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Abstract

Background: Hierarchical clustering is a widely applied tool in the analysis of microarray gene
expression data. The assessment of cluster stability is a major challenge in clustering procedures.
Statistical methods are required to distinguish between real and random clusters. Several methods
for assessing cluster stability have been published, including resampling methods such as the
bootstrap.

We propose a new resampling method based on continuous weights to assess the stability of
clusters in hierarchical clustering. While in bootstrapping approximately one third of the original
items is lost, continuous weights avoid zero elements and instead allow non integer diagonal
elements, which leads to retention of the full dimensionality of space, i.e. each variable of the
original data set is represented in the resampling sample.

Results: Comparison of continuous weights and bootstrapping using real datasets and simulation
studies reveals the advantage of continuous weights especially when the dataset has only few
observations, few differentially expressed genes and the fold change of differentially expressed
genes is low.

Conclusion: We recommend the use of continuous weights in small as well as in large datasets,
because according to our results they produce at least the same results as conventional
bootstrapping and in some cases they surpass it.

Background tance of an object to a class (i.e. single, complete or aver-
Cluster analysis is a widely used tool for interpretation of ~ age linkage). The algorithms are well-defined and
gene expression experiments. It allows to group genes as  reproducible, however the choice of different similarity
well as (tissue) samples in classes (clusters) of similar =~ measures and cluster methods leads to different results
characteristic profiles. Class assignment results from  [1].

applying a similarity measure (i.e. distance measure or

correlation) and a selected method to calculate the dis-
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Algorithms for hierarchical agglomerative classification
exist for a long time [2-6]. They are suitable for the
description of highly dimensional data. Eisen et al. intro-
duced hierarchical cluster analysis for microarray data in
1998 [7].

A problem in cluster analysis is to discriminate between
real and random clusters. The latter arise from random
variation of gene expression measurements due to techni-
cal variation and biological variability. A measure of clus-
ter stability is needed to solve this problem.

Several methods for validating clusters internally have
been described [8-19]. The basic idea is to apply the same
methods to data similar to experimentally derived data or
that "might as well" have been generated. One idea is to
add a (normally distributed) error term on all measure-
ments [8,9]. Thalamuthu et al. [15] perturb simulated
data to evaluate and compare gene clustering methods in
microarray analysis. Another method depends on the
study of random samples from the original dataset.
Smolkin and Ghosh [10] use this method to assess the sta-
bility of clusters in hierarchical cluster analysis of microar-
ray experiments. They calculate a cluster stability score as
a percentage of how often a cluster occurs in the samples.
Monti et al. [16] propose a consensus clustering where
multiple runs of a clustering algorithm are performed on
subsampled data and a consensus across these is deter-
mined. Tseng and Wong [17] use a different approach to
identify stable clusters. They iteratively apply k-means to
subsamples of the original data and use the results as clas-
sifiers to cluster the original data. A review on clustering
validation is given by Handl et al. [14]. They distinguish
between external and internal measures. Whereas external
validation measures require additional knowledge of class
labels, internal validation techniques are only based on
the information intrinsic to the data alone. The Rand
Index [20,21] which determines the similarity between
two partitions is an example for an external validation
measure. Internal measures comprise different types of
validation techniques. Types referring to the particular
notion of clustering quality that they employ assess com-
pactness, connectedness and separation of clusters or a
combination of these. A different class of methods is to
repeatedly resample or perturb the original dataset and re-
cluster the resulting data. Nearest-neighbor based meth-
ods, the bootstrap and our proposed method belong to
this class. An alternative method is to estimate the degree
to which distance information in the original data is pre-
served in a partitioning. Finally there exist specialized
measures for highly correlated data, such as the figure of
merit. Datta and Datta [18,19] compute a figure of merit
based on three validation measures:, an average propor-
tion of non-overlap, an average distance between means
and an average distance. All of them are computed under
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consideration of the full data and the data obtained by
deleting the expression levels at one time point at a time.
These values are expected to be small for a good clustering
algorithm.

Our proposed method is similar to the bootstrap. Only a
few applications of the bootstrap method in cluster anal-
ysis over arrays can be found in the literature. Zhang and
Zhao [11] use the bootstrap for hierarchical cluster analy-
sis. They summarize individual dendrograms in a consen-
sus-tree. Their method requires estimates for the
impreciseness of gene expression measurements.

Also Bhattacharjee et al. [22] use bootstrapping to assess
clustering stability and to validate the results output by
hierarchical clustering.

Kerr and Churchill [12] use the bootstrap for assessing the
stability of the results of cluster analyses. It is based on an
ANOVA model to estimate the relative gene expression
and to consider other sources for variation of microarray
data. The percentage of genes in bootstrap clusters is a
measure for assessing the stability.

Dudoit and Fridlyand [13] use bagging (bootstrapping
and aggregation) to improve the accuracy of a partitioning
cluster method. The individual partitions are combined to
one final partition or a new dissimilarity matrix is built
and serves as basis of the final classification.

As bootstrapping is a drawing with replacement and the
size of the bootstrap sample is the same as the original
data size, some observations are omitted. The expected
proportion of points in the original sample absent from
the bootstrap sample is given by (1 - 1/n)" [23], which
converges to 1/e for n — oo, or approximately 36.8 per
cent. We propose the use of continuous weights instead of
bootstrap. Continuous weights avoid zero elements and
instead allow non-integer weights and thus every observa-
tion is represented in the resampled dataset.

Several methods for combining individual dendrograms
to a consensus tree exist. The majority rule consensus tree
[24], which only considers nodes that are present in at
least 50% of the dendrograms, is among the most often
applied consensus trees.

Two partitions can be compared by application of a simi-
larity measure such as the Rand index [20,21]. In case of
the existence of scattered genes Thalamuthu et al. [15]
propose a weighted Rand index.

Here we report of a new resampling method that is based
on continuous weights. The creation of resampled data-
sets based on weighted sampling is similar to the creation
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of bootstrap samples but instead of drawing whole obser-
vations, random floating-point numbers larger than zero
are drawn and the observations are weighted by these
numbers so that each observation is represented in the
resampled dataset. We compare this method to the con-
ventional bootstrap to show where it is advantageous.

Results

We compared continuous weights and the conventional
bootstrap using real microarray gene expression data as
well as simulated data. Real data were preprocessed as
specified in the corresponding papers. Majority rule con-
sensus trees were generated from the individual dendro-
grams derived from continuous weights or bootstrap. For
each combination original dendrogram/consensus tree
obtained by weight matrix or bootstrap the weighted
Rand index was calculated.

Real datasets

We used two real datasets for evaluating our new method
and comparing it to the bootstrap. The first dataset was
the uveal melanoma dataset of Tschentscher et al. [25]. In
this dataset gene expression was measured in 20 patients
with uveal melanoma. Ten patients had a normal chro-
mosome set and the other ten showed a monosomy of
chromosome 3. This dataset was divided into 24 small
datasets according to the chromosomal location of the
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genes. Hierarchical clustering was done with average link-
age.

Comparing continuous weights and bootstrap revealed
for these datasets that in three cases (chromosomes 1, 9
and 19) the clustering was exactly the same (Table 1).
Only some clusters were drawn with higher frequency
when utilizing continuous weights. In 13 cases the cluster-
ing showed minimal differences but overall the results for
weighted sampling and bootstrap were similar. However
in eight cases the clustering was considerably different. In
these cases continuous weights always led to more
informative results than bootstrap because more reliable
clusters could be identified.

Figure 1a) shows the original clustering of chromosome 6.
Patients are abbreviated as D1-D10 for patients with dis-
omy 3 and M1-M10 for patients with monosomy 3. Two
large clusters can be seen. One of them contains only
patients with a normal karyotype. The other one com-
prises all patients with monosomy 3 plus three patients
with normal karyotype. Bootstrapping on the patients
leads to uninformative results because reliable clusters
cannot be determined (Rand index = 0.041) (Figure 1b).
Eight patients cannot be assigned to any cluster and thus
only appear clustered on the top level. On the other hand
utilization of continuous weights nearly reproduces the
original dendrogram (Rand index = 0.231) (Figure 1c).

Table I: Clustering of uveal melanoma datasets [25] with continuous weights and bootstrap

chromosome number of probe sets identical minimal difference considerable difference

| 648 X

2 406 X
3 336 X
4 200 X

5 288 X

6 416 X
7 298 X
8 222 X

9 218 X

10 238 X

I 372 X

12 361 X
13 120 X

14 198 X
I5 186 X

16 268 X

17 393 X

18 102 X

19 393 X

20 163 X

21 80 X

22 205 X
X 285 X

Y 8 X

The marks in the table denote whether the obtained consensus trees are identical or show minimal or considerable differences.
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Hierarchical clustering of chromosome 6 (412 probe sets) from the uveal melanoma data. a) original dendrogram,
b) consensus tree continuous weights, c) consensus tree bootstrap.

The left and right cluster of the consensus tree match
exactly the right cluster of the original dendrogram which
contains only patients without monosomy 3 and the
members of the cluster in the middle of the consensus tree
can all be found in the left cluster of the original dendro-
gram. Unfortunately the true classification in this case is
unknown.

In the case of the Y-chromosome (Figure 2) the true clas-
sification is known. The dataset consisted of 14 men and
6 women. Patients are abbreviated as M1-M14 for male
patients and F1-F6 for female patients. All women cluster
together in one cluster. Due to the fact that some of the
probe sets show cross-hybridization 4 men cluster
together with the women. Only when utilizing continu-
ous weights this cluster behavior is shown correctly (Rand
index = 0.137). Again with bootstrap no meaningful reli-

able clusters can be identified (Rand index = -0.036).
Twelve patients are not assigned to a cluster except the
cluster containing all patients. This may be due to the
small number of probe sets.

The whole uveal melanoma dataset was clustered as well.
Probably due to the large number of genes only minimal
differences between continuous weights matrices and
bootstrap were found (data not shown).

Next, continuous weights and bootstrap were compared
using a dataset where seven features, i.e. the maximal age
of death and some birth and pregnancy data, were meas-
ured in 22 primates [26,27]. Hierarchical clustering was
done with the complete linkage method.
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Hierarchical clustering of chromosome Y (8 probe sets) from the uveal melanoma data. a) original dendrogram,
b) consensus tree continuous weights, c) consensus tree bootstrap.

Results are shown in Figure 3. Once more nearly all pri-
mates cannot be assigned to a cluster when using boot-
strap (Rand index = -0.071) whereas with continuous
weights the original dendrogram is exactly reproduced
(Rand index = 1). This classification is quite reasonable
because it reproduces the taxonomy of the old world apes,
with the exception of the white-faced capuchin (Cebus
capucinus), and their separation from the half-and-half
apes and the new world monkeys. The other families and
subfamilies are not replicated. The failure of bootstrap
again could result from the small number of features in
the data set.

Simulated data

Simulation studies uncovered relationships between the
cluster behavior and the number of differentially
expressed genes, the number of observations, the size of

the groups, the fold change and the number of groups
respectively.

In the first simulation (Figure 4) data for two groups with
10 variables each were generated by choosing a constant
fold change of 9 and varying the number of genes and the
number of differentially expressed genes. The proportion
of differentially expressed genes where groups are just not
separated any more was analyzed. The smaller the
number of genes the better is the performance of continu-
ous weights over bootstrapping. Using 500 genes contin-
uous weights and bootstrapping show no differences.

In the next simulation (Figure 5) the settings were the
same as in the first simulation except the number of genes
was kept constant at a value of 100 and the fold change
was varied between 9 and 49. Again the number of differ-
entially expressed genes where groups are just not sepa-

Page 5 of 10

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:42

http://www.biomedcentral.com/1471-2105/9/42

%t

L -0 0 £ % B BR B
FEBEEREEE
EEEZ oo EE
223%EE090
v x 228 5 EEE
2 5T s EF 5 %
=8 g« 2SS
2025 EXD X
= 3k
23
=
i
©
E
c
H
[&]
e e By D e - D )
::-o::&&ﬁio‘gwoﬁggﬁggﬁ
ctE==fg 885 8x8c=xx£8822RE
c & s Ss e 2cafcc8 833 c¢5s E
2 2 g g 22T TS EE ¢ = o o 2 o g & 3
- o £ E © % g cf 28 g 2B Bca®®cx
£ 8 2T 52 ] 8 E E
E3s5283F £3 68598 B L
2=z E5 ¥} E E23L£bch
&8 | c 2 F ® 5 63571V g
[ A P o £t 5 PO 0oe
x € £ - i E E
o -
53 £z E&
a2 T £ T
] -
- [
o o
E ]
= -
k3 o
¢ Z
.
Figure 3

dwarf lemur

mouse lemur

c)

}

ST SE5E588S
gl-‘lon.gg--NEE
Ccoaoa8gFs o
zno = o © g =2
S fgBEEBEvgeE &<
Siygy “EE
3 2 r
T PaEp c ©
o ® o 5 g o
S ET° oo -
, s & H
2 = £ -]
= S
> 1
v
9
o
|
=
O
o
-}
[ [ -
55 ¥ ¥ ¥ S S v s P52 6555885 % £«
EE:;:.:.DB;_S - N T EEDQH'-J
e c & & r3 2SS c s E b2 o0
2 £ 55050225 LEBEL 585 5T T EE
EEEEEEEDG:Q - oD 9 = p &
v = = t 2 _ . v 2
2L — L LoD ®oa % B E 6 5T % ¢
T L pes o S 0 o © T x 3 2% o
28 ct22T e a c © v g 23 1
| :&9':132 o 52 0
=] o £E& o ° w @ 2
£ v xc E© E |
5 3 22 ] 2
s T < =
° ? S
£ -
- c
o o
E I
1 =
* ]
Q o
]

Hierarchical clustering of primate data (7 features) [26,27]. a) original dendrogram, b) consensus tree continuous

weights, c) consensus tree bootstrap.

rated any more was analyzed. No difference between
continuous weights matrices and bootstrapping could be
detected if the fold change was larger than about 40. For a
fold change smaller than 8.41 the groups were not sepa-
rated any more even in the original dendrogram when the
number of differentially expressed genes was in the range,
which was relevant for differences between weighted sam-
pling and bootstrapping. If the fold change was between
8.41 and 36 less differentially expressed genes were
needed for continuous weights than for bootstrapping to
separate the groups.

In another simulation the number of genes was kept con-
stant at 100 genes, the fold change was constantly 9 and
the number of differentially expressed genes was varied.
The number of variables was varied between 10 and 25
per group with both groups having the same size resulting
in 20 to 50 variables (Figure 6). As in the other simula-
tions the number of differentially expressed genes where
groups are just not separated any more was analyzed. The
advantage of continuous weights over bootstrapping can
be easily seen, as up to 25 variables per group (50 total)
less differentially expressed genes are needed to separate
the groups.
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Figure 4

Simulation study. Two groups with 10 variables each, fold
change of 9, number of genes and number of differentially
expressed genes vary, symbols indicate the proportion of dif-
ferentially expressed genes where groups are just not sepa-
rated any more; [1: bootstrap, : continuous weights

In yet another simulation the number of groups was
increased to three or four groups with an equal number of
variables in each group (Figure 7). The number of genes
was kept constant at 100 genes and the number of differ-
entially expressed genes was varied. The fold change was
kept constant as well but the value cannot be specified
easily (see methods section). Again continuous weights
performed better than bootstrapping although separation
of groups was not as perfect as in the other simulations
described above. The figure shows that the higher the
number of groups the more differentially expressed genes
were necessary to separate the groups both with continu-
ous weights and bootstrapping. Also it is obvious that
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Simulation study. Two groups with 10 variables each,
number of genes equals 100, fold change and number of dif-
ferentially expressed genes vary, symbols indicate the
number of differentially expressed genes where groups are
just not separated any more; [1: bootstrap, : continuous
weights
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Simulation study. Two groups, number of genes equals
100, fold change of 9, number of variables and number of dif-
ferentially expressed genes vary, symbols indicate the
number of differentially expressed genes where groups are
just not separated any more; [1: bootstrap, : continuous
weights

with increasing number of groups considerably less differ-
entially expressed genes are needed to separate the groups
with continuous weights than with bootstrapping.

Discussion and Conclusion

Hierarchical clustering is an important explorative tool in
microarray data analysis. It is often applied to get a first
impression of the data structure of microarray gene
expression experiments. It is important to assess the relia-
bility of the clusters because random clusters may lead to
a false interpretation of the data. Bootstrapping is one of
the methods, which is used to determine the cluster stabil-
ity. Nevertheless sometimes the results of bootstrapping
are rather uninformative especially if the number of fea-

b

. o
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expressed genes [%]

2 3 4

number of groups

Figure 7

Simulation study. Number of genes equals 100, fold
change constant, number of groups and number of differen-
tially expressed genes vary, symbols indicate the number of
differentially expressed genes where groups are just not sep-
arated any more; [1: bootstrap, : continuous weights
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tures is small. As about one third of the original observa-
tions is omitted in a bootstrap sample this finding is not
surprising. Therefore we developed an alternative method
similar to the bootstrap based on continuous weights,
which have the advantage that every observation of the
original dataset is retained in the resampled dataset. We
hoped that this fact should improve the results of the con-
ventional bootstrap. We evaluated our new method by
real and simulated data and compared it to the bootstrap.
The weighted Rand Index was applied to compare two
partitions obtained by hierarchical clustering. By means of
real data we could show that the continuous variant leads
to more meaningful results than the conventional boot-
strap when the number of features is small, and fares com-
parably when the number of features is large (as in many
data sets obtained from microarray experiments).

Analysis of the 24 datasets of the uveal melanoma
revealed that in most cases the same or nearly the same
consensus trees are obtained using continuous weights
and bootstrap. Sometimes the frequency of the clusters in
the samples is higher when weights are used.

In some cases continuous weights led to more accurate
information about cluster membership of individual
observations. In the case of chromosome Y we made use
of biological knowledge, i.e. the sex determines to which
cluster an observation belongs, to confirm the true classi-
fication. We could show that only clustering methods
based on weighted correlation distances are able to detect
this.

Also with the primate dataset continuous weights outper-
formed the bootstrap. Again this result was expected
because the dataset is very small.

The size of the dataset seems to be one of the important
criteria for the advantage of weights over bootstrap. Espe-
cially in small datasets it is very important to consider
every observation.

Simulation studies confirmed the benefits of continuous
weights over bootstrapping. The new method is especially
advantageous the smaller the number of genes and, above
a threshold, the smaller the fold change. Of course the
fold changes we used for simulation studies are not at all
realistic for microarray gene expression data where already
a fold change of two denotes differentially expressed
genes. Yet in our settings we had to use such high fold
changes to see any differences between continuous
weights and bootstrapping. In real microarray gene
expression data there are other factors such as the depend-
ence and high correlation of microarray data that make
continuous weights act better than bootstrapping.

http://www.biomedcentral.com/1471-2105/9/42

Our results indicate that more simulation studies would
be helpful to characterize the merits of continuous
weights compared to the bootstrap. Simulated datasets
should mimic microarray data sets more realistically to
better understand the advantages of continuous weights.

Computing times are comparable as both bootstrapping
and sampling weights have O(n) computing times, as
have the calculation of the correlation coefficient in the
weighted and unweighted variant, and every subsequent
step was carried out in the same fashion with either
method.

Nevertheless the use of continuous weights is strongly rec-
ommended because they perform at least as well as the
bootstrap and in some cases they even surpass it.

It may be promising to study if in methods, which use the
bootstrap as a part of it, a substitution of the bootstrap by
our proposed method could improve the results. Methods
coming into consideration are those from Kerr and
Churchill [12] or Dudoit and Fridlyand [13]. Also integra-
tion of existing biological knowledge such as in Datta and
Datta [28] should be possible to integrate. These
approaches would of course require further studies.

Up to now we can only apply continuous weights in com-
bination with the Pearson correlation. We plan to adapt
the spearman correlation accordingly.

Furthermore we want to extend the application of contin-
uous weights to other fields where bootstrap is employed
such as k-means.

Methods

For comparing the new method and the bootstrap real
and simulated dataset were used. Real data were normal-
ized according to the methods described in the corre-
sponding papers. The uveal melanoma dataset of
Tschentscher et al. [25] was divided into 24 smaller data-
sets according to the chromosomal location of the genes.

The creation of random continuous weights requires the
generation of a suitable probability distribution function
for the weights. The following considerations are useful
for this purpose: if a procedure analogue to the bootstrap
is applied on the level of variables it is equivalent to the
usage of a weight vector for the original data whose ele-
ments are realizations of a multinomial distribution. An
alternative procedure for bootstrap is the application of a
weight vector with non-zero elements permitting non-
integer diagonal elements. Thus the full dimensionality of
space is maintained.
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The underlying distribution of a drawing with replace-
ment is the binomial distribution. This approximates to
the Poisson distribution for a large number of observa-
tions and a small probability of success. Thus in a boot-
strap sample the asymptotic distribution of the number of
drawings per variable is Poisson(1) i.e. the expected value
and variance is 1. To attain comparability with the boot-
strap, the distribution from which weights for the
weighted sampling are drawn has to have similar charac-
teristics as the Poisson distribution but has to be continu-
ous to allow every value for the diagonal elements. No
continuous generalization of the Poisson distribution
exists. Thus the distribution in demand has to have an
expected value and variance of one and has to be positive.
This is true for e.g. the lognormal distribution where -2
= o2 with p and ¢ as mean and standard deviation of the
variable's logarithm. We used this distribution with p = -
log2 and o2 = 2*log2 deliberately as basis for drawing of
the weights to attain the desired mean and variance. For
each resampled dataset each observation from the original
dataset was assigned a random weight, a correlation
matrix was computed using the weighted Pearson correla-
tion as similarity measure, i.e. the correlation coefficient
was obtained by the formula

%wze(xik—fi)(xjk—fj)

£ 2 2
%Wk(x]k_xl) %Wk(x]k_xl)

(where x;, denotes the kth feature on the ith specimen.)
and the distance matrix was generated using the transfor-
mation d;;= 1 - ;. Resampled datasets were clustered hier-
archically using average or complete linkage, where all
patients had initially the same weight (note that the
weighting was used for genes and not patients). Individ-
ual dendrograms were summarized in a majority rule con-
sensus tree according to published methods [24]. The
thickness of the vertical lines denotes the frequency of the
cluster in the consensus tree. For this purpose the fre-
quency between 50 and 100 percent is divided into five
equidistant disjoint classes and these are converted into
the thickness of the lines in a linear relationship. The
bootstrap method was applied to the same datasets using
Pearson correlation as similarity measure for hierarchical
clustering and the obtained dendrograms were summa-
rized in a consensus tree as well. In each case 1000 resam-
pled datasets were drawn.

The weighted Rand index [15], which is an extension of
the adjusted Rand index of Hubert and Arabie [20] con-
sidering scattered objects, i.e. objects not being clustered,
determined the measure of concordance between the con-
sensus trees obtained by using continuous weights and
bootstrapping and between the original dendrogram and

http://www.biomedcentral.com/1471-2105/9/42

the respective consensus trees. The adjusted Rand index is
given by the formula

nji o Nei
o (3 7))
nj Nej ie Nej
045[ ZIRZI( ; ]+z§?=1[ 2] J}—zll?:l("; )2?21( 21 ]/[ZJ

The weighted Rand Index is especially designed to com-
pare different partitions of which at least one contains
scattered objects. It consists of two parts, each of which is
a slight modification of the adjusted Rand Index. The first
part treats scattered objects as regular clusters, the second
part ignores all scattered objects in either partition and
thus is only based on intersection of clustered objects of
both partitions. Finally both parts are averaged regarding
the weights of the two measures.

Rand =

Simulation was done by constructing two groups and
drawing observations from the normal distribution. Dif-
ferential expression was simulated by multiplication of a
predefined number of observations with a factor in one
group and division through this factor in the other group
resulting in a fold change with the squared factor as value.
Several simulations were performed, varying either the
number of observations, the fold change or the size of the
groups. In further simulations three or four groups were
constructed. Differential expression for two of these
groups was simulated as above. Additional groups were
simulated by adding a multiple of the factor to a prede-
fined number of observations. Thus a fold change cannot
be specified easily any more.

All analysis was performed with SAS (version 9.1, SAS
Institute Inc.).
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