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Abstract

Background: f-turn is a secondary protein structure type that plays significant role in protein
folding, stability, and molecular recognition. To date, several methods for prediction of fturns
from protein sequences were developed, but they are characterized by relatively poor prediction
quality. The novelty of the proposed sequence-based f-turn predictor stems from the usage of a
window based information extracted from four predicted three-state secondary structures, which
together with a selected set of position specific scoring matrix (PSSM) values serve as an input to
the support vector machine (SVM) predictor.

Results: We show that (1) all four predicted secondary structures are useful; (2) the most useful
information extracted from the predicted secondary structure includes the structure of the
predicted residue, secondary structure content in a window around the predicted residue, and
features that indicate whether the predicted residue is inside a secondary structure segment; (3)
the PSSM values of Asn, Asp, Gly, lle, Leu, Met, Pro, and Val were among the top ranked features,
which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential f-turns,
while the remaining four amino acids are useful to predict non-f-turns. Empirical evaluation using
three nonredundant datasets shows favorable Q.. Qprediced and MCC values when compared
with over a dozen of modern competing methods. Our method is the first to break the 80% Q..
barrier and achieves Q,, = 80.9%, MCC = 0.47, and Qg4 higher by over 6% when compared
with the second best method. We use feature selection to reduce the dimensionality of the feature
vector used as the input for the proposed prediction method. The applied feature set is smaller by
86, 62 and 37% when compared with the second and two third-best (with respect to MCC)
competing methods, respectively.

Conclusion: Experiments show that the proposed method constitutes an improvement over the
competing prediction methods. The proposed prediction model can better discriminate between
Pturns and non-f-turns due to obtaining lower numbers of false positive predictions. The
prediction model and datasets are freely available at http://biomine.ece.ualberta.ca/BTNpred/

BTNpred.html.
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Background

Secondary protein structure information provides useful
input for a wide range of applications including predic-
tion of solvent accessibility [1], fold type [2], folding rate
[3], beta-turns [4], alpha-turns [5], contact order [6], terti-
ary structure [7], and in fold recognition [8]. The second-
ary structures include helices, strands, tight turns, bulges,
and random coils structures. Helices and strands are repet-
itive motifs that stabilize the protein structure and which
are classified as regular secondary structures. The remain-
ing secondary structures, which are generally designated
as random coil regions, are non-repetitive motifs that are
regarded as irregular secondary structures [9]. The tight
turns can be further divided into -, -, -, &, and #turns
depending on the number of the constituent residues. The
Sturns consist of four consecutive residues. The distance
between the first, ith, and the last, ith+3, residue in a S-turn
must be less than 7 A [10,11]. This distance implies a par-
ticular geometry of the corresponding backbone, which
turns back on itself or, more generally, which corresponds
to a change of direction. The S-turns are usually described
as orienting structure because they orient o-helices, f-
sheets, indirectly defining the topology of proteins. They
are one of the most abundant secondary structures, i.e., on
average about 25% residues in all protein chains form -
turns [12]. The S-turns play several significant biological
roles in proteins and peptides. They tend to be more sol-
vent exposed than buried and as a result they were found
helpful in the context of molecular recognition and in
modeling interactions between peptide substrates and
receptors [13]. f-turns are also involved in the biological
activity of peptides as the bioactive structures that interact
with other molecules such as receptors, enzymes, or anti-
bodies. Recent years have seen interest in mimicking £
turns for the synthesis of medicines [14,15]. Formation of
p-turns is also a vital stage during the process of protein
folding [16]. As a result, development of accurate predic-
tion methods to identify f-turns in protein sequences
would provide valuable insights and inputs for the fold
recognition and drug design.

The p-turn prediction methods can be divided into those
based on statistics and based on machine learning. Statis-
tical methods utilize probabilities computed using infor-
mation concerning preferences of individual amino acid
types at each position in f-turns. They include Chou-Fas-
man method [10], Thornton's algorithm [17], GORB-
TURN [18], 1-4 & 2-3 correlation model [19], sequence-
coupled model [20], and COUDES method [4]. The first
five methods use the sequence as the input, while the
COUDES is based on propensities of individual residues
augmented with the multiple alignment. The position-
specific scoring matrix (PSSM), which is calculated with
PSI-BLAST [21], was used to weigh propensities for a given
residue, so that all the residues present in the multiple
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alignment at this position are taken into account. Second-
ary structure predicted by PSIPRED [22], SSPRO2 [23],
and PROF [24] and the flanking residues around the S
turn tetrapeptide were also utilized by COUDES to
improve the prediction accuracy.

Machine learning based methods include BTPRED [25],
BetaTPred2 [26,27], and MOLEBRNN [28] which are
based on artificial neural networks (ANN), Kim's method
[29] which utilizes k-nearest neighbor (kNN), and four
methods based on support vector machines (SVMs) [30-
33]. BTPRED encodes the sequence using a large window
of 11 residues centered over the predicted residue together
with secondary structure predicted with PHDsec [34] for
the central (with respect to the window) residue to per-
form predictions. BetaTPred?2 is an improved neural net-
work design, in which two networks are used. The
MOLEBRNN is based on a bidirectional Elman-type recur-
rent neural network and uses PSSM profiles as the input.
The latter method predicts f-turns and their types. In
Kim's method, the protein sequence encoded using a win-
dow of up to 9 residues is used as the input to kNN, which
is combined with a filter that uses secondary structure pre-
dicted with PSIPRED for the central residue. The BTSVM
method by Pham and colleagues (2003) applies position-
specific frequent matrix (PSFM) and PSSM, both com-
puted with PSI-BLAST, to encode input for SVM classifier
[31]. The SVM based method proposed by Zhang and col-
leagues [32] uses PSSM over a 7-residue window and the
secondary structure of the central residue predicted by
PSIPRED as the input. Both, this method and Kim's
method also utilize a filtering stage based on 'state-flip-
ping' rules [25]. The newest SMV-based predictor that was
developed by Hu and Li combines the increment of diver-
sity, position conservation scoring function, and second-
ary structures predicted with PSIPRED to compute the
inputs for prediction of fturns and y~turns [33]. Perform-
ance of six f-turn prediction methods, including Chou-
Fasman method, Thornton's method, 1-4 & 2-3 correla-
tion, sequence-coupled method, GORBTURN, and
BTPRED was compared using a benchmark database of
426 nonredundant (pairwise-sequence-identity of below
25%) proteins [35]. This dataset was later used to com-
pare and evaluate the subsequently proposed methods
and is also adopted in this work.

We observe that although information coming from the
sequence (either the sequence itself or the PSSM) was
encoded using a window, the existing methods did not
use the window when processing information coming
from the predicted secondary structure. Moreover, the
existing methods apply only one predicted secondary
structure at the time, when different predictors are shown
to provide complementary predictions [36]. To this end,
we combine the PSSM values with information obtained
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by utilizing an ensemble of four secondary structure pre-
diction methods that was processed using a window to
improve the S-turn predictions. We also perform feature
selection that allows identifying which information
(among the predicted secondary structures and PSSM val-
ues) is useful for the predictions. Our main goal is to cre-
ate a prediction model that improves the overall
prediction accuracy, Q- The highest reported Q.
obtained based on the cross-validation on the benchmark
dataset of 426 sequences equals 79.8% [33]. Since 25% of
residues are f-turns, the above result translates in just 4.8/
25 = 19% error rate reduction over a naive method that
would classify all residues as not fS-turns. We note that the
percentage of correct predictions among all predicted -
turns, Qprediciear that is reported for the existing methods
ranges between 32.4 and 56%. This means that about half
or more of the residues predicted as f-turns are in fact not
Sturns. To this end, our goal is also to provide prediction
method characterized by low false positive predictions
that would correspond to higher Q q values, when
providing favorable Q,,,,; values.

predictes

Methods

Datasets

We apply three different nonredundant protein databases,
which were proposed in [4,37], to validate the proposed
method. The dataset of 426 protein sequences (denoted
by BT426), which was developed by Guruprasad and Raj-
kumar (2000) [37], is the most widely used benchmark
dataset. The two other datasets contain 547 (denoted by
BT547) and 823 (denoted by BT823) protein sequences.
They were constructed using PDBSELECT list published in
June 2000 and October 2003 [38], respectively, by Fuchs
and Alix (2005) [4]. The three datasets share several char-
acteristics, such as that the f-turns are assigned using
PROMOTIF [39], the pairwise sequence identity between
any two protein chains is below 25%, the protein struc-
ture is determined by X-ray crystallography with at least
2.0 A resolution, and that each chain contains at least one
Sturn. The total number of residues in the BT426, BT547,
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and BT823 datasets equals 96339, 104522, and 150969,
respectively. To facilitate computationally expensive
parameterization of the classifier and feature selection
that were performed in this paper we created another,
smaller dataset. We selected three out of the predefined
seven folds in the BT426 dataset [35], and in each of these
three folds we randomly selected 20% of residues; the cor-
responding dataset is named BT426-20. We note that the
parameterization with the BT426-20 dataset is equivalent
to the parameterizations performed by the competing
methods, which was based on the original BT426 dataset,
i.e., the same division into training and test sets is used.

Design of the proposed prediction method

The overall architecture of the proposed system is shown
in Figure 1. The protein sequence is converted into a fea-
ture vector that incorporates information from the PSSM
matrix generated with PSI-BLAST [21] and secondary
structure predicted with four prediction methods
[36,40,41]. The feature vector, which is computed using a
window over the PSSM and the predicted secondary struc-
tures that is centered on the predicted residue, is fed into
Support Vector Machine classifier to compute the predic-
tions.

Feature vector

The PSSM indicates whether a given residue in the query
sequence is conserved [21]. Since the conservation is usu-
ally indicative of the formation of repetitive motifs such as
the secondary structures, this information was found use-
ful in prediction of S-turns [4,26-28,31-33]. The PSSM is
computed using multiple alignment that requires use of a
window, and thus the input of the above S-turn predictors
was also encoded using a window. The PSSM, which is a
matrix of 20 x M elements, where M is the size of the win-
dow, was generated with the PSI-BLAST [21] against the
NR (nonredundant) NCBI database [42] using default
parameters. Similarly as in [32], standard logistic function
was used to normalize the PSSM values to <0, 1> interval.
A sliding window of seven residues, i.e., M = 7, was used

,_> PSI-BLAST —
SVM g
sequence feature vector —p» . |y prediction
classifier
Secondary structure predic-
tion with PSIPRED, INET,
TRANSSEC, and
PROTEUS2
Figure |

The architecture of the proposed prediction method.
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to extract features from the PSSM, and the matrix was
filled with 0's for positions outside of the sequence, i.e.,
where the window is located at the sequence termini. The
size of 7 is sufficient to account for the coupling effect of
residues within S-turns since the turns involve 4 residues
and thus they should not stretch beyond it"+3 and ith-3
positions, where the ith position corresponds to the center
of the window. The size of 7 or 9 was reported by Shep-
herd et al. (1999) to achieve the best predictions with
BTPRED [25] and the two most recent SVM based meth-
ods also apply 7-residue window [32,33].

Four secondary structure prediction methods, PSIPRED
v2.5 [8,40], JNET [41], TRANSSEC [36] and PROTEUS2
[36] were employed to produce features. The motivation
to use PSIPRED comes from the work of the authors of the
COUDES p-turn predictor, which concluded that predic-
tions when using PSIPRED were better than when using
SSPRO2 and PROF secondary structure prediction meth-
ods [4]. This also motivated exclusion of the two latter sec-
ondary structure prediction methods. We note that
PSIPRED was used to predict f-turns in several other
methods [4,26,27,29,33]. PROTEUS?2 is a recently devel-
oped secondary structure prediction method that was
selected due to its reported favorable performance when
compared with eight competing secondary structure pre-
dictors [36]. The main reason to select the other two
methods was their unique architectural design that could
potentially lead to generation of complementary predic-
tions. TRANSSEC uses two-tier neural network architec-
ture in which the first network is fed with multiple
alignment generated with PSI-BLAST and the second net-
work operates on the secondary structure determined via
the first network [36]. JNET utilizes a consensus neural
network design, in which several different multiple
sequence alignment profiles (based on PSI-BLAST and
Hidden Markov Models) are combined using a "jury”
neural network.

The four secondary structure prediction methods output
the 3-state, i.e., helix (H), strand (E), and coil (C), predic-
tions and the confidence score with values between 0 and
9. These values together with the normalized PSSM scores
over the 7 residues window were used to compute the fol-
lowing 216 features for each predicted residue:

- PSSMij is the normalized PSSM value wherei=1, 2, ..., 7
denotes the position in the slidingwindowandj=1, 2, ..,
20 denotes the position in the PSSM (total of 140 fea-
tures). We assume PSSM values of 0 for the positions in
the window that are outside of the sequence.

- SSP,, is a binary value denoting the prediction of a given
secondary structure method for the central residue, where
SSP = {PSI (PSIPRED), JNE (JNET), TRA (TRANSSEC),
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PRO (PROTEUS2)} and k = {C, E, H} denotes the pre-
dicted secondary structure (total of 4 x 3 = 12 features).

- SCORE ), = confidence score/10 is the confidence value
(division by 10 results in normalization to a unit interval)
obtained for the central residue by the SSP prediction
method (total of 4 features).

- 3PATTERN,, ,, sspis a binary value denoting a specific
configuration of the secondary structure predicted with
SSP method for the central and the two adjacent residues
where m = 1, 2, 3, 4 denotes a pattern type. For m = 1 and
k = C the secondary structure prediction would be CCC,
and for m = 2, 3, and 4 the prediction would be CCx, xCC,
and xCx, respectively, where x = {E, H}. We assume coils
for the positions outside of the sequence, i.e., when com-
puting at the sequence termini. The total number of these
features equals 48 (4 patterns, 3 secondary structures, and
4 SSPs). They encode whether the central (predicted) res-
idue is located inside a secondary structure segment or at
the interface between two segments.

- CONTENT,, ¢qpis the content of the secondary structure
k predicted with method SSP over a 7 residues window
(total of 12 features). The content is defined as the ratio
between the number of residues in a given secondary
structure and the window size. The window size is short-
ened when the central residue is at the termini of the
sequence.

The first two feature sets are consistent with the inputs
used by the competing prediction methods [25-33],
except that SSP,, is computed for four (instead of one) sec-
ondary structure prediction methods. The latter three fea-
ture sets are proposed in this paper in an attempt to
incorporate window based information concerning the
predicted secondary structure and the confidence scores
that are provided together with the predictions.

Prediction method

The support vector machine (SVM) [43] classifier was
applied to predict fturns. Given a training set of data
point pairs (x; ¢;), i =1, 2, ... n, where x; denotes the feature
vector, ¢;={-1, 1} denotes binary class label (f-turn, non
f-turn), n is the number of training data points, finding
the optimal SVM is achieved by solving:

min|[w]® +CY ¢,
i
such that c¢;(wz; —-b)=21-&,and1<i<n

where w is a vector perpendicular to wx - b = 0 hyperplane
that separates the two classes, C is a user defined complex-
ity constant, & are slack variables that measure the degree
of misclassification of x; for a given hyperplane, b is an off-
set that defines the size of a margin that separates the two
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classes, and z = ¢(x) where k(x, x') = ¢(x) - ¢(x') is a user
defined kernel function. The SVM classifier was trained
using Platt's sequential minimal optimization algorithm
[44], which was optimized by Keerthi et al (2001) [45].
The radial basis functions (RBF) was used as kernel func-
tion

"2
k(x;,x;) = eIl

where yis the user defined constant.

The SVM classification algorithm and feature selection
algorithms (see next section) used to build and test our
prediction method were implemented in Weka [46]. The
selection of the classifier and the kernel type was moti-
vated by the best f-turn predictions reported to date on
the BT426 dataset that were obtained using RBF-kernel
based SVM classifier [32,33]. The proposed classifier is
parameterized, i.e., the values of C and y are selected,
based on the procedure described in the next section.

Features selection and parameterization of SVM

Since total of 216 features were generated for each pre-
dicted residue and we expect that some of them would not
contribute to the prediction, a feature selection was per-
formed to reduce the dimensionality. This allows for
reduction of the time necessary to compute the prediction
model and for finding and discussing which of the pro-
posed features are related to the prediction of fturns.

Three feature selection approaches were employed. The
first, hybrid approach combines the Information-Gain
(IG) [47] and the Chi-Squared (CHI) [48] feature selec-
tion methods. The two methods were selected based on
their successful application in [49] and [50], respectively,
where they were used to rank protein sequence based fea-
tures. We also applied a filter-based feature selection
method which removes features based on the inconsist-
ency criterion [51] and a wrapper-based algorithm [52]
that applies flexible Naive Bayes classifier [53]. In the case
of the filter-based and the wrapper-based methods, we
used best first search that starts with empty set of features
to search through possible subsets of features. The selec-
tion of this search method and the selection of the flexible
Naive Bayes to evaluate feature sets in the wrapper-based
method were motivated by their good scalability, which
was necessary due to the large size of the datasets, i.e., the
search method is linear with respect to the number of fea-
tures and the Naive Bayes is linear with respect to the
number of data points.

In the hybrid feature selection (which leads to favorable
quality of predictions, see "Comparison of different fea-
ture selection strategies" Section), we used two different
selection methods to reduce bias introduced by each of
the methods. In both algorithms, each feature is ranked
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based on its merit (measured with information gain in IG
and the value of the chi-squared statistic in CHI), and next
they were sorted by their average rank across the two algo-
rithms. The measurement of the merit for the two selec-
tion methods is defined below.

IG measures the decrease in entropy when a given feature
is used to group values of another feature. The entropy of
a feature X is defined as:

H(X) ==Y P(x;)log,(P(x;))

where {x;} is a set of values of X and P(x;) is the prior
probability of x;. The conditional entropy of X, given
another feature Y (in our case the S-turn/non Aturn
labels) is defined as:

HX V) == P(r) Y P(xi [ 7)) loga(P(x; |7))
j i

where P(x;[y;) is the posterior probability of X given the
value y; of Y. The amount by which the entropy of X
decreases reflects additional information about X pro-
vided by Y and is called information gain

IG(X|Y) = H(X) - H(Y]Y)

According to this measure, Y has stronger correlation with
X than with Z if IG(X|Y) > IG(Z]Y).

CHI method is based on a common statistical test that
measures divergence from the expected distribution
assuming that the occurrence of a given feature is inde-
pendent of the class value. Let X be a discrete random var-
iable (which corresponds to a feature in this paper) with
m = 2 possible outcomes x; = fturn, x, = non f-turn, and
with probability of each outcome P(X = x;) = p;. Pearson-
chi-squared statistic is defined as:

m 2
1= z (ni—np;)
i=1 "Pi
where n; is the number of instances which will result the

outcome x;. A feature that obtains higher y value receives
lower rank.

To avoid overfitting, the 216 features were ranked on the
BT426 dataset using 7-fold cross validation. In the case of
the hybrid method, the average ranks (average over the
ranks produced by IG and CHI methods) were computed
for each of the 7 training datasets separately, and next they
were averaged over the 7 datasets. After the features are
ranked, we performed f-turn prediction in order to decide
how many of the features should be kept. This was per-
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formed in two steps. First, we selected the top 50 features
to perform parameterization of the SVM classifier. Next,
we used the parameterized SVM to select the desired
number of features.

In step 1 we perform greedy search for optimal C and y
parameters:

- We freeze C = 1 and find the optimal y based on 3-fold
cross validation on the BT426-20 dataset using the top 50
features, see Figure 2A. We observe that highest accuracy
(Qqotar) is achieved for yequal 0.0186 or 0.02. The optimal
7=0.0186 is the same as the value used in [32].

- Next, we use the = 0.0186 and we optimize C, see Fig-
ure 2B. The best accuracy is achieved for C = 3.

We did not apply the grid-based parameterization, which
could potentially lead to better parameters, since this
would be computationally expensive and since Figure 2
shows that the SVM is not sensitive to the parameters, i.e.,
the Q,..,; Values change by only up to 0.7% by varying y
and C.

In the second step, the SVM classifier with the optimized
parameters (C = 3 and y= 0.0186) was used to select the
desired number of the top ranked features. The selection
was again based on 3-fold cross validation on the BT426-
20 dataset, see Figure 3. The results show that selection of
the top 90 features provides the best accuracy, although
we note that the differences are relatively small. This indi-
cates that only a small fraction of the original features is
necessary to provide accurate fturn predictions.

Since the wrapper- and filter-based feature selections
directly select a set of features, rather than ranking the fea-
tures as it is done by the hybrid method, there was no

Accuracy
8140

8120
8100
8080
8060
8040

80.20
Gamirra

8000
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need to decide how many features should be kept.
Instead, each method was used to select a set of features
for each of the 7 training folds from the BT426 dataset,
and next these features were combined together. This
resulted in selection of 54 and 39 features in the case of
the filter-based and wrapper-based algorithms, respec-
tively.

These two feature sets were used with SVM parameterized
using the above procedure where the top 50 ranked fea-
tures were applied. We did not re-parameterize the SVM
for the other two sets of features because the above param-
eterization shows that the SVM is not sensitive to the
parameters, the 50 features used in the parameterization
overlap with features used in the other two sets, and since
such parameterization is computationally expensive.

Evaluation procedure and measures

7-fold cross validation was used to perform tests on the
three datasets (BT426, BT547 and BT823). The folds were
created by randomly selecting equal number of
sequences. The quality of prediction is evaluated using
four measures, Qg1 Qpredicteds Qobservear a1d MCC. This is
consistent with the test procedures and measures applied
to evaluate modern competing methods [4,25-33,35].

Given that TP (true positives) is the number of correctly
classified p-turn residues, TN (true negatives) is the
number of correctly classified non-g-turn residues, FP
(false positives) if the number of non-f-turn incorrectly
classified as f-turn residues, and FN (false negatives) is the
number of S-turn incorrectly classified as non-f-turn resi-
dues, Q,. (prediction accuracy) is defined as the percent-
age of correctly classified residues.

001 001 007 0019 002 0022 0025 0D5 01 07 02 025 03

A
Figure 2

Q TP+TN
total =
4 TP+TN+FP+FN
Accuracy
8160
8140 ,/0;—gag__‘k‘_.___.
8120 ﬁ_/r
8100
8080
s
3060
8040
C
80.20 . . . .
05 10 15 20 25 30 35 40 50 60

B

Parameterization of SVM based on 3 fold cross-validation test with top 50 features on the BT426-20 dataset;
panel A shows search for optimal y when C = |; panel B shows search for optimal C using optimal values of =
0.0186; the x-axis shows values of parameters, while y-axis shows the corresponding accuracy (Q,.,) of /~turn

prediction.
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Selection of the desired number of features based on 3 fold cross-validation test on the BT426-20 dataset using
SVM with C =3 and y= 0.0186; the x-axis shows the number of selected top features, while y-axis shows the

corresponding accuracy (Q,,.,) of /~turn prediction.

Probability of correct prediction, Qpegicieds 18 the percent-
age of correctly predicted S-turns among the predicted S
turns

TP

icted = ————x100
Qpredlcted TP+FP

Sensitivity or coverage, Qp.ereds 1S the percentage of cor-
rectly predicted f-turns among the observed (true) f-turns

P

—x100
TP+FN

Qobserved =

We observe that approximately 24% to 24.6% f-turn res-
idues are observed in the three datasets, and therefore Q,,_
= 75% (baseline prediction accuracy) could be obtained
by merely regarding all residues as non f-turns. Therefore,
Qo121 Values can result in misleading information (overes-
timation of predictive performances), which was pointed
outin [4,25,54]. This is especially evident when TN values
are large, compared to TP, FN, and FP values. As a result
Matthews Correlation Coefficient (MCC) is computed

TPXTN—-FPxFN

MCC = x100
J(TP+FP)X(TP+FN)x(TN+FP)x(TN+FN)

The value of MCC is confined to <-1,1> interval. If the
MCC value is close to 0 then the prediction method is not
better than a random classification. Higher MCC value
corresponds to better performance of the prediction
method.

We also report receiver-operator characteristics (ROC)
curves that present a graphical plot of the TP rate = Q j,veq
against FP rate = FP/(FP + TN).

Results and discussion

Comparison of different feature selection strategies

The three employed feature selection methods produce
different feature sets which are summarized in Figure 4. In
all three cases majority of the features are based on PSSM.
Among the features that are computed from the predicted
secondary structures, the largest fraction is derived from
the structures predicted by PROTEUS2. We also observe
that all four predicted secondary structures are used to
derive features in each of the feature sets. This consistency
supports the need for multiple predicted secondary struc-
tures.

Each of the three set of features was used as the input to
the optimized SVM classifier with C = 3 and y= 0.0186 to
perform prediction of f-turns. The evaluation of the qual-
ity of these predictions was performed based on 7-fold
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number of M secondary structure predicted w ith PROTEUS2
100 + selected m secondary structure predicted w ith TRANSSEC
features O secondary structure predicted with JNET
a0 O secondary structure predicted w ith PSIPRED
O PSSM
80 -
70 -
60 -
50 +
40 -
30 -
20 -
10
0 . . .
Hybrid feature selection Filter-based feature Wrapper-based feature
(90 features) selection (54 features) selection (39 features)
Figure 4

Comparison of three feature sets generated by using the hybrid, the filter-based, and the wrapper-based fea-
ture selection methods.

cross validation on the BT426 datasets, see Table 1. The  the filter-based method correspond to the highest Q..
Table shows that usage of the 90 features selected using  4i.q Value. We observe that the differences are relatively
the hybrid methods results in the highest MCC value.  small as all three designs provide the accuracy which is
These features also lead to the highest Q_psrveqad Q- close to 80%. The ROC curves shown in Figure 5 allow for
At the same time, we note that the features selected using  a more detailed analysis of the differences. The 90 features
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Table I: Performance comparison between the predictions
performed using the three sets of features that were generated
using the hybrid, the filter-based, and the wrapper-based feature
selection methods

Feature selection method Q.. Qp ciicced Qopserves MCC
Hybrid method (90 features)  80.9 62.7 55.6 0.47

Filter-based (54 features) 80.7 64.1 49.5 0.44
Worapper-based (39 features)  79.6 60.2 51.0 0.42

The tests are based on 7 fold cross validation on the BT426 dataset

generated by the hybrid method are shown to provide
favorable prediction quality for low values of FT rate (up
to 0.35), while the 39 features based sequence representa-
tion developed with wrapper-based method provides
higher TP rate for the higher values of the FP rate. The
most interesting part of the curves corresponds to relative
high TP rates that are coupled with low values of FP rate.
Since the ratio of positive to negative samples is 1:4, the
ratio between the true positives and false positives would
be even at FP rate of approximately 0.25. For higher FP
rate, the number of false positives would be higher than
the number of true positives. As a result, we conclude that
the 90 features provide better predictions than the other
two feature sets and this feature set is used to build the
proposed prediction method.

TPrate
0.8
08 —— Hybrid feature selection (90 features)
—— Filter-based feature selection (54 features)
Wirapper-based feature selection (39 features)

Q7

08

a5

04

03

Q.2

01

FPrate (Qobserved)
04
0 01 02 0.3 0.4 0.5 06 07 0.8 0.9 1

Figure 5

The ROC curve (TP rate vs. FP rate) for the predic-
tion of f~turns based on the 7-fold cross validation on
the BT426 datasets when using three sets of features,
which were generated using the hybrid, the filter-
based, and the wrapper-based feature selection
methods.
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Comparison with competing prediction methods

The 90 selected features and SVM with C = 3 and y =
0.0186 were applied in the proposed prediction model.
The 7-fold cross validation test results on the BT426 data-
set are summarized and compared with over a dozen of
competing methods in Table 2; the results are organized
in the descending order by the values of MCC.

Table 2 shows that the proposed method achieves the
highest prediction accuracy Qq = 80.9%, Qpredicied =
62.7%, and MCC = 0.47 on the BT426 dataset. Our pre-
diction results in 1.1% higher total accuracy than the Q,,,
of the best existing prediction method [33]. We empha-
size that this difference is relatively large when consider-
ing that the baseline accuracy equals 75%, i.e., our
method provides 5.9/25 = 24% error rate reduction while
the second best method provides 19% error rate reduc-
tion. The Qegicea Of the proposed method is higher by
6.7% than the Q.qieq Of the BTSVM [31] and by 7.1%
when compared with the best existing method by Hu and
Li [33]. Higher Q;cgicea Values mean that a larger fraction
of the predicted f-turns are in fact S-turns (false positive
numbers are lower). This indicates that the proposed pre-
diction model can better discriminate between A-turns
and non f-turns when compared with the competing
methods. At the same time, the Q_p.rveq Value obtained by
the proposed method shows that over 55% of actual £
turns were correctly predicted. We note that our Qpeerved
value is 11.4% lower than the Q. veq Feported in [32]
and 13.3% lower than the Q. veq T€ported in [33]. The
increase of Qedicied Values as a trade-off for decreased Q.
served Values is due to the usage of the predicted secondary
structure. This is since the proposed method would not
predict S-turns inside the predicted helices and strands,
which reduces the number of false positives; this observa-
tion is consistent with the conclusions in [4]. At the same
time, if the helix/strand prediction is incorrect, i.e., the
actual structure is a f-turn, than our prediction method
would most likely produce a false negative prediction. We
show that in spite of this trade-off, the overall accuracy is
improved, i.e., both Q,,, and MCC values are the highest
in the case of the proposed method.

We investigate the impact of the proposed features
extracted from the predicted secondary structure on the
prediction quality. When excluding the 49 features that
are based on PSSM (out of 90 features used in the pro-
posed method), the predictions performed with the
remaining 41 secondary-structure features are character-
ized by Qiotal = 80.3%, Qpredicted = 60.9%, Qgbserved = 563,
and MCC = 0.46. Although removal of the PSSM features
results in slightly worse predictions, we observe that the
features computed from the predicted secondary struc-
tures provide valuable input. We also experimented with
the design in which only one of the four secondary struc-
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Table 2: Performance comparison between the proposed and the competing methods based on the 7 fold cross validation test on the

BT426 dataset

Prediction method [reference] Qo Qpredicted Q. bserved MCC
This paper 80.9 62.7 55.6 0.47

SVM [33] 79.8 55.6 68.9 0.47

MOLEBRNN [28] 779 53.9 66.0 0.45

SVM (multiple alignment) [32] 773 53.1 67.0 0.45
BTSVM [31] 78.7 56.0 62.0 0.45
BETATPRED?2 (multiple alignment) [26,27] 755 49.8 72.3 0.43
COUDES (¥;reshold = 0 for PSSM) [4] 748 48.8 69.9 0.42
COUDES (¥reshold = - 100 for PSSM) [4] 755 49.8 66.6 0.41
SVM (single sequence) [32] 748 49.1 67.9 0.41
BETATPRED?2 (single sequence) [26,27] 74.3 484 71.2 0.41
KNN [29] 75.0 46.5 66.7 0.40

BTPRED!' [25] 74.9 55.3 48.0 0.35

BTPRED [25,35] 74.4 48.3 57.3 0.35
Chou-Fasman [10,35] 65.2 37.6 63.5 0.26
Thornton [17,35] 68.0 386 524 0.23
GORBTURN [18,35] 70.5 39.3 37.3 0.19

1—4 & 2-3 correlation [19,35] 59.1 324 61.9 0.17
Sequence coupled [20,35] 533 324 72.8 0.17

I Results reported on a different dataset with 300 chains.

ture predictions is used. We used output of the PROTEUS2
that is characterized by a favorable performance when
compared with the other three secondary structure predic-
tion methods [36]. The predictions that use only the 49
PSSM based features and 12 features generated from sec-
ondary structure predicted by PROTEUS result in Q,,,,; =
80.5%, Qpredicted = 61.3%, Qupserved = 56.8, and MCC =
0.46. We observe that these results are again slightly worse
than the results obtained with the proposed method; the
usage of all 90 features improves Q1 Qpredictear and
MCC. The simplified architecture that uses only one pre-
dicted secondary structure is equivalent to the design of
the recent method by Zhang and colleagues [32]. We note
that our results are better than the results of this method,
i.e, Qo = 80.5% vs. Qo = 77.3%, which stems from
using different secondary structure prediction method
and the novel features. Our method uses features com-
puted from a window over the predicted secondary struc-

ture, while the Zhang's method uses only the secondary
structure of the predicted residue.

Results obtained based on the 7-fold cross validation with
the BT547 and BT823 datasets are given in Table 3. They
show that for the BT547 dataset the proposed method
obtains 3.9% higher Q,.., 2% higher MCC, 14% better
Qprediciear and 16% lower Qperveq When compared with
the second-best SVM based method [33]. Similarly, for the
BT823 dataset, our method obtains 3.8% and 7.8%
increase in Qg and Qregicear Tespectively, and 17.7%
decrease in Qupeered: We oObserve that the proposed
method obtains consistent (similar) quality of predictions
for all three datasets. The Q,,, values range between
80.5% and 80.9%, Qpedicted Values range between 60.8%
and 62.7%, Qgpserved PetWeen 54.2% and 55.6%, and
MCC between 0.45 and 0.47, see Tables 2 and 3. This rules
out possibility of overfitting the BT426 dataset due to the
performed design.

Table 3: Performance comparison between the proposed method, the COUDES method, and the most recent SVM-based method by

Hu and Li

Prediction method [reference] Dataset Qeoual Qpredicted Q. bserved MCC

This paper BT547 80.5 61.6 54.2 0.45

COUDES [4] 74.6 48.7 70.4 0.42

SVM [33] 76.6 47.6 70.2 0.43

This paper BT823 80.6 60.8 54.6 0.45

COUDES [4] 74.2 47.5 69.6 0.41

SVM [33] 76.8 53.0 723 0.45

The tests are based on the 7 fold cross validation test on the BT547 and BT823 datasets
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Analysis of the proposed feature based sequence
representation

The proposed method applies 90 features, which consti-
tutes 86% reduction of the dimensionality of the input
vector when compared with the method by Hu and Li
(2008) that applies 628 features (140 values from PSSM
using 7-residue window, 7 conservation scores, 3 features
to encode the PSIPRED [8,40] predicted secondary struc-
ture, and 478 features that are processed by the increment
of diversity algorithm). The dimensionality reduction of
62% and 37% is achieved when compared with the two
third-best performing, i.e., with the third best MCC value,
SVM-based predictors by Pham and colleagues (2003),
which uses 240 features (PSSM values using 12 residues
window) [31], and the method by Zhang and coworkers
(2005) that applies 143 features (140 PSSM values using
7 residues window and 3 features to encode the PSIPRED
predicted secondary structure for the predicted residue),
respectively.

The top 10 ranked features that were used to implement
the proposed prediction method are shown in Table 4. We
observe that 6 out of 10 features are the newly proposed
features, which are based on the sliding window over the
secondary structure predicted by three prediction meth-
ods, PROTEUS2 [36], PSIPRED [8,40], and JNET [41]. The
remaining 4 features concern the predicted secondary
structure for the predicted residue. 7 out of 10 features are
computed using the predicted coils, while the remaining
3 concern predicted helices. The former is likely due to S
turns being a coil subtype and due to the favorable accu-
racy that the secondary structure prediction methods
obtain for coils and helices when compared with the accu-
racy for strands [55,56]. We note that 6 out of 10 features
are extracted from the predictions performed with
PROTEUS2, which confirms high quality of this method.
Finally, Table 4 reveals the top 10 features were based on
the predicted secondary structure, i.e., none of them was
based on PSSM [21], which signifies the novelty of the
proposed approach.

Table 4: The top 10 features used in the proposed prediction method

http://www.biomedcentral.com/1471-2105/9/430

Furthermore, we analyzed the composition of the top 90
selected features. The highest scoring PSSM;; feature was
ranked 32 and total of 49 out of 90 features were derived
from the PSSM. Among the remaining 41 features, 12 con-
cern structure predicted for the central residue (SSP,), 3
concern the prediction confidence score for the central
residue (SCOREggp), 14 are based on the 3 residue win-
dow pattern over the predicted secondary structure
(3PATTERN,), ;, ssp), and 12 concern secondary structure
content over the 7 residue window (CONTENT;, gp). This
shows that all proposed feature sets were utilized to per-
form the prediction.

Table 5 summarizes the features computed from the pre-
dicted secondary structure. It shows that each of the four
secondary structure predictions was used to compute sim-
ilar number of features. Two sets of features, the secondary
structure of the central residue (SSP,) and the secondary
structure content (CONTENT, ), were fully included in
the selected 90 features, i.e., features computed with all
four prediction methods were selected. We note that only
5 out of 12 patterns for the 3 residue window over the pre-
dicted secondary structure were utilized, namely CCC,
EEE, HHH, CCx, and xCC. The former three patterns con-
cern residues that are inside of a predicted secondary
structure segment and they were computed from all four
predicted secondary structures. The CCC pattern is likely
positively correlated with the prediction of f-turns, while
the remaining two patterns are likely negatively correlated
with the S-turns (or positively correlated with non
turns). The latter two patterns (CCx and xCC) were com-
puted from the structure predicted with PROTEUS2, and
they concern residues located on the interface between a
coil and another secondary structure.

Figure 6 summarizes the PSSM derived features that were
used to perform fS-turn predictions. The white cells denote
features that were not selected while the shaded cells
denote the selected features (darker shading corresponds
to higher ranked features). 23 PSSM features were ranked
31 to 60, and the remaining 26 PSSM features were ranked

Rank Abbreviation Details
| CONTENT pro Content of coils in window predicted with PROTEUS2
2 PRO, Coil predicted for the central residue with PROTEUS2
3 CONTENT . g Content of coils in window predicted with PSIPRED
4 CONTENT jne Content of coils in window predicted with JNET
5 PS¢ Coil predicted for the central residue with PSIPRED
6 CONTENTY, pro Content of helices in window predicted with PROTEUS2
7 JNE, Coil predicted for the central residue with JNET
8 3PATTERN, ¢ pro Pattern CCC for structure predicted with PROTEUS2
9 3PATTERN, 4 pro Pattern HHH for structure predicted with PROTEUS2
10 PROy, Helix predicted for the central residue with PROTEUS2
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Table 5: Summary of features computed from the predicted secondary structure for the four employed prediction methods;\ denotes
that a given feature was used, while - denotes a feature that was not selected

Feature Set

secondary structure prediction methods

PSIPRED JNET TRANSSEC PROTEUS2

SSP, c V v v V
E J J v v

H J V J V

SCOREgs, N N J
3PATTERN,, | ssp ccc V V v N
CCx - V

xCC - D

EEE V V v V

HHH v V V N

CONTENT, s C v J N N
E J J J N

H J J V v

Total 10 9 10 12

in the bottom 30 positions. We observe that none of the
features at positions 1 and 7 (that correspond to the edges
of the sliding window) were used, which suggests that
window of size 5 over the PSSM matrix would be suffi-
cient for the prediction. We hypothesize that these two
positions are no longer necessary, when compared with
the results in [32,33], due to the additional information
that is encoded from the predicted secondary structures.
Figure 6 shows that PSSM values corresponding to Ala (A),
Arg (R), Cys (C), Thr (T), Trp (W), and Tyr (Y) were not
found useful for the prediction. At the same time, Asn (N),
Asp (D), Gly (G), 1le (I), Leu (L), Met (M), Pro (P), and
Val (V), were among the top ranked PSSM features. These

Position in

findings are supported by existing research. The overall
potential of amino acids to form fS-turns was initially eval-
uated in [57] and than it was recomputed (based on a
larger dataset) in [37]. The former study shows that Asn,
Asp, Gly, and Pro are characterized by high potential to
form Sturns, while Ile, Leu, Met, Val, and Trp are charac-
terized by the lowest potential [57]. Similar conclusions,
i.e., high potential for Asn, Asp, Gly, and Pro, and low
potential for Ile, Leu, Met, and Val, were presented in [37].
We observe that the eight of the above amino acids were
found as the most useful to implement the proposed pre-
diction method. Some of them (Asn, Asp, Gly, and Pro)
would be useful to indicate potential f-turns, while the

Amino acids

window A R N D C Q E G H I L. K MF P S T W Y V
1
2
3
4
5 C ]
6
7
Figure 6

PSSM features selected to perform f-turn prediction. The rows correspond to positions in the sliding window and col-
umns correspond to the 20 amino acids (depth of the matrix); dark grey denotes selected PSSM; features that were ranked 31—
60, light grey denotes PSSM; features ranked 61-90, and while cells denote features that were not selected.
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remaining four (Ile, Val, Leu, and Met) would be useful to
predict non S-turns. As shown by Pham and colleagues
(2003), the Ala, Ile, and Leu tend to prevent formation of
Sturns, while Asp supports the formation of S-turns [31].
This also agrees with our results that show that PSSM val-
ues of Ile, Leu, and Asp are among the top ranked PSSM
features.

Conclusion

We propose a novel method for the prediction of fturns
that uses features extracted from a window over the three-
state secondary structure predicted by an ensemble of four
methods. We use feature selection to reduce the dimen-
sionality of the proposed feature vector. The proposed fea-
ture set is smaller by 37 to 86% when compared with the
best performing competing methods. The analysis of the
selected features reveals that:

- information from all four predicted secondary structures
is useful for the prediction of fturns,

- the most useful information extracted from the predicted
three-state secondary structure are the structure of the pre-
dicted residue, content of the secondary structures over 7
residues window centered on the predicted residue, and
features that indicate whether the predicted residue is
inside a secondary structure segment,

- PSSM values of Asn (N), Asp (D), Gly (G), 1le (I), Leu
(L), Met (M), Pro (P), and Val (V), were among the top
ranked features; similar conclusions, i.e., high potential of
Asn, Asp, Gly, and Pro, and low potential of Ile, Leu, Met,
and Val, to form S-turns were shown in [37,57]. In our
case, Asn, Asp, Gly, and Pro are likely associated with
potential S-turns, while the remaining four amino acids
predict non fAturns.

Empirical evaluation using three nonredundant datasets
shows that our predictions provide favorable Q. Qpre.
dictedr ad MCC values when compared with over a dozen
of modern competing methods. Our method is the first to
break the 80% Q,,, barrier and is characterized by 80.9%
Quotalr 0-47 MCC, and Qpregicrea higher by over 6% when
compared with the second best method using a bench-
mark dataset of 426 nonredundant sequences. This shows
that our method not only constitutes an improvement
over the competition, but also that the proposed predic-
tion model can better discriminate between f-turns and
non f-turns since it generates lower numbers of false pos-
itive predictions.

Abbreviations

ANN: artificial neural networks; CHI: Chi-Squared; FN:
false negatives; FP: false positives; 1G: Information-Gain;
kNN: k-nearest neighbor; MCC: Matthews Correlation
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Coefficient; PDB: Protein Data Bank; PSFM: position spe-
cific frequent matrix; PSSM: position specific scoring
matrix; ROC: receiver-operator characteristics; SVM: Sup-
port Vector Machine; TN: true negatives; TP: true positives.
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