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Abstract

Background: Finding the dominant direction of flow of information in densely interconnected
regulatory or signaling networks is required in many applications in computational biology and
neuroscience. This is achieved by first identifying and removing links which close up feedback loops
in the original network and hierarchically arranging nodes in the remaining network. In
mathematical language this corresponds to a problem of making a graph acyclic by removing as few
links as possible and thus altering the original graph in the least possible way. The exact solution of
this problem requires enumeration of all cycles and combinations of removed links, which, as an
NP-hard problem, is computationally prohibitive even for modest-size networks.

Results: We introduce and compare two approximate numerical algorithms for solving this
problem: the probabilistic one based on a simulated annealing of the hierarchical layout of the
network which minimizes the number of "backward" links going from lower to higher hierarchical
levels, and the deterministic, "greedy" algorithm that sequentially cuts the links that participate in
the largest number of feedback cycles. We find that the annealing algorithm outperforms the
deterministic one in terms of speed, memory requirement, and the actual number of removed links.
To further improve a visual perception of the layout produced by the annealing algorithm, we
perform an additional minimization of the length of hierarchical links while keeping the number of
anti-hierarchical links at their minimum. The annealing algorithm is then tested on several examples
of regulatory and signaling networks/pathways operating in human cells.

Conclusion: The proposed annealing algorithm is powerful enough to performs often optimal
layouts of protein networks in whole organisms, consisting of around ~104 nodes and ~105 links,
while the applicability of the greedy algorithm is limited to individual pathways with ~100 vertices.
The considered examples indicate that the annealing algorithm produce biologically meaningful
layouts: The function of the most of the anti-hierarchical links is indeed to send a feedback signal
to the upstream pathway elements. Source codes of F90 and Matlab implementation of the two
algorithms are available at http://www.cmth.bnl.gov/~maslov/programs.htm

Page 1 of 9

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/9/424
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18842147
http://www.cmth.bnl.gov/~maslov/programs.htm
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:424

Background

During the last several years a substantial amount of infor-
mation on large-scale structure of intracellular regulatory
and signaling networks has been accumulated. However,
the growth in our understanding of how these networks
function in a robust and specific manner was lagging
behind the shear rate of data acquisition.

To be able to understand the biological functioning or
even to efficiently visualize a complex regulatory and sig-
naling network it is important to determine the dominant
direction of the information flow and to identify the links
that go against this flow and thus generate feedback loops.
Ordering a network in such as way that the information
cascades down from higher to lower hierarchical levels
can help to detect its previously unknown inputs and out-
puts, to track sources of perturbations based on their
observable downstream effects, etc. A simple-minded
hierarchical layout of a densely interconnected network is
often impossible due to a ubiquitous presence of feedback
loops. Indeed, all nodes in a strongly connected compo-
nent of a network by definition are simultaneously
upstream and downstream of each other.

However, if the forward flow of information in the net-
work along multiple channels dominates over the back-
ward flow along relatively few feedback links, the proper
hierarchical layout could still be reconstructed based on
the network topology alone. The identification and
removal of a small number of feedback links would ena-
ble one to perform the hierarchical layout of the remain-
ing acyclic network. In the next section we introduce a
new probabilistic algorithm to detect an optimal hierar-
chical layout which minimizes the number of feedback
links going from lower to higher levels in the hierarchy. In
addition to direct biological applications, this algorithm
provides a new computational approach to one of the 21
classic Karp's NP-hard problems: finding the Minimum
Feedback Arc Set in a directed graph [1]. This problem
enjoys a seemingly everlasting popularity reflected in a
substantial number of approximate solutions (see, for
example, [2-4] and references therein). It has also been
shown that the Minimum Feedback Arc Set problem,
apart from being NP-complete, is also APX-hard, which
means that there exists a constant k > 1 (often called the
approximation factor) such that there is no polynomial-
time approximation algorithm that always finds a link set
at most k times bigger than the optimal result. The first
polynomial approximation algorithm for the feedback arc
set problem was designed by Leighton and Rao [4,5] with
the approximation factor k ~ O (logZ N') where N is the
number of graph vertices. This estimate for the approxi-
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mation factor was improved by Seymour to O (log N log
[log N]) for polynomial-time algorithms.

Many of the existing approximate algorithms to the Mini-
mal Arc Set problem are deterministic and greedy in
nature, which on one hand side allows a fairly precise pre-
diction of their complexity, performance and precision,
yet on the other hand side involves consequences such
intrinsic "near-sightedness" and frequent inability to find
the global optimum among the local ones. A good exam-
ple of such deterministic greedy algorithm which also
relates the minimum feedback arc set search to graph lay-
out is presented in [6]. According to this algorithm the
hierarchical level of a node is determined by the difference
between its out-and in-degrees. This way, the nodes with
larger than average out-degrees and/or smaller than aver-
age in-degrees are naturally placed among the top hierar-
chical layers. These nodes directly or indirectly control
other nodes with larger than average in-degree and/or
smaller than average out-degree. The number of opera-
tions in this approximate algorithm scales linearly with
the number of graph links.

Our proposed algorithm, unlike the existing algorithms
described above, is probabilistic in nature. In the limit of
sufficiently slow and long annealing it has a good chance
to converge to the actual solution of the minimum feed-
back arc set problem. At the same time it still requires only
a polynomial number of operations, which is propor-
tional to the product of the number of links and vertices
in the graph. To evaluate the advantages of the proposed
annealing algorithm and to reveal its distinction from the
deterministic algorithms, we compare it to our own
greedy deterministic algorithm. This algorithm sequen-
tially cuts the links that belong to the largest number of
cycles in the network. We found that the probabilistic sim-
ulated annealing algorithm generally outperforms the
deterministic one in both the number of removed feed-
back links (which needs to be minimized) as well as in the
speed and memory requirements. A simple visual exam-
ple is provided for the situation when the deterministic
greedy algorithm is non-optimal.

Following that, we discuss biological implications and
applications of our findings as well as how additional
constraints such as a priori knowledge of the function and,
therefore, the hierarchical position of certain nodes affects
the resulting layout.

Methods

Consider a graph consisting of N vertices and L directed
links. The goal is to distribute the vertices among M levels
in such a way that the number of links going against the
hierarchy, or from a lower level to the same or a higher
one, is at its minimum. If the number of levels M is suffi-
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cient (equal or larger than the longest simple graph path),
this problem is equivalent to finding a Minimum Feed-
back Arc Set [1], or removing as few as possible links to
make the graph acyclic, or feedback-free.

A naive way to solve this problem exactly is to enumerate
all cycles in a graph and then sample all possible combi-
nations of links checking if they belong to all cycles. If one
starts with enumerating individual links, then pairs of
links, etc, until a removal of I links would yield the first
acyclic graph, such sampling would require checking the

i=1

L
Zl [ . ] combination of links. For biologically relevant
i

values L ~ 103 - 104and [ ~ 102 - 103 the computational
costs of such exhaustive enumeration are prohibitive.

L
(From an obvious identity, ij 12=( ) ], it follows that
= i

even for fairly modest L = 102and I = L/2 the number of
such attempts is ~1015.)

Simulated annealing algorithm

The task of finding the minimum number of anti-hierar-
chical or feedback links can be interpreted as an optimiza-
tion problem and tackled by probabilistic methods such
as simulated annealing. Evidently, there exist more than
one way to define the optimization function, and after
exploring several possibilities we converged to the follow-
ing one:

e For a given network, a set of M levels is introduced (M <
N, in reality, M << N and is of the order of the graph diam-
eter). Initially, all nodes are distributed on the levels ran-
domly.

e For a particular distribution of nodes on levels, the
number of links L, that go opposite to the hierarchy,
that is, from a lower level to the same or a higher one, is
declared to be the energy E = L, of the distribution, or
the optimization function.

® A node and its new level are selected at random. A dif-
ference in energy AE that would occur if the node were
moved to the new level is calculated. The node is moved
to this new level with the probability min{1, exp(-AE/T)},
where T is the temperature.

o After the network has been sampled a sufficient number
of times (of the order of N x M) so that each node has an
opportunity to be moved to every level, the temperature is
reduced by some factor, usually 0.9. Initially, the temper-
ature is set sufficiently high, usually of the order of the
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average node degree L/N, to allow un-obstructed level
changes.

e When the temperature becomes low enough to inhibit
any level changes, the remaining ascending and same-
level links are declared feedbacks and removed.

e The whole procedure can be repeated several times to
check for consistency in the assignment of feedback links
and to determine the solution with the lowest number of
removed links.

The energy difference associated with changing the level
of a single node is illustrated in Fig. 1.

Results and Discussion

Comparison with deterministic greedy algorithm

To illustrate the advantages of the proposed simulated
annealing method, we compare it to a straightforward
"greedy" algorithm which follows the steepest descent in
the number of feedback cycles. We implemented it in the
following way:

¢ By enumerating all cycles in a graph, each link is
assigned a score equal to the number of feedback cycles it
participates in.

¢ The link with the highest score is removed. When several
links have the same highest score, a link to be removed is
selected among them by random.

j Old position
j+1

+2 BN :j; New position
Figure |

Node | with two incoming and one outgoing links is
selected to be moved from its current position on
the level j to a new position on the level j + 2. The
associated energy difference is AE=-1 - | + | = -1 where
two -| contributions come from making (2, 1) and (3, I) links
hierarchical and the single +1 contribution comes from turn-
ing the link (1, 4) from hierarchical to anti-hierarchical.
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e The score of each remaining link is reduced by the
number of cycles which pass through this link and were
cut on the previous step.

e The procedure of link removal and score reduction is
repeated until no cycles remain (which means that scores
of all links become zero).

The cycle enumeration can be implemented by following
all paths that originate from a given vertex and recording
only the cycles that come back to this vertex. The proce-
dure is repeated for each of the N graph vertices: evidently,
each cycle of length C is counted C times and a proper
normalization is performed. Naturally, the performance
of the greedy algorithm is limited in terms of speed and
memory requirement of the cycle enumeration step.

An example of network where the greedy algorithm per-
forms flawlessly is shown in Figure 2.

Here the link (3, 1) carries the maximum score 2. A
removal of this link indeed makes the graph acyclic, while
a removal of any other than (3, 1) link would require a
subsequent removal of the second link to achieve the
same goal.

The hierarchical level-ordering by stimulated annealing
outperforms the deterministic greedy algorithm in all
respects. The performance of the stochastic stimulated
annealing algorithm scales as N x M; memory-wise, it
needs only lookup tables of a node position in the hierar-
chy and its nearest neighbors. Yet the greedy algorithm
requires tracking along all paths originating from a given
vertex, which uses a lot of memory and slows the perform-
ance significantly. Despite the fairly large prefactor
required for a gradual multi-step annealing, the stochastic
algorithm readily performs layouts of protein networks in

Figure 2
Removal of a single (3, 1) link makes this 3-vertex
graph acyclic.
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whole organisms, consisting of around ~104 nodes and
~105 links. On contrary, we found it impractical to apply
the greedy algorithm to networks with more than 100 -
200 vertices, which limits its utility to analyzing isolated
systems and pathways. In addition, the greedy algorithm,
as any other method based on near-sighted, local, single-
step optimization, may miss the globally optimal solu-
tion, while the properly executed stimulated annealing
always has a high probability of converging to it. This is
indeed the case for bigger and more complex networks;
yet even in a fairly simple graph, such as shown in Fig. 3,
the greedy algorithm may perform non-optimally.

Improving the layout by shortening the total length of
hierarchical links

A good hierarchical layout of a regulatory or signaling
pathway clarifies its biological functioning by identifying
the cascade of information processing steps. Such layout
should not only minimize the number of anti-hierarchical
(feedback) links but also shorten the length of hierarchi-
cal (feedforward) links. Without carrying any energetic
penalty these latter links can be arbitrarily long, i.e. they
could connect proteins separated by many hierarchical
levels. This interferes with identifying the hierarchical lev-
els as definite stages (e.g. in a temporal sense) of informa-
tion processing. Introduction of a small energetic penalty
for the total length of hierarchical links alleviates this
problem. The energy function used in our simulated
annealing algorithm then becomes

Figure 3

An example of a network where the greedy algo-
rithm fails to determine the optimal solution. The ini-
tial link scores are shown. The link (I, 2) carries the highest
score 3 and thus is cut first. However, three 2-node cycles
{2, 3}, {2, 4}, and {2, 5} remain to be eliminated, after which
the number of removed links becomes 4. The optimal solu-
tion would be to cut only three links (2, 3), (2, 4), and (2, 5),
each carrying the score 2. This optimal solution has almost
always been found by the annealing algorithm.
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E= )" [H(m; = m;)+(m; = m)EH(m, —m,)]
i—j

(1)
Here m; and m; denote the hierarchical levels of nodes i
and j connected by a link i — j (or (i, j)) and H(x) is a ver-
sion of the Heaviside step function equal to 1 for x>0 and
to 0 otherwise. For moderate-size pathways consisting of
~102 vertices we tried the range of energetic penalty E' =
0.02 - 0.1 (relative to 1, which is the energetic cost of a sin-
gle anti-hierarchical link). The layout results in this range
were independent of E'.

Selecting the number of hierarchical layers

The number of levels M for the stimulated annealing hier-
archical layout could be fixed by external biological
requirements such as e.g. a limit on time allowed for a
functional response. Otherwise, M could be determined
self-consistently from our algorithm itself, by observing
when the number of anti-hierarchical links stops to signif-
icantly decrease upon the increase in the number of levels.
This is illustrated in Fig. 4 where a plot of the number of
anti-hierarchical links vs number of levels is presented for
the human protein phosphorylation network.

Number of anti-hierarchical links /
S
=)
T

! ! !
0 10 15 20
Number of levels M

Figure 4

The number I of anti-hierarchical links vsthe number
of levels M in the annealing layout of the combined(a
union of [10]and[9]datasets) protein phosphorylation
network in human cell. The network consists of L = 2880
links and N = 1297 nodes (proteins). The nodes with zero in-
degree and zero out-degree are always put on the top and
bottom levels, correspondingly. The leftmost data point cor-
responds to the single intermediate level (3 levels total), the
number of anti-hierarchical links clearly reaches its minimum
of 59 links for M > 18, which apparently is the length of the
largest simple path in this network.
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Example: the layout of EGFRI and B-cell receptor
pathways

The biological function of anti-hierarchical links identi-
fied by our annealing algorithm often involves sending
feedback late in the timecourse of their signaling path-
ways, or, similarly, resetting the pathway to its original
state which it had before the arrival of the signal. To illus-
trate this on a concrete biological example, we performed
the hierarchical layout of two of the largest pathways in
the HPRD pathway database [7]: the EGFR1-pathway (80
proteins, 90 regulatory interactions) and the B-cell recep-
tor pathway (77 proteins, 90 regulatory interactions). The
hierarchical layout is illustrated in Fig. 5 and 6. The opti-
mal layout was achieved at 7 hierarchical layers for the
EGFR1-pathway and 5 hierarchical levels for the B-cell
receptor pathway. In most annealing runs we correspond-
ingly identified 5 and 2 anti-hierarchical links in these two
pathways.

It is intriguing that 5 out of these 5 + 2 = 7 anti-hierarchi-
cal links correspond to dephosphorylation and 1 to ubig-
uitination protein modification processes. While these
biomolecular mechanisms alone do not prove that the
involvement of these interactions in feedback, they
strongly support this notion. Indeed, dephosphorylation
is commonly used to reset previously phosphorylated
proteins to their original state, which they had before the
arrival of the signal. Similar to this, the ubiquitination of
a protein triggers its degradation by the proteasome,
which once again resets the state of the pathway to what it
was before the arrival of the signal. Thus protein modifi-
cations due to dephosphorylation and one to ubiquitina-
tion tend to happen late in the timecourse of signaling
pathways and thus likely to be used for feedback signal-
ing. In addition to these direct applications, our algorithm
is useful, for example, for identifying putative sources (sig-
naling inputs) of multigene differential expression pat-
terns [8]. Such procedure is based on tracking upstream
the regulatory links from often very numerous differen-
tially expressed genes to the common regulators that
could have caused the particular expression pattern. To be
able to do this one needs a network of direct or indirect
protein regulations from which all feedback links have
been previously removed.

Example: the layout of the genome-wide network of
human post-translational modifications

Often there exist some a priori biological knowledge about
hierarchical positions of certain protein nodes in a signal-
ing network. For example, the receptor proteins localized
in the membrane typically serve as entry point of extracel-
lular signals. Upon activation they pass these signals to
cascades of proteins localized in the cytoplasm which ulti-
mately reach the transcription factors localized in cell's
nucleus. Thus receptor proteins might have to be force-

Page 5 of 9

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:424 http://www.biomedcentral.com/1471-2105/9/424

T1

AF1 .FOXO1A

CcB
RP2 ‘BCAR1 CBLB
N Q
TPN1 ‘\\§W§ CREB
B S
‘ \? \
S A =
o VANeo RESIE ) HC Ak

.JAK% ““pLoF  Ospp
GAP TAT5B

a1 Phske . CgKCBK RKCA AIP4 NK2 M1
Q\/IEKKZﬁ\AEKKS
OshzaeGucrz Cotanpt ks

IST3H3 &P & D

A = P 8
Q Q
SbLcat Gork GRB2 “Eps{ SbSTATS Cceacam

Pajek

Figure 5
Hierarchical layout of the EGFRI pathway downloaded from the HPRD pathway database [7]. The optimal layout
was achieved at 7 hierarchical layers. Five predicted anti-hierarchical links are shown in red.
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Figure 6
Hierarchical layout of the B-cell receptor pathway downloaded from the HPRD pathway database [7]. The
optimal layout was achieved at 5 hierarchical levels. Two predicted anti-hierarchical links are shown in red.
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The network[9]of post-translational modifications (phosphorylation/dephosphorylation, proteolytic cleavage,
etc.) of human proteins shown here includes 1671 automatically and manually curated edges between 732 pro-
teins. listed in the ResNet 4.0 database. The hierarchical layout shown here is generated by our simulated annealing algorithm.
Green arrows represent hierarchical links while red arrows — 208 anti-hierarchical (putative feedback) links going from lower
to higher (or the same) levels in the hierarchy. Only proteins and links reachable from one of the 71 receptor-proteins placed
at the top hierarchical level were included.
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fully put on the upper level of the hierarchical layout of a
signaling network. We implemented this idea in the opti-
mal layout of the network of post-translational modifica-
tions of human proteins shown in Fig. 7. This network is
based on the ResNet 4.0 database [9], collected by Ariadne
Genomics, Inc. from the biomedical literature with the
help of Natural Language Processing algorithms. The
information about protein-protein interactions was col-
lected from abstracts of the entire PubMed database as
well as full-text articles of more than 40 journals. It was
then manually and automatically curated to include a reli-
able set of protein-modification interactions (phosphor-
ylation/dephosphorylation, proteolytic cleavage, etc.)
between human proteins. The optimal layout of 732 pro-
teins in this network over six hierarchical levels is shown
in Fig. 7. Green arrows represent 1453 hierarchical links
while red arrows - 208 anti-hierarchical (putative feed-
back) links going from lower to higher (or the same) lev-
els in the hierarchy. Only proteins and links reachable
from one of the 71 receptor-proteins placed at the top
hierarchical level were included.

In contrast to receptors, many transcription factors serve
the role of effectors of signaling pathways and thus must
occupy the lowest levels of the hierarchy. Initial position-
ing of such nodes at their appropriate hierarchical levels
usually speeds up finding the layout with the smallest
number of anti-hierarchical links. In addition, fixing these
nodes on their appropriate hierarchical levels helps to
find a layout which is more plausible from the biological
standpoint.

In a similar way, the orientation of certain links (or
unconnected pairs of proteins) could be fixed "by hand"
if they are known to be of the feedforward or feedback
nature. This could be implemented, for example, by
assigning sufficiently large negative energies to the proper
orientation of such links or protein pairs, making their
annealing re-orientation highly improbable. Even imper-
fect (probabilistic) initial knowledge of biological func-
tioning of the network could be used to assign weights to
individual links, so that the energy E of a particular assign-
ment of nodes to layers is a sum of weights of the anti-
hierarchical links. Thus the a priori plausibility of a link to
be (or not to be) a feedback can be introduced into the
layering algorithm. We leave these questions as well as
optimization of the proposed algorithms to various sign-
aling and regulatory intracellular networks for future stud-
ies and publications.

Conclusion

We introduced the simulated annealing algorithm, which
is capable of performing near-optimal acyclic layout of
large directed networks. It reveals the dominant direction
of information flow in and identifies the set of links going
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against this dominant direction, that is from from lower
to higher hierarchical levels. In biological regulatory and
signaling networks such anti-hierarchical links often turn
out to be involved in sending feedback or resetting signal-
ing pathway to its default state. In addition to elucidating
biological functioning of complex biomolecular pathways
and networks, the proposed algorithm also offers a new
probabilistic approach to one of the 21 classical NP-hard
problem: finding the Minimum Feedback Arc Set in a
directed graph.
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