20]. Finally, we estimated
the probability for each gene to be included among the k
ones with the highest ABCR statistic by the method pro-
posed by Pepe and collaborators [8], originally used to
account for multiplicity in a similar feature selection task
based on another ROC parameter (i.e., pAUC). Briefly, the
probability Py(k) of each gene g to be included in such
group is [8]:

Py(k) = P [rank () < k]
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We estimated Py(k) by the bootstrap based on 200 boot-
strapped samples, which has the property to acknowledge
the complex correlation between gene expression values
[8]. We "jittered" each bootstrapped sample adding a ran-
domly generated small number to each gene expression
value, to avoid ties that might bias statistical estimates [8].
For this task, random values were extracted from the uni-
form probability function setting the range of generated
values in order to preserve the original rank of not tied val-
ues.

The second step of feature selection was based on a stand-
ard ROC analysis approach: each gene selected in the pre-
vious step was classified as "under-expressed" or "over-
expressed” in class B compared with class A, on the basis
of the corresponding AUC value (values close to 0 indicat-
ing under-expression and values close to 1 indicating
over-expression). Moreover, genes were also classified as
corresponding to either proper or not proper ROC curves
on the basis of the corresponding TNRC value. For both
classifications an arbitrary threshold corresponding to the
conventional 0.05 unadjusted p value was applied. For
the first classification, the threshold value identification
was based on the asymptotic normality of AUC and on its
relation with the Mann-Whitney U statistic [5,21]. The
corresponding critical value for TNRC was obtained by
extensive permutations. For comparison purposes, the
same analysis was also repeated replacing AUC with the
Student's ¢ statistic, which represents another standard
tool in supervised analysis of microarrays [3,4]. Due to the
non normal distribution of most gene expression profiles,
which prevents the application of the Student's ¢ distribu-
tion tables, statistical significance of ¢ test was assessed by
5000 random permutations.

Finally, in the analysis of simulated data, for each simula-
tion we computed the proportion of proper or unin-
formative curves included in the first n plots (with n = the
number of genes in each simulation, corresponding to the
highest TNRC value). Median and interquartile range
(IQR) of such proportion, obtained from 1000 simula-
tions, provided a robust estimate of FDR and of its varia-
bility, respectively. Finally, by using the same approach,
the proportion of any kind of differentially expressed
genes and the proportion of genes with different mean
value between two classes were used to estimate FDR for
ABCR and AUC, respectively.

Interpretating the shape of a not proper ROC curve

We separated the ROC plots identified by TNRC into three
categories, on the basis of their shape: a) sigmoid-shaped
curves (e.g., Curve III in Figure 1A) that may indicate the
presence of a unimodal distribution of expression values
in class B and a bimodal distribution in class A; b) inverse
sigmoid-shaped curves (e.g., Curve IV in Figure 1A) that

http://www.biomedcentral.com/1471-2105/9/410

may correspond to a bimodal distribution in class B and a
unimodal distribution in class A; ¢) other differently
shaped curves. Furthermore, we arbitrarily split each ROC
curve into two parts by a vertical line crossing the centre
of the plot (i.e, corresponding to the cut-off with a specif-
icity value = 0.5). In sigmoid-shaped curves, such a cut-off
allowed to roughly separate two alleged sub-classes of
NBC, i.e., samples with a higher or a lower gene expres-
sion in comparison with the median expression value of
samples in class B. We evaluated the association between
such sub-classes and the stimulation pattern, dichot-
omized into Hst and Sst, by the Fisher's exact test. Con-
versely, in inversely sigmoid-shaped curves, such a cut-off
allowed to separate two alleged sub-classes of samples
among class B, with either over- or under-expression val-
ues in comparison with NBC. We also assessed the con-
cordance between such classification and the origin of
each sample (FL or CLL) by the Fisher's exact test. The con-
ventional unadjusted p level of 0.05 was used in this anal-
ysis.
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