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Abstract
Background: Amino acid sequence probability distributions, or profiles, have been used
successfully to predict secondary structure and local structure in proteins. Profile models assume
the statistical independence of each position in the sequence, but the energetics of protein folding
is better captured in a scoring function that is based on pairwise interactions, like a force field.

Results: I-sites motifs are short sequence/structure motifs that populate the protein structure
database due to energy-driven convergent evolution. Here we show that a pairwise covariant
sequence model does not predict alpha helix or beta strand significantly better overall than a
profile-based model, but it does improve the prediction of certain loop motifs. The finding is best
explained by considering secondary structure profiles as multivariant, all-or-none models, which
subsume covariant models. Pairwise covariance is nonetheless present and energetically rational.
Examples of negative design are present, where the covariances disfavor non-native structures.

Conclusion: Measured pairwise covariances are shown to be statistically robust in cross-
validation tests, as long as the amino acid alphabet is reduced to nine classes. An updated I-sites
local structure motif library that provides sequence covariance information for all types of local
structure in globular proteins and a web server for local structure prediction are available at http:/
/www.bioinfo.rpi.edu/bystrc/hmmstr/server.php.

Background
A key challenge of the post genomic era is the prediction
of protein structure. Since X-ray crystallography and
NMR-based methods are still relatively low throughput,
computational inference approaches are of the upmost
importance. One of the key approaches to this problem
has been to describe fragments that represent specific local
structural elements in libraries [1,2]. Fragments can be
used as input to folding simulation algorithms such as
Rosetta, TASSER and SimFold [3-6].

I-sites motifs represent small, independently folding sub-
structures in proteins and may play a role in initiating the
folding process[2]. The short amino acid sequence pat-
terns associated with I-sites motifs have been found to
correlate with common local structures in proteins and
match short local structures, such as helix caps and beta-
turns, with sequence probability distributions, or profiles.
The profiles can be used to predict the local structure given
a sequence. I-sites motifs were found by clustering short
sequence patterns from proteins of known structure after
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factoring out redundancy due to homologous relation-
ships. Because the patterns are recurrent, and yet clustered
from non-homologous proteins, the motifs are almost
certainly the results of convergent, not divergent, evolu-
tion. Local energetic preferences are most likely at the root
of the selective pressure leading to the convergent evolu-
tion.

I-sites motifs represent small, independently folding sub-
structures in proteins and may play a role in initiating the
folding process. In molecular dynamics simulations, pep-
tide sequences with higher I-sites scores correlated with a
greater equilibrium stability [7]. In experimental studies,
peptides with I-sites motif patterns were found to fold to
their corresponding motif structures in isolation[8]. Blind
predictions of local structure were found to have approxi-
mately 44% accuracy when measured as the fraction of the
sequence that falls within correct 8-residue segments [9].
Randomly selected 8-residue segments have an average
5.7% prediction accuracy.

The scoring function for I-sites predictions may be viewed
as a knowledge-based energy function, since a high score
of a sequence to an I-sites motif implies a high probability
that the sequence segment adopts the motif local struc-
ture. A high probability implies a low free energy as an
autonomous folding unit. If the I-sites scoring function is
capturing an energetic quantity, then might we do better
by re-structuring the scoring function to resemble a force
field?

A force field generally functions on pairs of atoms rather
than on single atoms. To better resemble an energy calcu-
lation, the I-sites scoring function should act on pairs of
amino acid residues rather than on single residues. A cov-
ariant statistical interaction should imply an energetic
interaction. That is, amino acids that occur together more
often than expected by chance imply the existence of an
attractive force, while pairs that occur less often than
expected imply a repulsive force.

If energetic stability was the selective pressure for the cov-
ergent evolution of local structure motifs, then we can
view these motifs as minima in a broad sequence/struc-
ture energy landscape. Evolving sequences preferentially
populated the energy valleys over time. If the sampling of
this landscape is representative, then the statistical proba-
bilities (p) are convertible to energies using the Gibbs
equation, ΔG = -RTlog(p/1-p). The number of occurrences
of any pair of amino acids in the context of a structure
should be a good measure of their physical interaction
energy. Hydrophobic contacts, salt bridges and other
energetic interactions that contribute to the stability of a
local structure should be over-represented in the statistics,
while destabilizing interactions such as like-charges

should be under-represented. Deriving an energy-like
score from pairwise sequence statistics is quite different
from independently summing probabilities from single
positions and calculating a log-likelihood score. The latter
approach tacitly and erroneously implies that the hydro-
phobic effect decreases only by half when one of the pair
of interacting hydrophobic sidechains is removed, instead
of decreasing to zero, as we know it does.

Positional pairwise sequence covariance has been shown
to be a weak predictor of residue-residue tertiary contacts
within protein families in several studies [10,11], proba-
bly because such paired mutations are rare in evolutionary
history. In the present work, however, no mutational
pathway is implied since the observed sequences are not
the results of divergent evolution. Each example in the
training set comes from a different ancestral line.

In this work, the I-sites motif library has been modified
and refined by adding a pairwise covariance metric to each
motif. Covariances are expressed in the model as a four-
dimensional tensor in which each element is a pairwise
positional correlation between two amino acid profile
classes. The scoring matrices were trained using expecta-
tion/maximization to predict the backbone dihedral
angles in a non-redundant set of proteins. The results on
an independent test set are reported for three different
training strategies.

Results and Discussion
Significant improvements in prediction over the previous
I-sites method were obtained by simply using a better
model for measuring confidence and by retraining the I-
sites profiles on a larger and newer dataset (ISL5.1). An
overall improvement was found when covariance was
added to the profile model without re-training the profiles
(ISL5.3). Adding covariance tensors and re-training the
profiles (ISL5.2) improved prediction accuracy the most,
but only slightly more than by retraining the profiles
alone. Interestingly, the contribution of covariance to pre-
diction accuracy was found to be positive and significant
for non-periodic local structure motifs, whereas predic-
tion accuracy of canonical secondary structure elements
(helix and sheet) was not greatly improved by covariance,
even though each of the individual motifs showed
improved prediction after adding covariance. Over-fitting
was present in some cases, but does not fully explain the
shortfall in prediction, which was observed in both train-
ing and test data.

Several trends were observed in nearly all motifs. The sign
of pairwise correlation and the pair of amino acid classes
involved usually made good chemical sense. For example,
we consistently observed a positive correlation value for
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hydrophobic sidechains that were in contact in alpha hel-
ices.

Table 1 shows the reduced alphabet of nine amino acid
profile classes used for calculating covariance. Reducing
the alphabet size from 20 to 9 was critical for statistical
significance in this study. The number of classes for this
study (9) was selected empirically. In preliminary studies,
an alphabet size of 20 and 8 both produced inferior test
results on selected motifs. [For details on how the classes
were defined see Additional File 1]

Improvements in local structure prediction
Motif prediction accuracy was evaluated for the original
and the three new libraries trained. The correctness of a
motif prediction was defined using the maximum back-
bone angle deviation (MDA) metric. But motif predic-
tions may overlap, leading to ambiguity. To assure that
each position was counted only once, we assigned each
position the value (true or false) of the highest confidence
overlapping motif prediction. These predictions were col-
lected for the entire dataset and sorted by confidence. The
overall accuracy was plotted for each of the broad classes
of local structure (Figure 2) for each of the four libraries.

Additionally, we evaluated confidence as a classifier of true
and false predictions using a Receiver Operating Charac-
teristic (ROC) curve [12]. Figure 3 summarizes the ROC
results over all I-sites motifs for the previously described
library, version 3.1, and for each of the new I-sites librar-
ies, ISL 5.1, ISL 5.2 and ISL 5.3, which were trained in dif-
ferent ways. The new motif libraries have a higher overall
accuracy and have a greater fraction of high confidence
predictions. ISL 5.1 had the highest overall ROC (0.735),
followed by ISL 5.2 (0.728), ISL 5.3 (0.718) and the start-
ing library ISL 3.1 (0.709). But although the library with
the covariance model was slightly worse overall as a pre-
dictor of local structure, it did significantly better at pre-
dicting loop and cap motifs than ISL 5.1. The
improvements were outnumbered, however, by poorer
predictions of beta strands by ISL 5.2. The accuracy of the
highest confidence predictions was higher for ISL 5.2 than
for ISL 5.1 or any of the other libraries, as seen in the inset
in Figure 3.

ROC and accuracy were measured on test set data, a set of
proteins not used in training. To assess the potential over-

fitting of the data, we compared prediction accuracy on
the training and test set data (Table 1). Differences
between these numbers in the libraries containing covari-
ance appear to indicate some over-fitting, but only slight.
The overall improvements in accuracy are seen in the test
data, showing that the improvements are not the result of
over-fitting.

Case study: Type-I' beta-hairpin motif
Although it is not possible to discuss all of the local struc-
ture motifs, we can see in a case study that some features
of covariant sequence patterns agree with chemical intui-
tion. As an example, consider the type-I' beta hairpin
motif. This motif carries a strong preference for the two-
character sequence [DN]G in positions 2 and 3 of the
turn, where consecutive backbone phi angles are positive.
Since the sequences do not vary in these positions, they
also do not co-vary, and therefore no correlations were
observed for those positions (Figure 1). But in the other

Table 1: Area under ROC curve

Training Set Test Set

ISL 3.1 0.696 0.709
ISL 5.1 0.730 0.735
ISL 5.2 0.732 0.728
ISL 5.3 0.719 0.718

Accuracy versus motif type versus I-sites library training strategyFigure 2
Accuracy versus motif type versus I-sites library 
training strategy. Numbers indicate the library version. 
ALPHA: motifs having all helical angles. BETA: motifs having 
all beta sheet angles. NCAP: Loop motifs at the N-terminus 
of helices. CCAP: Loop motifs at the C-terminus of helices. 
TURN: motif.
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motif positions, positive correlations occur that would
favor having the sidechains together on the same side of
the hairpin, and negative correlations occur that would
favor contacts where the motif does not have contacts.

Positions 3 and 8 have sidechains that fall on the same
side of the 2-stranded sheet and are in contact, and a pos-
itive correlation is found between a positive charge (class
1) at position 3 and a negative charge (class 7) at position
8, – a salt bridge. The reversed charge placements are also
favored, but like charges at these positions are disfavored.

Positions 7 and 8 point in opposite directions. Here like
charges are positively correlated and opposite charges are
negatively correlated. Opposite charges would attract,
possibly putting positions 7–8 into a turn or bulge confor-
mation instead of a strand. This is an example of negative
design. [For a second case study see Additional File 1]

Comparison of three libraries
The starting motif library, ISL 3.1 was reported in 2000
along with HMMSTR, a hidden Markov model for local

structure that is ILS 4 [13], but was not assessed here
because it carries additional information about motif
adjacencies. The new libraries were trained using an
expectation/maximization approach, using three different
strategies, which had different effects on the overall accu-
racy across local structures.

ISL 5.1: Profile refined only
As a control experiment in this attempt to demonstrate
sequence covariance in local structure, the previous
library was updated using only the profile information.
The results show that updating the library greatly
improved the overall prediction performance. Over the
years since I-sites was originally trained, the size of the
PDBselect25 database has grown by about 3-fold. Updat-
ing the profiles by iterative retraining led to improved
accuracy across all local structure types as seen in Figure 2.

ISL 5.2: Tensor and profile refined together
The second training strategy was to update both the corre-
lation tensor and the amino acid profile at each iteration.
We observed that the profiles in library 5.2 were often
lower in information content (higher entropy) than the
profiles in the libraries 5.1 and 5.3 showing that pairwise
correlations can replace the information in a profile and
are often sufficient to predict the structure of a local motif.
Motifs containing conserved glycines or prolines held
more of the scoring function weight (Eq. 10) in the profile
score than motifs that did not contain a glycine or proline.
Note that, since they do not vary, they cannot co-vary.

ISL 5.3: Tensor refined, profile fixed
ISL 5.3, in which the tensor was iteratively updated but
the profile was not, was found to have a lower prediction
performance than both Libraries 5.1 and 5.2. By doing
this second control experiment, we can see that the
improvements in prediction accuracy for helix and strand
motifs in version 5.2 are accounted for by the refinement
of the profiles, as in library 5.1, not by the addition of the
covariance tensor. However, we see improvements in
accuracy in the prediction of most loop motifs, including
helix caps. A possible rationale for this result is that loop
motifs are not repeating structures, while beta strands and
alpha helices do contain a repeating sequence pattern. A
profile, viewed as an all-or-none model, is a better predic-
tor of a multiposition pattern.

Conclusion
Overall we observe that there is little benefit in using pair-
wise correlation to model the local structural motifs in the
I-sites library (I-sites 2008). Furthermore, we conclude
from this experiment that, in canonical secondary struc-
ture, the profile and the correlation tensor are both being
fit to an underlying multivariant sequence-structure rela-

True versus false coverage for all librariesFigure 3
True versus false coverage for all libraries. Overall 
accuracy is measured as the area under the ROC curve. 
Inset: Blowup of high confidence region.
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Type-I' beta hairpin motifFigure 1
Type-I' beta hairpin motif. Type-I' beta hairpin (DG hairpin) from ISL5.2. (a) Correlation tensor. Large numbers indicate 
positions in the motif, small numbers indicate amino acid class. Correlation is expressed as a color from blue to red according 
to the scale in the lower right. (b) ball-and-stick rendering of the motif structure. (c) Profile expressed as log-likelihood ratios 
according to the color scale at the right. Amino acids are arranged roughly from non-polar on the bottom to polar on the top. 
Plotted above are backbone angles for each position.
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tionship, which is better captured by a library of profiles
of than by a profile plus a correlation tensor.

To understand this view, consider that both canonical sec-
ondary structures, helix and strand, are repeating patterns.
A register shift of one residue down the chain produces a
new pattern that is changed in all positions, not just two.
I-sites already contains multiple solutions for helix and
strand, each a different length or register shift. A library of
profiles is, in essence, a multivariant model composed of
discrete, all-or-none solutions. Although we saw signifi-
cant covariances within each of the helix/strand motifs
and each individual motif improved in its performance,
the additional peripheral instances that were captured by
the improved motif model were already captured by one
of the other helix/strand motif profiles in the library. Thus
improving the performance of each motif did not improve
the preformance overall.

For non-canonical local structure motifs, the story is dif-
ferent. These motifs are not repeat patterns, and therefore
one instance cannot match multiple register shifts of one
motif, only one. By adding covariance to the model, we
were able to capture sequence variants that were not
already captured by another motif in the library, and per-
formance on these structures improved.

The results are consistent with protein local structures
having arisen by convergent evolution, not by duplication
followed by uncorrelated or correlated mutations. The
variations in sequence space for each type of local struc-
ture (motif) are best modeled by multiple independent
sequence profiles, and less well modeled by a single pro-
file with a pairwise covariance tensor.

Methods
Amino acid profiles
The probability of an amino acid at a position in the
sequence was calculated from the Psi-Blast multiple
sequence alignment as the sum of the sequence weights
over all sequences having that amino acid, or

where a is an amino acid and sik is a ith character in the kth

sequence. Position-specific sequence weights, wk, were
calculated using the normalized sum of pairwise mis-
match distances [14].

Motif profiles were calculated from aligned sequence seg-
ments in a similar way, except that equal weighting was

applied to each instance of the motif. Thus the motif pro-
file was simply the average profile of the instances of the
motif from the training set. One instance of a motif con-
sists of L+4 consecutive profile positions, where L is the
length of the motif structure. Two-residue extensions N
and C terminal to the motif structure helped to improve
local structure prediction in the previous study [13] and
this strategy was retained in this study. Covariances in
these terminal positions were ignored.

The amino acid profile for a motif m is defined as

where j is a position from -2 to L+1 relative to the start of
the motif structure for instance k of motif m. The back-
ground frequencies F for each amino acid were averaged
over the entire database.

Defining amino acid profile classes
K-means clustering was used to partition the space of all
single-position profiles, using the similarity score S.

where i and j are any two positions in the training set and
α = 0.5. This is the same scoring function used to generate
the original I-sites clusters [2]. In the K-means algorithm
K = 9 was used, based on intuitive knowledge of the diver-
sity of amino acid sidechain chemistries. In the resulting
nine clusters, no two clusters shared the same chemical
nature, and no single cluster, except one, contained amino
acids of very different chemical nature. Table 2 shows the
profiles for the 9 amino acid classes.

Scoring function
Each I-sites motif contains a two-part scoring function
consisting of a position-specific profile and a pairwise
covariant scoring function. Both were calculated from
clusters of segments of length L from the database
described above. The motif lengths 3 ≤ L ≤ 19 and struc-
tures were chosen as described in the earlier work [2].
Each segment in a cluster has L positions, each having pro-
file (Equation 1), a class and three backbone angles. The
sub-sections below describe how the scoring matrices
were calculated from the clusters.
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For the pairwise covariant part of the score, two functional
forms were initially explored, the correlation coefficient
(r, Equation 2) and the log-likelihood ratio (LLR). The
correlation coefficient r was found to be a better metric
than LLR in preliminary studies involving the training and
testing of selected motifs, especially the amphipathic helix
motif. Although purely empirical, the choice of covariance
metric made statistical sense. LLR, defined as the loga-
rithm of the frequency of occurrence of two classes at two
positions, divided by their expected random occurrence,
can take extreme negative values when the number of
observations is small. The correlation coefficient r, on the
other hand, is bounded between -1 and +1, so that sum-
ming r distributes the contribution to the score evenly
over all position pairs. By taking extreme values, LLR
scores can be dominated by a single position pair. This
imbalance could also have been remediated by carefully
assigning pseudocounts, but we chose to avoid the addi-
tional parameter.

Calculation of correlation tensor
The correlation between two random variables is typically
expressed as the sum of the product of the deviation of
each random variable from its mean divided by the stand-
ard deviation of each variable:

The correlation between amino acid classes at two posi-
tions in a motif was calculated by summing over all obser-
vations of that motif in the database. Each observation
was expressed as a string of amino acid classes. For exam-
ple, one observation of an alpha helix cap motif might
have the following sequence of classes, using integers
ranging from 1 to 9: 2281287926952. Each number in
this sequence represents the class closest (Equation 4) to
the single-position profile (Table 2) at that position.

To calculate the correlation values we first define a delta
function, δ, as a Boolean value for a given observation, n:

Now each of the N observations of the motif is expressed
as a 2-dimensional matrix of Boolean values, δ. The corre-
lation between class k at position i and class l at position
j was calculated by applying Eq 5 over all instances, n, of
the motif.

where  is the average Boolean property; i.e.,

.

Correlation score

The 4-dimensional tensor of correlations for motif h, σh,

was used as a lookup table to score an observed sequence,

using the Boolean matrix  (Equation 6). For example,
the correlation score (c_score) for position n is calculated
using positions n through n+L-1 as follows.
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Table 2: Amino acid profile classes

Class Sidechain 
characteri

stics

Abund
ance

A C D E F G H I K L M N P Q R S T V W Y

1 Pos. charge 0.1710 .04 .00 .01 .05 .01 .01 .01 .01 .26 .03 .01 .01 .01 .15 .29 .02 .02 .02 .00 .01
2 Small polar 0.1275 .14 .00 .01 .03 .01 .02 .00 .03 .04 .03 .01 .03 .01 .02 .02 .25 .28 .07 .00 .01
3 Ambiguous 0.0030 .06 .06 .03 .10 .00 .04 .03 .02 .05 .06 .06 .02 .06 .10 .05 .06 .07 .05 .08 .00
4 Cysteine 0.0603 .16 .36 .01 .01 .01 .06 .01 .02 .01 .03 .01 .02 .02 .01 .02 .09 .07 .06 .00 .01
5 Aromatic 0.0532 .03 .01 .02 .02 .08 .03 .03 .01 .02 .03 .01 .02 .01 .02 .03 .03 .02 .02 .46 .10
6 Glyc or Pro 0.1441 .18 .00 .02 .02 .00 .34 .01 .01 .03 .01 .00 .01 .24 .01 .02 .05 .02 .01 .00 .00
7 Neg. charge 0.1415 .05 .00 .21 .21 .01 .06 .02 .01 .07 .02 .00 .14 .02 .05 .03 .06 .03 .01 .00 .01
8 Aliphatic 0.2137 .05 .01 .01 .01 .11 .01 .00 .16 .01 .24 .06 .01 .01 .01 .01 .01 .02 .17 .01 .08
9 Large polar 0.0857 .04 .00 .01 .02 .05 .02 .43 .01 .03 .03 .01 .04 .01 .04 .04 .04 .03 .02 .00 .11
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where L is the length of the structural motif and 9 is the
number of classes.

Profile score
A profile segment of a query was scored against a same-
sized motif profile using the similarity score S (Equation
4), summed over the motif positions including two addi-
tional positions before and after the structural motif, thus
from n-2 to n+L+1 where L is the length of the structural
motif. This is the scoring function used in the previous I-
sites work and was retained for direct comparison in this
work.

where α = 0.5, and h is the I-sites motif.

Typically, the similarity of two profiles is scores by calcu-
lating the cross entropy, Σ(Pquery)log(Ph), which expresses
the log of the joint probability of two distributions. Equa-
tion 9, p_score, however, is a correlation score over LLRs,
which does not translate directly to a joint probability but
has some of the same flavor. The difference lies in how
low probabilities are scored. The Shannon entropy score
ignores near-zero terms, but for p_score they contribute
positively if both Pquery and Ph are small, and negatively if
one is small and the other large. If a motif profile has a sig-
nificantly underrepresented amino acid in it, then it
stands to reason that the presence of that amino acid sig-
nals negatively about the presence of the motif structure.
As reported previously[2], we believe that the absence of
certain amino acids at certain positions plays an impor-
tant role in local folding.

Linear combination of scores
For each of the I-sites motifs, h, the score I_score(n,h) was
defined to be a linear combination of the profile score,
p_score (Equation 9) and the correlation score c_score
(Equation 8). A binary search in the range 0 ≤ ωh ≤ 1 was
used find the optimal relative weights, ωh.

Each segment n has the additional property of being either
a true or a false instance of the motif, based on the MDA
metric. The value being optimized was the Receiver Oper-
ator Characteristic (ROC) curve [12]. The area under the
ROC curve is a good overall metric of accuracy; a perfect
classification method will have an area under the curve of
one and a random binary classifier will have an area of

approximately 0.5. Motif weights ωh were optimized one
at a time using a binary search.

Validation
The value of the I-sites library as a predictor of local struc-
ture was assessed by making predictions on a test set of
559 proteins not used in training, as described in the fol-
lowing sections. A set of 2249 proteins from the latest
PDBSelect25 [15] was used to train the model. [For more
information on how the datasets were constructed, see
Additional File 1]

Motif paradigm structures
As in previous I-sites work, each motif had a representa-
tive structure (paradigm) from the database, which was the
structurally most central peptide in a set of clustered
sequence segments. The paradigms were originally chosen
as the peptide with the smallest sum of the root-mean-
square-deviation (RMSD) to the other members of the
cluster, and were not changed in the current study. Where
predicting the backbone angles using I-sites, the motif
with the highest confidence value is selected from the
library, then the predicted backbone angles are the back-
bone angles of the paradigm of that motif.

Structural similarity metric MDA
Backbone angles deviations have been shown to correlate
strongly with local RMSD of backbone atom positions,
the presence of conserved sidechain contacts, and con-
served backbone hydrogen bonds. A maximum deviation
over all backone angles (MDA) less than 120° corre-
sponds to a maximum 1.4Å RMSD for an 8-residue frag-
ment. Two segments, r and s, of length L, have the same
structure (True) if the MDA passes a cutoff.

Note that the φ angle of the first residue and the ψ and Ω
of the last residue in the segment are ignored. The value of
cutoff for each motif was chosen as its "natural boundary",
or probability minimum, in previous work [2] and was
not changed here. The average cutoff was 77°. Almost all
segments that have MDA less than the natural boundary
also conserve the motif 3D structure.

Confidence assignment
The raw score, I_score (Equation 10) was converted to a
probability, or confidence (cf) by fitting the score data to
the accuracy data. The confidence reflects the probability
that the sequence is correctly predicted to be the motif
structure. [For details on how this was done, see Addi-
tional File 1]
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Overall accuracy estimation
The accuracy of local structure prediction was reported as
the total percent correct by position, where correctness
was assigned using the MDA metric (Equation 11). Note
that overlapping correct predictions are not overcounted
by this method since each position is counted exactly
once. The expected value for random accuracy of a 8-resi-
due segment prediction was found to be 5.7% by ran-
domly choosing 8-residue pairs, using a generous cutoff =
120°. The same expected value was found after consider-
ing overlap, since random true predictions overlap rarely

Training
Iterative supervised learning was carried out using expec-
tation/maximization approach with a structure-based fil-
tering step. The training set sequence segments assigned to
a motif are referred to as a "cluster." The parameters of
each motif, P (Equation 2), σ (Equation 7), and the con-
fidence curve, are determined solely by the cluster mem-
bership. Thus only this membership was trained, by
optimizing the fraction True (Equation 11) within the
cluster. Motifs were trained independently.

Initialization
(1) Each length k segment in the training set was assigned
a confidence score (cf) based on the motif profiles and
confidence curve from the starting motif library, where k
is the length of the motif.

(2) Each length k segment was assigned a True or False
value using MDA (Equation 11).

(3) A new profile and tensor were summed using only the
True segments (Equations 2,7).

Supervised learning
(4) Each length k segment in the training set was assigned
scores p_score (Eq 9) and c_score (Equation 8):

(5) Each length k segment was assigned True or False
(Equation 11).

(6) A linear combination of p_score and c_score (Equation
10) was found that maximized the ROC.

(7) A confidence curve was fit to the data.

(8) False segments and segments with confidence less
than a cutoff (0.2) were pruned.

(9) The profile, P, and tensor, σ, were summed (Equations
2, 7).

(10) Steps 4 – 9 were repeated until there was no improve-
ment in overall accuracy.

Three training strategies
To test the degree to which covariance contributes to
improved prediction and/or over-fitting of the data, three
strategies were tried when carrying out training of the I-
sites Libraries (ISL). In the first case, only the profiles were
trained, and covariance was not used (ISL5.1). In the sec-
ond (ISL5.2), both the correlation tensor and the profile
were recomputed at each training cycle (step 9 above). In
the third case only the correlation tensor σ was updated;
the profile P was initialized and fixed (ISL5.3). All training
was done using the same training set to facilitate direct
comparison of the three different trained libraries. A
fourth library (ISL5.4) was constructed by taking the high-
est accuracy of the equivalent motifs from libraries ISL5.1,
ISL5.2, and ISL5.3.
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