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Abstract

Background: Many statistical methods have been proposed to identify disease biomarkers from gene expression
profiles. However, from gene expression profile data alone, statistical methods often fail to identify biologically
meaningful biomarkers related to a specific disease under study. In this paper, we develop a novel strategy, namely
knowledge-guided multi-scale independent component analysis (ICA), to first infer regulatory signals and then
identify biologically relevant biomarkers from microarray data.

Results: Since gene expression levels reflect the joint effect of several underlying biological functions, disease-
specific biomarkers may be involved in several distinct biological functions. To identify disease-specific biomarkers
that provide unique mechanistic insights, a meta-data "knowledge gene pool" (KGP) is first constructed from
multiple data sources to provide important information on the likely functions (such as gene ontology
information) and regulatory events (such as promoter responsive elements) associated with potential genes of
interest. The gene expression and biological meta data associated with the members of the KGP can then be used
to guide subsequent analysis. ICA is then applied to multi-scale gene clusters to reveal regulatory modes reflecting
the underlying biological mechanisms. Finally disease-specific biomarkers are extracted by their weighted
connectivity scores associated with the extracted regulatory modes. A statistical significance test is used to
evaluate the significance of transcription factor enrichment for the extracted gene set based on motif information.
We applied the proposed method to yeast cell cycle microarray data and Rsf- | -induced ovarian cancer microarray
data. The results show that our knowledge-guided ICA approach can extract biologically meaningful regulatory
modes and outperform several baseline methods for biomarker identification.

Conclusion: We have proposed a novel method, namely knowledge-guided multi-scale ICA, to identify disease-
specific biomarkers. The goal is to infer knowledge-relevant regulatory signals and then identify corresponding
biomarkers through a multi-scale strategy. The approach has been successfully applied to two expression profiling
experiments to demonstrate its improved performance in extracting biologically meaningful and disease-related
biomarkers. More importantly, the proposed approach shows promising results to infer novel biomarkers for
ovarian cancer and extend current knowledge.
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Background

Under their broadest definition, biomarkers include any
biological or chemical indicator of a specific underlying
process. In genetics, biomarkers are defined as a set of
genes that are associated with a disease or are associated
with the susceptibility to develop a specific disease. Micro-
array technology makes it possible to measure simultane-
ously the expression levels of thousands of genes, and
identifying meaningful and useful biomarkers from these
large data sets is a common goal. Specifically, investiga-
tors attempt to detect genes differentially expressed across
different types of tissue samples or the samples obtained
under different experimental conditions. Traditional
biomarker identification methods have mainly been
applied to statistical analysis of microarray data alone; T-
test [1] and significance analysis of microarray (SAM) [2]
are frequently used to detect differentially expressed genes
between two phenotypes. Several new statistical methods
have been developed to analyze time-course microarray
data. Storey et al. proposed an algorithm (EDGE) to fit the
time-course microarray data with natural cubic splines,
followed by a goodness-of-fit test to detect differentially
expressed genes [3]. Conesa et al. also proposed a two-step
regression approach to sequentially identify differentially
expressed genes from time-course microarray data under
different conditions [4]. However, these and many related
approaches do not incorporate knowledge of gene func-
tion, with respect to the phenotypes of interest, into their
statistical models.

Ideally, biomarkers should not only exhibit differential
gene expressions between normal and disease samples,
but more importantly, they should also reflect their bio-
logical role in the disease phenotype. Most significance
analysis methods applied to population (static) or time-
course microarray data have the limitation that genes are
analyzed independently and the interactions among them
are ignored. Clustering methods, such as k-means cluster-
ing [5] and self-organizing maps (SOMs) [6], were intro-
duced to group the genes with similar expression patterns.
A shortcoming of the clustering methods is that they do
not allow genes to be shared by multiple clusters. How-
ever, a single gene can be involved in multiple distinct
biological processes [7]. One solution to this problem is
to first infer gene regulatory networks [8-12] that appear
to control or regulate phenotypically relevant biological
functions, and then to extract the most biologically and
statistically relevant biomarkers.

The application of Independent Component Analysis
(ICA) to microarray data has shown some utility in regu-
latory network inference [10,13]. ICA is a statistically-
principled linear decomposition method that models the
observations as a linear combination of some latent (or
hidden) variables [14]. From the perspective of a gene reg-
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ulatory mechanism, any gene expression value can be
regarded as a combinational effect of some regulatory
inputs such as transcription factors, cellular functions, or
responses to experiment conditions [10,12]. As demon-
strated in our previous work [15,16] along with that of
others [10,12], novel applications of ICA to high-through-
put data from microarray technology can help reveal
dominant regulatory mechanisms.

It is not a trivial task to link the estimated latent variables
from ICA to real biological functions. To identify biologi-
cally relevant biomarkers for a specific disease, the incor-
poration of prior knowledge is of great importance to
improving the accuracy of computational methods [17].
However, complete prior knowledge is often difficult to
obtain. Some prior knowledge, such as regulatory motif
information (promoter responsive element sequence) is
available and can be incorporated into microarray data
analysis to assist in regulatory module identification
[18,19]. Recently, we have developed a new approach
called motif-directed network component analysis
(mNCA) to infer transcription regulatory activities (TFAs).
This approach incorporates a stability analysis procedure
to overcome the problem of many false positives in motif
information [20]. Since we can only use known motifs, a
clear limitation of the mNCA method is that we cannot
infer any new potential regulatory biomarkers beyond
prior knowledge from the model.

In this paper, we propose a novel method, namely knowl-
edge-guided multi-scale ICA, to identify disease-specific
biomarkers beyond partial prior knowledge. We propose
that a latent variable estimated by ICA from the entire
gene expression population represents the joint effect of
several biological functions. Disease-specific biomarkers
could be involved in several different biological functions
by the ICA latent variables or linear regulatory modes.
Therefore, we first cluster the whole gene population into
multiple sub-populations in which only a few biological
processes are involved. We then uncover the knowledge-
relevant regulatory modes in each subpopulation based
on the partial prior knowledge. Finally, disease-specific
biomarkers are extracted according to the strength of their
association with the extracted regulatory modes. A statisti-
cal test is applied to evaluate the significant enrichment of
transcription factors for the extracted biomarkers based
on motif information.

For algorithm validation, we applied our approach to two
time-course microarray data sets to demonstrate its
improved performance. The first data set is a yeast cell
cycle microarray data set with 104 well known cell cycle-
related genes; the second is a remodeling and spacing fac-
tor 1 (Rsf-1) induced microarray data set from a profiling
study of ovarian cancer. The experimental results show
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that our approach can identify biologically meaningful
disease-specific biomarkers related to ovarian cancer, as
compared to other gene selection methods with or with-
out prior knowledge.

Methods

If we apply ICA directly onto an entire gene expression
population, the extracted regulatory modes will reflect the
joint effect of several biological functions, some of which
are related to the disease under study and some are not. To
overcome this problem, we developed a divide-and-con-
quer strategy. We applied a knowledge-guided multi-scale
ICA approach to extract disease-related regulatory modes
reliably, and then we identify the biomarkers associated

http://www.biomedcentral.com/1471-2105/9/416

with the modes. The overall scheme is illustrated in Fig. 1.
Firstly, a knowledge gene pool (KGP) is constructed by
collecting the genes that are known to be relevant to the
specific disease from available databases and literatures.
Secondly, the entire gene population is divided into sub-
populations by a clustering method applied to the micro-
array data and, to identify regulatory modes, ICA is
applied to each sub-population. The most relevant linear
regulatory mode in each cluster is extracted using the gene
metadata in the KGP and the associated biomarkers are
ranked according to their weighted loading factors.
Finally, motif enrichment analysis is conducted to evalu-
ate the extracted biomarker candidates in terms of the
enrichment of disease-related transcription factors.
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Flow chart of the proposed method - knowledge-guided multi-scale independent component analysis (ICA) -

for biomarker identification.
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Independent component analysis (ICA)

Consider a gene expression data matrix X = [x;], whose
rows correspond to different microarray samples, and col-
umns correspond to individual genes. ICA decomposition
model can be mathematically formulated as (assuming
noiselessness for simplicity):

XNxL=ANxMSMxL' (1)
UMxL=WMxNXNxL/ (2)

where Equation (1) describes the linear combination
model with mixing matrix A, and Equation (2) the
decomposition model with de-mixing matrix W. §, X and
U are independent components, mixtures, and estimated
independent components, respectively. M is the number
of independent components, N the number of samples
and L the number of genes.

In microarray data analysis, an ICA model could be inter-
preted as the expression value of an individual gene i
under condition j (x;(j)) is the summation of different lin-
ear modes in A at condition j (a,(j)) weighted by inde-
pendent loading factors s;, in S[8], as shown below:

M
x,(j) = Zsikak(j), i=1,...,Lj=1.,N. (3
k=1
The linear modes in A might reflect distinct regulatory
mechanisms involved in gene regulation, such as tran-
scription factor (TF) activities. The FastICA algorithm [21]
can be utilized to obtain A and S based on the assumption
that the components are statistically independent and
have non-normal distributions (typically super-Gaus-
sian). This assumption is biologically plausible as most
genes are not expected to change dramatically. Only the
genes involved in distinct regulatory mechanisms will
change, producing super-Gaussian distributions in micro-
array data.

Several methods have been developed to associate a set of
genes with a specific linear mode [10,12,22]. These meth-
ods each assume that genes with the highest absolute
loading values are the significant genes associated with
linear mode a,,. In this paper, genes are ranked by a mod-
ified criterion based on the same assumption as described
in the next subsection.

Knowledge-guided multi-scale ICA

Since ICA is an unsupervised method, it is difficult to
determine which linear modes are related to specific bio-
logical functions. To identify the biomarkers relevant to a
specific biological function, prior knowledge could pro-
vide guidance for any computational method. In this
approach, we will collect a KGP containing genes strongly
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associated with the disease and use these to guide the ICA
approach for disease-relevant biomarker identification.
Notice that the total connection strength of the knowl-
edge genes associated with a disease-relevant linear mode
would be larger, in principle, than that of irrelevant linear
modes. Based on this observation, the most knowledge-
relevant linear mode can be determined from the esti-
mated ICA modes and the associated genes can then be
extracted.

However, if we apply ICA to the entire molecular profile,
the estimated linear modes will likely reflect the joint
effect of several biological functions, even for the most
knowledge-relevant mode, because many disease-irrele-
vant but differentially expressed genes co-exist in the data.
Conversely, biomarkers should be involved in several dif-
ferent linear modes in relation to underlying biological
processes. Therefore, it is reasonable to first separate the
entire profile into sub-populations. We can then find the
specific ICA linear modes from different subsets of genes
rather than from the whole gene population; this
approach is referred to as the "multi-scale ICA" approach
in this paper. Since these modes will be associated with
different parts of the knowledge genes in the KGP, they are
more suitable for biomarker identification. Clustering
methods, such as k-means clusterin and SOMs, can be
used to form the subsets of genes, with the assumption
that the genes involved in similar biological functions are
more likely to exhibit similar expression patterns than
genes involved in different biological functions.

Our method can be mathematically described as follows.
Assume a whole gene population G in a microarray data
X has been clustered into n subsets, G,, G,, ..., G,,. For each
subset G; (i = 1, ..., n), we apply ICA to find the most
knowledge-relevant linear mode a; according to the total
connection strength of the knowledge genes in this subset.

Thus, the index j can be obtained by

j=argmax(2|sgm |) m=1,.,M, (4)
" geK;

where s,, is the loading factor for gene g associated with
linear mode a,,, K; the subset of knowledge genes in the it
cluster, and M; the number of independent components
in the it cluster.

Then each gene g in this subset is assigned a score ¢, which
is defined as follows:

g€ Gy, wi:M (5)

C :w1*|5 |K|r

8 8 | ’
where w;is a weight to represent the significance of the lin-
ear mode in the i subset associated with the prior knowl-
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edge. Here we define w; as the proportion of all knowledge
genes in this subset with respect to the entire KGP (K).
Once the knowledge-relevant linear modes in all subsets
are determined, each gene will have a score assigned and
we rank the genes in terms of their scores. The larger the
score, the more strongly the gene is related to the biologi-
cal process.

A key issue in this method is how to determine the opti-
mal cluster number when forming the subsets of genes. In
this paper, we determine the optimal cluster number by a
cross-validation approach. Specifically, we assume the
optimal cluster number is in some range, from 1 to an
upper limit. For each cluster number, the knowledge
genes are randomly stratified into a training gene set (as
our partial prior knowledge gene set) and a test gene set by
a ten-fold cross-validation approach. The method is
applied with the partial prior knowledge genes to rank the
whole gene population, and prediction accuracy is tested
on the test gene set. The above procedure is repeated 10
times, once for each left out fold, and an average accuracy
over the ten folds is reported. We select the number with
the highest average accuracy as the optimal cluster
number for clustering. The upper limit of cluster numbers
should be cautiously determined by the number of
knowledge genes and the number of genes in the full pro-
file. If the number of clusters is too large, it will lose the
ability to infer novel biomarkers. An extreme case is that
each individual gene forms a cluster and then we can only
obtain the correct ranks for known genes. Genes not in the
KGP will be randomly ranked, which is not informative at
all for biomarker identification. If the cluster number is
too small, the estimated linear modes may be incorrect
due to the presence of many irrelevant genes. In our exper-
iments, we set the upper limit as 10 for the yeast cell cycle
data set and 15 for the ovarian cancer microarray data set,
respectively.

Knowledge gene pool (KGP)

Each KGP is a collection of those genes that are potentially
most strongly related to a specific disease. Usually there
are thousands of genes in microarray data and most of
them are not relevant to a specific disease even though
they exhibit changes in gene expression level. The knowl-
edge gene pool is an important asset for data analysis
since it helps reduce many false positives. However, in
most cases, little prior knowledge can be obtained, and
the available knowledge is usually neither complete nor
sufficiently accurate to fully define the specific disease
under study. Thus, the KGP is best used as a guide for
biomarker identification. In our studies, the KGP is prima-
rily constructed from the published biological literature or
from databases such as Ingenuity Pathway Analysis (IPA;

Ingenuity Systems: http://www.ingenuity.com) and the
TRANSFAC 11.1 Professional Database [23].
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Evaluation by motif enrichment analysis

For microarray data analysis, there is often no ground
truth (i.e., true biomarkers known to be related to a spe-
cific biological process or disease under study) available
for us to evaluate the performance of a biomarker identi-
fication method. However, we know that gene expression
is often regulated by transcription factors (TFs), proteins
that bind to promoter or enhancer sequence elements
upstream of genes and either activate or inhibit gene
expression. In this paper, with the motif information pro-
vided, we have designed a statistical test to evaluate the
enrichment of transcription factors for a gene set identi-
fied. A gene-transcription factor matrix M is generated
where each element in the matrix, m,; represents how well
the upstream sequence of a gene g matches the motif that
a transcription factor f binds to. For human genes, 2 Kbp
upstream regions from the transcription start sites (TSSs)
of the genes are extracted from the UCSC genome data-
bases [24]. Match™ [25] is then used to search the tran-
scription factor binding site (TFBS) by its position-
weighted matrices (PWMs) in a gene's upstream region,
which outputs the scores of core similarity and matrix
similarity for each matched motif. Since one TF may have
multiple TFBSs, we use the summation of average scores
of core similarity and matrix similarity to set the final
value of m,.

Given a gene set S extracted by a computational method,
a statistic to measure the enrichment of a specific tran-
scription factor f is defined as

ey = 2 my (6)

ges

To calculate the statistical significance (p-value), we need
to form a null distribution. The null hypothesis is that the
gene set is randomly generated from the gene population
and there is no significant enrichment of the transcription
factor f. We randomly select gene sets with same size of S
from the baseline gene population, and repeat B times to
generate the corresponding null statistic enrichment score

e?b, for b = 1, ..., B. The null hypothesis distribution is

assumed to be symmetric in this study. The p-value can be
obtained for each gene set by calculating the probability
that a null gene set has a statistic more extreme than the
observed statistic. Mathematically, the p-value can be cal-
culated by:

number of members in {b:e?b >ef,b=1,..,B}

ps = B

(7)
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Baseline experiments and evaluation method

To evaluate the performance of our proposed approach,
EDGE algorithm [3] was first considered as a comparison
method since it was specially designed to identify statisti-
cally significant genes from time-course microarray data.
However this comparison is insufficient due to that EDGE
does not incorporate knowledge genes to provide guid-
ance for biomarker identification. On the other hand,
given partial prior knowledge genes, traditional super-
vised classification methods are not suitable to predict
whether a gene is related to prior knowledge because there
is no true negative gene available. Therefore, we design
three baseline biomarker identification methods that
incorporate partial prior knowledge for a fair comparison.
The first baseline ICA method is designed to evaluate if
our multi-scale strategy by clustering offers an improved
performance for biomarker identification. Two correla-
tion methods with or without clustering are then imple-
mented to identify the genes exhibiting similar patterns
with partial prior genes, compared to the ICA approach
focusing on regulatory mode identification. Specifically,
the first method is a baseline ICA method where ICA is
applied to the entire expression profile and the partial
prior knowledge is used to find the most knowledge-rele-
vant linear mode by Equation (4). Genes are ranked
according to their absolute connection strengths associ-
ated with this linear mode. The second method estimates
the correlation with the partial prior knowledge genes
without clustering (baseline correlation method-1).
Genes are then ranked based on their absolute correlation
coefficients between an individual gene expression profile
and the average profile of partial prior knowledge genes.
However, taking the average profile of all knowledge
genes may reduce the sensitivity of detection, especially
when the genes in KGP are not similar to each other. To
overcome this problem, the third baseline method is a
weighted correlation method based on a clustering
approach (baseline correlation method-2). Similar to the
multi-scale ICA method, the entire gene population is
grouped into several sub-populations and a gene in each
cluster is assigned a score. The score is the weighted abso-
lute correlation coefficient between an individual gene
expression profile and the average profile of partial prior
knowledge genes in this cluster. The weight is then calcu-
lated using Equation (5) and genes are ranked according
to their scores.

Given a ranked gene list and knowledge gene set, we can
use the Receiver Operating Characteristic (ROC) curve
[26] and the area under the curve (AUC) to measure the
test accuracy for each biomarker identification method.
ROC curve is a graphical plot of true positive rate (TPR) vs.
false positive rate (FPR). AUC is an important perform-
ance measure that provides an overall measure of accuracy
for the test. Given a ranked gene list (g;, &,/ ..., §,) With a
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total of n genes and the ground truth gene set G, with k
genes, true positive rate and false positive rate, when
selecting top i genes G;in the list, are calculated as follows:

TPR(i) = |G,ﬂka| (8)
FPR(i) = M )
n—k

Results and discussion

We applied our knowledge-guided multi-scale ICA
method to two gene expression profiling studies: (1) a
yeast cell cycle microarray data set [27] and (2) an Rsf-1-
induced microarray data set. The yeast cell cycle data set
consists of the expression of 6178 Open Reading Frames
(ORFs) during the cell replication cycle in the budding
yeast (Saccharomyces cerevisiae). The data set consists of
77 samples corresponding to various experiment condi-
tions. Approximately 800 genes have been identified as
cycle-regulated genes; among these 104 genes have been
well studied [27]. We us The goal of this experiment is to
identify the cell cycle-regulated linear modes and then
extract the corresponding genes associated with the cell
cycle. We used the 104 genes as our training knowledge
gene set and the remaining 704 genes as an independent
test set for evaluation.

The Rsf-1-induced microarray data set was acquired and
analyzed in our experiment. The dataset was generated
using Affymetrix Human Genome U133 Plus 2.0 Arrays
from an expression profiling study of ovarian cancer at the
Johns Hopkins Medical Institutions. The study was
designed to identify Rsf-1 regulated genes in ovarian can-
cer; Rsf-1 (also known as HBXAP) is a newly discovered
gene frequently amplified in ovarian cancer [28]; the pro-
tein participates in chromatin remodeling which is essen-
tial for a wvariety of cellular functions including
transcription, DNA replication, and DNA repair. The data
set is composed of 7 samples with two biological condi-
tions (Rsf-1-induced and not Rsf-1-induced) and four
time points at 0 hour, 6 hours, 18 hours, and 30 hours.
We used Affymetrix's Probe Logarithmic Intensity Error
(PLIER) algorithm with quantile normalization to pre-
process the original intensity data for gene expression
measurements [29]. After the preprocessing, we obtained
expression measurements of 54,675 probe sets for each
sample.

The EDGE algorithm was first applied to select statistically
significant expressed genes from yeast cell cycle data and
Rsf-1 induced ovarian cancer data, respectively. After rank-
ing all genes in terms of their q-values estimated from
EDGE, we calculated AUC values for yeast cell cycle-
related genes and ovarian cancer-related genes, respec-
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tively (see below). As a result, both AUC values are rela-
tively low (around 0.5), which indicates that the genes
identified from pure data-driven methods (such as EDGE;
without prior knowledge guidance) may not show strong
biological relevance.

Yeast cell cycle data

To reduce computational complexity, k-means clustering
was used to form the subsets of genes for both datasets.
The number of independent components in the FastICA
algorithm was set to five for this dataset, since our previ-
ous dimension estimation approach with a stability anal-
ysis procedure [16] showed that five independent
components are sufficient to describe the gene expression
data. We first conducted ten-fold cross-validation on the
well studied 104 cell cycle-related genes. For each fold, the
optimal cluster number is determined by a nested cross-
validation procedure on the training gene set, as illus-
trated in Fig. 2. The number of clusters ranges from 1 to
10. Notice that when the number is 1, no clustering is
needed and the algorithm reduces to the baseline ICA
method. Each ten-fold cross-validation is repeated 10-

10-fold cross-
validation

All knowledﬁe ﬂenes

Split as training and validation gene sets

Split training gene set as
10-fold CV
on training

gene set

Cluster whole gene
population into n clusters

ICA on each Eene cluster

Calculate weights and rank
genes based on learning gene

Predict test ﬂene set

Serreresseresnsnsnnnes l

Determine ogtimal cluster number n ogt
Cluster whole gene population into n_opt
Calculate weights and rank genes based on

Predict validation ﬂene set

Figure 2

Procedure of ten-fold cross-validation. The optimal
number of clusters is determined by a nested ten-fold cross-
validation on training gene set.
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times with different randomly chosen stratified sets of
knowledge genes. Since the k-means clustering method
generates different results depending on its random ini-
tialization, we repeat the procedure ten times with differ-
ent initializations to obtain more reliable results. The
results reported here are the average results of the ten dif-
ferent initializations.

The resulting average AUC value of ten-fold cross-valida-
tion on 104 genes is 0.9206 with standard deviation of
0.0470. Fig. 3 shows the histogram of determined optimal
number of clusters during the ten-fold cross-validation
procedure. From the figure we can see the most frequent
number of clusters is five. Then we implemented three
baseline methods for ten-fold cross-validation as compar-
isons. For baseline correlation method-2, we chose the
optimal cluster number from the multi-scale ICA method
for a fair comparison. The ROC curves of ten-fold cross
validation for the two baseline correlation methods, the
baseline ICA method, and our multi-scale ICA method are
shown in Fig. 4. The ROC curves show that the multi-scale
ICA method outperforms the baseline correlation
method-2, and that the baseline ICA approach is better
than the baseline correlation method-1. Overall, the pro-
posed multi-scale ICA method significantly outperforms
all three baseline methods as estimated by the Kol-
mogorov-Smirnov (K-S) one-sided test (Table 1).

To further test the generalizability of our method, we con-
ducted ten-fold cross-validation on the 104 genes using a
subset of samples. The original data set includes 77 sam-
ples synchronized by three independent methods: a fac-
tor arrest, elutriation and arrest of a cdc 15 temperature-
sensitive mutant [27]. We selected 63 samples from all the

Yeast cell cycle dataset

frequency (%)

1 2 3 4 5 6 7 8 9 10

number of clusters

Figure 3

Histogram of determined optimal number of clusters
in ten-fold cross- validation on yeast cell cycle data
set.
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Figure 4

ROC curves of ten-fold cross-validation for four
biomarker identification methods on training knowl-
edge gene set of yeast cell cycle data set. Solid line rep-
resents the multi-scale ICA method; dash-dotted line
represents the baseline ICA method; dotted line represents
the correlation method-1; dash line represents the correla-
tion method-2.

samples by excluding those samples under elutriation
condition. The resulting average AUC value is 0.9157 with
standard deviation of 0.0458. Also the most frequent opti-
mal cluster number is five (with a frequency of 65%),
which shows a great consistency when compared to the
result using all the samples.

All 104 knowledge genes were then used as a training set
in the algorithm to test 704 cell cycle-related genes for all
four methods. During the training, we still used tenfold
cross-validation to determine the optimal number of clus-
ters. Fig. 5 shows the average AUC values and their stand-
ard deviations in ten-fold cross-validation across different
number of clusters. From the figure we can see that the
average AUC (standard deviation), starting at 0.892
(0.0006) for the full gene population, decreases a little at
two and three clusters. The AUC increases gradually and
reaches the peak of 0.9274 (0.0071) at five clusters, at
which it remains constant. So the optimal number of clus-

Table I: P-values of Kolmogorov-Smirnov test for different
methods on yeast cell cycle data using ten-fold cross-validation

Method | Method 2 P-values of K-S test
Optimal ICA Baseline ICA <le-10
Optimal ICA Correlation method | <le-10
Optimal ICA Correlation method 2 < le-5
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Yeast cell cycle dataset
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Figure 5

Average area under the curve (AUC) values using
ten-fold cross-validation with different numbers of
clusters on 104 knowledge genes. The knowledge-
guided multi-scale ICA method is applied to yeast cell cycle
data set for the identification of cell cycle-related genes.

ters for multi-scale ICA approach is five. Then an inde-
pendent evaluation was performed on the test gene set
and the ROC curves for these four methods was calculated
when the cluster number is five (Fig. 6). The ICA-based
methods significantly outperform the baseline correlation
methods, and the multi-scale ICA is the best method
when compared with the three baseline methods (Table
2).

©c e o o9
® N »® © =

true positive rate
o
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.| e Baseline ICA
o1y | Baseline correlation method-1| |
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0 . . | |
0 0.2 0.4 0.6 0.8 1
false positive rate
Figure 6

ROC curves of four biomarker identification meth-
ods on yeast cell cycle data set with an independent
test gene set.
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Table 2: P-values of kolmogorov-Smirnov test for different
methods on yeast cell cycle data using an independent test gene
set

Method | Method 2 P-value of K-S test
Optimal ICA Baseline ICA < le-10
Optimal ICA Correlation method | < le-10
Optimal ICA Correlation method 2 < le-10

We examined in detail the extracted knowledge-relevant
linear modes and the biological functions of their associ-

http://www.biomedcentral.com/1471-2105/9/416

ated cell cycle-regulated genes. Fig. 7 shows five knowl-
edge-relevant linear modes and their weights as identified
when the number of clusters is set at the optimum
number of five (Fig. 5). The top three linear modes have
much higher weights than the lower two modes and their
estimated TFAs clearly show periodic patterns related to
cell cycle. We examined the biological functions of these
well-known cell cycle-regulated genes associated with
these three linear modes. The majorities of genes in linear
mode L3 are associated with the M/G1 boundary or are
known transcriptional targets of STE12/MCM1. Most of
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0+ |
-0.5
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S o .
T
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Figure 7

Five cell cycle-related linear modes in the proposed multi-scale ICA approach on yeast cell cycle data set. The

weight is also listed in the figure for each linear mode.
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the genes in linear mode L1 are SCB/MCB regulated in late
G1 and S phase. Finally, many genes in linear mode L2 are
in S/G2 and G2/M phases. In summary, we can see that
the linear modes L3, L1, and L2 correspond to different
biological functions in cell cycle process.

The top 10 genes selected by multi-scale ICA method are
listed in Table 3. Among them, four genes (CLN2, MCD1,
POL30 and RNR1) are in the known training gene set. All
other genes (CSI2, PRY2, YOX1, TOS4, AXL2 and CRH1)
are the genes related to cell cycle beyond our training gene
set, i.e,, in the test gene set. The results show that our
method is effective at finding novel biomarkers beyond
knowledge, which is clearly an important feature of the
proposed approach for novel biomarker identification
beyond prior knowledge. In most of cases, especially for
human disease, knowledge genes are limited and we need
to infer the new ones from partial knowledge for biomar-
ker discovery.

Rsf-1-induced gene expression data

Knowledge gene pool (KGP)

To construct the KGP, we started with the known gene Rsf-
1 and its related genes, NF-kappa B (NFKB1) and
SMARCAS (also known as hSNF2H) as reported in [30],
to search the databases. We used Ingenuity Pathway Anal-
ysis (IPA) to extract 95 genes that are thought to be
directly related to NFKB1 and SMARCAS5. Note that there
is no network related to Rsf-1 in the current IPA database.
We also included 43 genes from TRANSFAC 11.1 Profes-
sional Database [23], whose protein products are tran-
scription factors biologically relevant to ovarian cancer as
reported in literature. Hence, our KGP consists of 141 dis-
tinct Affymetrix probe set identifiers that represent the
expression values for the 138 genes.

Multi-scale ICA results

We used 'tanh' nonlinearity in the FastICA algorithm:
other parameters were set at their default values. The
number of the independent components is set to a maxi-

http://www.biomedcentral.com/1471-2105/9/416

mum value of 6 due to the limitation of sample size. Ten-
fold cross-validation was conducted on our partial prior
knowledge genes, where the optimal cluster number was
determined by a nested cross-validation approached for
each fold as shown in Fig. 2. The number of clusters was
set from 1 to 15. We also repeated 10 times for ten-fold
cross-validation and k-means clustering in order to gener-
ate more reliable results. The resulting average AUC is
0.7203 with standard deviation of 0.0804. Fig. 8 shows
the histogram of determined optimal cluster number in
the ten-fold cross-validation procedure and we can see
that the most frequent cluster number is 4. We compared
the ROC curves for the two baseline correlation methods,
the baseline ICA and the multi-scale ICA for ten-fold
cross-validation (Fig. 9). The results in Table 4 show that
multi-scale ICA method performs significantly better than
baseline ICA method and baseline correlation method-1
with p-value < le-10, while performing marginally better
than baseline correlation method-2 (p-value = 0.0037).
Since baseline correlation method-2 also calculates clus-
tered average profiles of the prior knowledge genes, this
result indicates that the multi-scale approach by clustering
is an effective strategy to improve the performance for
ovarian cancer-related biomarker identification. On the
other hand, a major weakness in baseline correlation
method-1 lies in that the average profile of all prior
knowledge is used when their expression profiles are not
similar to each other.

Evaluation by motif analysis

All knowledge genes were used as the training set in the
algorithm to rank the whole gene population for all four
methods. During the training, we still used ten-fold cross-
validation to determine the optimal number of clusters in
multi-scale ICA method. Fig. 10 shows the average AUC
values and their standard deviations obtained with differ-
ent numbers of clusters for the ten-fold cross-validation;
the average AUC (standard deviation), starting at 0.6146
(0.0004) for the whole gene population, increases to
0.7329 (0.0253) at two clusters and reaches the maximum

Table 3: Top10 genes selected by the proposed multi-scale ICA method on yeast cell cycle data

Rank ORF Name Short Description
| YPL256C CLN2 CycLiN; G1 cyclin involved in regulation of the cell cycle
2 YOL007C csI2 Chitin Synthesis Involved; protein of unknown function
3 YKROI3W PRY2 Pathogen Related in Yeast; protein of unknown function
4 YDLOO3W MCDI Mitotic Chromosome Determinant; expression is cell cycle regulated and peaks in S phase
5 YMLO27W YOXI Homeodomain-containing transcriptional repressor
6 YBR088C POL30 POLymerase; proliferating cell nuclear antigen (PCNA)
7 YLRI183C TOS4 Target of SBF; promoters of some genes involved in pheromone response and cell cycle;
8 YIL140W AXL2 AXial budding pattern; glycosylated by Pmt4p; potential Cdc28p substrate
9 YGRI189C CRHI Congo Red Hypersensitive; cell wall protein; putative chitin transglycosidase
10 YERO70W RNRI RiboNucleotide Reductase; the RNR complex catalyzes the rate-limiting step in dNTP synthesis and is

regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits
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Figure 8

Histogram of determined optimal number of clusters
in ten-fold cross- validation on ovarian cancer data
set.

value of 0.7343 (0.0210) at four clusters, and remains
almost constant thereafter. Therefore, the optimal
number of cluster for the multi-scale ICA approach was
selected as four. Specifically, we examined estimated lin-
ear modes from ICA methods. Fig. 11 shows the estimated
knowledge-related TFAs using baseline ICA method and
Fig. 12 shows the estimated four knowledge-related TFAs
and their weights using our multi-scale ICA method. We
observe that one of the TFA patterns in Fig. 12 (L3) is sim-
ilar with that in Fig. 11, which indicates that multi-scale
ICA method can estimate more TFAs for knowledge-
related genes than baseline ICA method. Four different
linear modes and their weights in Fig. 12 also indicate that
the expression patterns of the genes in KGP are not similar
to each other, which seems to be the major reason behind
that baseline correlation method-1 (using the average pro-
file of all prior knowledge) underperforms other meth-
ods.

For the final ranked gene lists, we performed motif enrich-
ment analysis to evaluate the performance of each of the
four different methods for biomarker identification. Spe-
cifically, among 43 ovarian cancer-related TFs extracted
from TRANSFAC 11.1 Professional Database [23], 14 TFs
have their PWMs available and we generated the gene-TF
matrix M for them. For each TF, a PWM was chosen from

Table 4: P-values of Kolmogorov-Smirnov test for different
methods on Rsf-1-induced ovarian cancer microarray data

Method | Method 2 p-value of the K-S test
Optimal ICA Baseline ICA <le-10
Optimal ICA Correlation method | < le-10
Optimal ICA Correlation method 2 0.0037
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Figure 9

ROC curves of ten-fold cross-validation for four
biomarker identification methods on knowledge
gene set of ovarian cancer data set. Solid line repre-
sents the multi-scale ICA method; dash-dotted line repre-
sents the baseline ICA method; dotted line represents the
correlation method-I; dash line represents the correlation
method-2.

the vertebrate non-redundant profiles. Table 5 lists their
TRANSFAC PWM entry IDs and the corresponding TF
descriptions. To increase the statistical power, we con-
ducted multiple tests by selecting different gene sets with
different sizes for different gene selection methods. The
number of genes in each gene set ranges from 100 to
1,000 and the average p-values for 14 TFs are reported.
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Figure 10

Average AUC values using ten-fold cross-validation
across different numbers of clusters. The knowledge-
guided multi-scale ICA method is applied to Rsf-1-induced
ovarian cancer microarray data set for the identification of
disease-specific biomarkers.
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Estimated knowledge-related TFAs using baseline
ICA method. X-axis represents the time and Y-axis repre-
sents the estimated TFAs.

Fig. 13 shows the average p-values of TFs enrichment for
different gene sets selected by different methods. Both ICA
methods outperform the baseline correlation methods in
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terms of finding more enriched ovarian cancer-related TFs
binding sites. Moreover, our multi-scale ICA method is
slightly better than baseline ICA method for motif enrich-
ment. It is worth noting that although both multi-scale
ICA and baseline ICA methods can extract ovarian cancer-
related biomarkers with significant motif enrichment,
multi-scale ICA method can help reveal more biomarkers
related to ovarian cancer. For this experiment, it is also
expected to have similar TF enrichment from both meth-
ods, since one common linear mode is revealed by both
methods (i.e., the mode in Fig. 11 is very similar with the
L3 mode in Fig. 12). From the pattern of this common
mode, we postulate that this is a major mode related to
RSF-1-induced ovarian cancer. Therefore, the genes
extracted from this mode will show a similar significance
level in TF enrichment (as shown in Fig. 13). However, the
multi-level ICA approach can extract other linear modes
related to ovarian cancer (see Fig. 12). Apparently, the
biomarkers related to these other modes cannot be iden-
tified with the baseline ICA approach. This can be sup-
ported by the ROC curves in Fig. 9, showing an improved
performance of using multi-scale ICA approach compared
to that of using baseline ICA approach.
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Estimated four knowledge-related TFAs using the proposed muti-scale ICA method. X-axis represents the time

and Y-axis represents the estimated TFAs.
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Table 5: Ovarian cancer-related TFs and their TRANSFAC entry IDs & descriptions

Index TF Name PWM Consensus Binding Site Factor Description
Access No.
| AP-2 MO00189 MKCCCSCNGGCG Activator protein 2
2 AP-2alpha  M00469 GCCNNNRGS Activating enhancer binding protein 2 alpha
3 AP-2alphaA  MO01045 ANNGCCTNAGGSNNT Activating protein 2, AP-2A, Ker-1
4 AP-2gamma M00470 GCCYNNGGS Activator protein 2gamma, ERF-1|
5 AP-2rep M00933 CCCCGCCCCN Specificity protein|, stimulating protein |
6 BRCAI M01082 KTNNGTTG Breast cancer type | susceptibility protein
7 E2F MO00516 TTTSGCGCGMNR EIIF protein, activator of myc, important for p|107 promoter activity
8 Elk-1 M00007 NAAACMGGAAGTNCVH Elkl, member of ETS oncogene family
9 NF-kappaB  M00774 NNNNKGGRAANTCCCN Nuclear factor kappa B, p50
10 Spl MO00933 CCCCGCCCCN Specificity protein|, stimulating protein |
I TGIF MO00418 AGCTGTCANNA 5'-TG-3' interacting factor, TG-interacting factor, TGFB-induced factor
12 c-Rel M00053 SGGRNTTTCC Nuclear factor kappa B c-Rel, p68
13 P53 M00272 NGRCWTGYCY Tumor protein p53, TRP53
14 ER MO0O0I91 NNARGNCANNNTGACCYNN  Estrogen receptor

Discussion with biological interpretation

To enable a more detailed analysis, the top 10 genes
extracted by optimal multi-scale ICA method are listed in
Table 6 and the putative TFs in their promoter regions are
shown in Fig. 14. Since none of the genes are in the KGP,
they were entered into an Ingenuity Pathways Analysis
(IPA) where we found that all of these genes can be incor-

porated into a single hypothetical network (Fig. 15). The
major functions of this network are involved in gene
expression, cancer development, and cellular motility.
Five genes, FOSB, FOS, EGR1, IL8 and CDK2, are in the
cancer module with p-values ranging from 1.84E-7 to
6.5E-3. FOSB and FOS belong to the Fos family that het-
ero-dimerizes with Jun proteins to form the AP-1 tran-

Rsf-1 induced ovarian cancer dataset
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Figure 13

Average p-value of TF enrichment for different gene sets associated with different methods on Rsf-1-induced

ovarian cancer microarray data set.
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Table 6: Top 10 genes selected by the proposed multi-scale ICA on Rsf-1-induced microarray data

Rank  Probe Set ID Gene Symbol Gene Full Name
| 202768_at FOSB FBJ murine osteosarcoma viral oncogene homolog B
2 209189_at FOS v-fos FB] murine osteosarcoma viral oncogene homolog
3 205476_at CCL20 chemokine (C-C motif) ligand 20
4 212009_s_at STIPI stress-induced-phosphoprotein |
5 209795 at CDé69 CD69 molecule
6 211506_s_at IL8 interleukin 8
7 1557910_at HSP90ABI heat shock protein 90 kDa alpha (cytosolic), class B member |
8 227404_s_at EGRI Early growth response |
9 211804 s_at CDK2 cyclin-dependent kinase 2
10 208621 _s_at ViL2 villin 2

scription factor complex [31]. AP-1 transcription factors
control rapid responses of mammalian cells to stimuli
that are associated with proliferation, differentiation and
transformation [32]. IL-8 is a member of the C-X-C family
of chemokines, and overexpression of IL-8 is observed in
subsets of human ovarian cancer cells [33]. Previous stud-
ies have shown that the expression of interleukin-8 (IL-8)
is directly correlated with the progression of human ovar-
ian carcinomas implanted into the peritoneal cavity of
nude mice [34]. The early growth response 1 (EGR1) is a
transcription factor that acts as both tumor suppressor
and tumor promoter depending on the cellular context. In
the experiments of multiple pituitary and ovarian defects
in Krox-24 (NGFI-A, Egr-1)-targeted mice, EGR1 was
implicated as a novel key regulator of anterior pituitary
physiology and that it may play important roles in specific

cell lineages [35]. CDK2 is known to be involved in cell
cycle regulation and the overexpression of CDK2 is asso-
ciated with malignancy in ovarian tumors [36].

Conclusion

Biomarker identification is an important goal in many
microarray data analyses. We propose a novel method,
knowledge-guided multi-scale ICA, to find relevant
biomarkers associated with specific biological functions.
We aimed to infer knowledge-relevant regulatory signals
and then identify corresponding biomarkers through a
multi-scale strategy. A knowledge gene pool is constructed
from multiple knowledge sources to help identify disease-
specific gene clusters. By applying ICA to multi-scale gene
clusters, an examination of the revealed regulatory modes
can uncover knowledge of the underlying biological regu-

GenelPro
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STIP1 SP1 | AP-2 BRCA1 Sp1 |kappaB
NF- AP-2
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Figure 14

TFs and their locations in 2 Kbp promoter region for top 10 genes selected by our approach. The promoter
region is represented from -2,000 bp to 0 from TSS and each block in the figure represents a 100 bp region.
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Figure 15

The network obtained from IPA with all of top 10 genes in Table 6. Five genes, FOSB, FOS, EGRI, IL8 and CDK2, are

highly related to cancer module.

latory mechanisms. In addition, we have designed a statis-
tical test procedure to measure the transcription factor
enrichment of a selected gene set based on motif informa-
tion. The approach was successfully applied to two gene
expression profile data sets to identify biomarkers: yeast
cell cycle microarray data and Rsf-1-induced microarray
data. The experimental results show that our method can

extract apparently biologically meaningful and condition-
related biomarkers. The performance of the proposed
method significantly outperforms several baseline meth-
ods for biomarker identification. More importantly, the
proposed method has notable potential to discover novel
biomarkers beyond any partial prior knowledge.
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