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Abstract
Background: High-density short oligonucleotide microarrays are a primary research tool for
assessing global gene expression. Background noise on microarrays comprises a significant portion
of the measured raw data, which can have serious implications for the interpretation of the
generated data if not estimated correctly.

Results: We introduce an approach to calculate probe affinity based on sequence composition,
incorporating nearest-neighbor (NN) information. Our model uses position-specific dinucleotide
information, instead of the original single nucleotide approach, and adds up to 10% to the total
variance explained (R2) when compared to the previously published model. We demonstrate that
correcting for background noise using this approach enhances the performance of the GCRMA
preprocessing algorithm when applied to control datasets, especially for detecting low intensity
targets.

Conclusion: Modifying the previously published position-dependent affinity model to incorporate
dinucleotide information significantly improves the performance of the model. The dinucleotide
affinity model enhances the detection of differentially expressed genes when implemented as a
background correction procedure in GeneChip preprocessing algorithms. This is conceptually
consistent with physical models of binding affinity, which depend on the nearest-neighbor stacking
interactions in addition to base-pairing.

Background
Affymetrix GeneChip arrays are one of the most popular
gene expression array systems used by researchers world-
wide [1]. The purpose of an expression microarray experi-
ment is to measure the abundance of each known
transcript in the sample under investigation. Abundance
is inferred from the signal generated by a set of 11–20
probe pairs. Each pair is composed of a perfect match
probe (PM), which exactly complements a region on the
transcript, and a mismatch probe (MM), which is identi-
cal to the PM probe except at the 13th base, where the

reverse complement nucleotide is introduced [2]. The flu-
orescent signal from each probe, however, includes back-
ground noise that not only measures the transcript
abundance, but also non-specific binding (NSB) and
autofluorescence of the chip surface. MM probes were
originally introduced by Affymetrix to measure back-
ground noise. It has been shown by many groups that MM
probes contain significant amount of the PM signal and
are therefore unreliable as estimators of background noise
[3-5].

Published: 23 October 2008

BMC Bioinformatics 2008, 9:452 doi:10.1186/1471-2105-9-452

Received: 27 March 2008
Accepted: 23 October 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/452

© 2008 Gharaibeh et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/452
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18947404
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:452 http://www.biomedcentral.com/1471-2105/9/452
A gene expression experiment using the Affymetrix Gene-
Chip system usually involves a design step, a preprocess-
ing step, an inference step and finally, a validation step
[6]. The preprocessing step is of special importance; pre-
processing transforms the raw fluorescence signals from
each probe in a probeset into a composite gene expression
value. The main goal of the preprocessing step is to
remove non-biological variation from the raw data [6].
Usually, the preprocessing step in Affymetrix GeneChip
array analysis includes three main treatments of the raw
data. A background adjustment step separates the specific
signal from the non-specific signal. A probe-level normal-
ization step then removes non-biological variation
between arrays. Finally, a summarization step generates a
single expression value for each gene from its correspond-
ing probeset. The method described in this manuscript is
an implicit physical model that modifies the background
adjustment step.

Background noise and non-biological variation of the sig-
nal generated from each probe are common phenomena
in GeneChip microarray experiments [7,8]. The differ-
ences in the signal produced can be attributed to many
sources: optical noise, cross-hybridization, dye-related
contributions and probe sequence composition. Many
preprocessing algorithms have been developed in an
attempt to correct for these artifacts [9]. According to Alli-
son et al. [6] there is no clear winner among the available
preprocessing algorithms. However, GCRMA [10], a mod-
ification of RMA [11], often performs as well as or better
than other algorithms [9,12-14]. GCRMA incorporates
probe sequence composition into background adjust-
ment, following the physical model of Naef and Mag-
nasco [15]. The model describes a probe affinity that is
dependent on its base composition and the position of
each base along the probe and suggests that probe
sequence can significantly affect the intensity of the signal
generated from that probe, independent of the concentra-
tion of its target.

Performance assessment of GCRMA has been done using
both spike-in [13,16,17] and real [14] datasets followed
by quantitative real time PCR confirmation [12]. So far, a
number of reports have been published recommending
the use of GCRMA for detecting differentially expressed
genes and estimating relative expression, emphasizing its
outstanding performance in detecting low-intensity, dif-
ferentially expressed genes [13,17]. When comparing
microarray analysis algorithms, Irizarry et al. [9] have
argued for an approach that balances accuracy and preci-
sion. Irizarry et al., define accuracy as the ability of the
algorithm to detect the relative expression of a transcript
without bias to its abundance (concentration). They
define precision as low variance; this is characterized by a
steady performance on replicates of the same sample.

GCRMA is among the few preprocessing algorithms that
scores well in both accuracy and precision [13].

In this study, we modified the portion of GCRMA derived
from the model of Naef and Magnasco [15] to calculate
probe affinity using position-specific dinucleotide infor-
mation. The dinucleotide is a fundamental chemical unit
that contributes a well-understood component to nucleic
acid duplex stability and to the free energy of duplex for-
mation during hybridization [18,19]. We applied the new
model to different datasets, and achieved an improved fit
to microarray data with R2 increasing by 5–10%. Then, we
tested the downstream effect of our modified background
model on the performance of GCRMA in detecting differ-
entially expressed genes, when used to analyze two pub-
licly available control datasets: the human genome U133
Latin Square dataset [20] and the golden spikein dataset
[16]. In both data sets, application of the dinucleotide
model in background correction improved the detection
of differentially expressed genes. Therefore, we propose
that probe affinity be modeled based on dinucleotide
composition of the probe instead of the original single
nucleotide approach.

Results
Dinucleotide affinity model
Naef and Magnasco [15] model probe affinity (probe
hybridization effect) based on sequence composition as
follows:

where B is the raw probe intensity, M is the median inten-
sity of the array, l is the nucleotide index (A, C, G or T), k
is the position of l along the probe (note that k has a range
of 1 to sequence length, that is 25 for GeneChip probes),
S is a Boolean variable equal to 1 if the probe sequence
has l at k and zero otherwise, and A is the per-site-per-
nucleotide affinity. As an example, consider the following
sequence: CGAC, for which equation 1 reads:

Equation 1 is a simple model that has four free parameters
for each probe base (100 free parameters for a 25-base
probe). The values of these 100 free parameters are gener-
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ated by linear least squares fit. Given the large number of
probes on each chip (about half a million for the human
genome U133 chip, for example) over-fitting is not a con-
cern.

Figure 1 shows the 25 parameters (term A in equation 1)
of the four nucleotides as a function of their position
along the probe for the U133 Latin square dataset (param-
eters derived from a single chip are shown in panel A and
an average of the parameters across all the 42 chips is
shown in panel B). A similar pattern of parameters have
been obtained fitting equation 1 to other Affymetrix data-
sets (data not shown and [15]). These fitted per-site-per-
nucleotide affinities imply that the signal generated from
each probe will be affected by the probe sequence. Con-
sider two probes interrogating two transcripts, which are
present in identical concentration. In such a case, a probe
containing many adenines (A) will produce a lower signal
intensity than the probe with many cytosines (C), espe-
cially if the As or Cs are concentrated at or near the center
of the probe (position 13).

The model defined in equation 1 can also be expressed as
a polynomial of degree 3, thus reducing the free parame-
ters from 100 to 16 as shown below:

By assuming the affinities can be modeled as a third order
polynomial function of position, the number of free
parameters in the model can be reduced from 100 to 16
with little loss of predictive accuracy as the polynomial
generated with 16 parameters (Fig. 1 solid lines) closely
matches the 100 independently estimated parameters
(Fig. 1 symbols) and the R2 of both models are similar
(additional file 1).

In the dinucleotide model, we follow a similar strategy to
the above, but we model composition-biased probe affin-
ity using dinucleotides (pairs of adjacent bases), which are
a fundamental chemical unit in physical models of
nucleic acid folding and hybridization rather than single
nucleotides. The dinucleotide model is as follows:

ln /
( , , , )

B M S A klk lt
t

tl A T C Gk

=
=∈=
∑∑∑

0

3

1

25

(2)

Affinity parameters calculated using single nucleotide modelFigure 1
Affinity parameters calculated using single nucleotide model. Affinity parameters calculated using equation 1 for the 
human genome U133 Latin Square. Panel A is for Experiment 11 Replica 2 and panel B shows an average of the parameters 
across all the 42 chips. K represents the position of each nucleotide along the probe length. Affinity parameters calculated using 
equation 2 are shown as solid lines. Higher affinity (Y-axis) indicates brighter signal.
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where B is the raw probe intensity, M is the median inten-
sity of the array, l is the NN nucleotide pair (AA, AC AG,
AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG or TT),
k is the position of l along the probe (note that k has a
range of 1 to sequence length minus one, that is 24 for
GeneChip probes), S is a Boolean variable equal to 1 if the
probe sequence has l at k and zero otherwise, and A is the
per-site-per-dinucleotide affinity. We then again assume
that the per-site-per-dinucleotide affinity follows a poly-
nomial of degree 3 as a function of the position k as out-
lined in equation 4:

This reduces the number of free parameters from 384 (16
dinucleotides × 24 nucleotide positions, equation 3) to 64
(16 dinucleotides × 4 parameters, equation 4), which
makes this approach computationally feasible. As an
example, consider the following sequence: CGAC (three
dinucleotides: CG for k = 1, GA for k = 2, and AC for k =
3), for which equation 4 reads:

Note that we do not explicitly fit the stacking energies of
the NN pairs; rather we explicitly fit the NN pairs' affini-
ties along the probe sequence position.

The fitted per-site-per-dinucleotide affinities are shown in
Fig. 2 for the Latin square dataset. Parameters obtained
from other datasets are similar to the Latin square dataset
parameters (data not shown). The figure shows that a
probe with many AN (N = A, C, G, T) pairs (Fig 2A) tends
to have much lower intensity than a probe with many CN
pairs (Fig 2B) especially when those pairs are located at or
near the probe center. This is broadly what we expect from
the single nucleotide model. However, examining the
effect caused by second nucleotide in each NN pair shows
a pronounced effect for certain dinucleotides, which can-
not be captured in the single nucleotide model. This can
be seen in Fig. 2C and 2D. GA and GT rich probes are sig-
nificantly brighter than GC rich probes, and TA rich
probes are brighter than TC and TG rich probes.

The model defined in equation 4 was fitted to a number
of datasets (see Methods). Fitting was performed on the
PM and MM probes separately. Table 1 shows a compari-
son between the native Naef and Magnasco [15] affinity
model (single nucleotide model, equation 1) and our
dinucleotide affinity model (equation 4). We see that the
dinucleotide model gives a better fit to microarray data by
5–10% on average (Table 1 and additional file 1),
depending on the chip and probe type. Note that both
models perform better on the MM probes due to the
higher background noise present in the MM signal.

Given that our fits contain between 195,994 and 496,468
data points (Table 1), it seems unlikely that the improve-
ments in performance of our model could be explained by
the additional free parameters (64 for our model vs. 16 for
the original Naef and Magnasco model). Nonetheless, to
rule out this possibility, we fitted both the single nucle-
otide model (N) (using the 100 free parameters and 16
free parameter version of the Naef and Magnasco model,
equation 1 and 2, respectively) and the dinucleotide
model (NN) with 64 free parameters (equation 4) to the
Latin Square dataset using completely random probe
sequences (generated with an equal probability of A, C, G
and T). We also performed the same test on shuffled
probe sequences in which the probe's base composition is
not affected, but the position of each base has been
changed due to the shuffling process. The results of this
analysis are shown in additional file 1. We see that the R2

of the shuffled and random probe sequences are nearly
identical, no matter which method is used. The presence
of additional free parameters in our model, therefore, can-
not by itself explain the improved performance over the
Naef and Magnasco model. This strongly supports our
argument that the gain in the r-squared values of the NN
model comes from including dinucleotide information
and does not arise trivially from the addition of free
parameters.

Background adjustment using dinucleotide affinity model
Using a more accurate estimate of background noise
should improve the quality of Affymetrix GeneChip data.
Given the better fits observed using the dinucleotide affin-
ity model, we expected it to improve the analysis results to
some degree when applied to control datasets. We tested
the downstream effects of using this model on the quality
of microarray data. We chose to implement the model
within GCRMA [10], since it already has the single nucle-
otide model implemented in its background correction
procedure, and therefore the two models could be directly
compared.

In GCRMA, Wu et al. [10] model the signal intensity gen-
erated from each probe as:
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Affinity parameters calculated using dinucleotide modelFigure 2
Affinity parameters calculated using dinucleotide model. Affinity parameters calculated using equation 4 for the human 
genome U133 Latin Square. Affinity parameters are averaged across all the 42 chips; parameters for any single chip resemble 
those shown here. The first letter of each dinucleotide is indicated at the top of the figure, the second letter is indicated on the 
connected lines. K represents the position of each dinucleotide along the probe length. Higher affinity (Y-axis) indicates 
brighter signal.
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where O is the optical noise, N is the background noise of
non-specific binding, and S is the signal generated from
specific binding between the probe and its intended tar-
get. The parameter φ reflects the fact that for some probe
pairs, the MM signal may contain specific signal. The
background components log(NPM) and log(NMM) are
assumed to follow a bivariate distribution with means of
μpm = h(αPM) and μmm = h(αMM), where h is a smoothing
function and α (probe affinity) is defined by equation 1.
In this paper, we make these same assumptions, but we
derive α using equation 4.

We reasoned that GCRMA with background correction
using the dinucleotide model, which we will subsequently
refer to as GCRMA-NN in this paper, would perform bet-
ter than the native GCRMA model. It is important to clar-
ify that GCRMA offers two options for background
correction, the first of which uses a precomputed α (called
reference affinity) from the authors' own non-specific
binding (NSB) experiments, while the second computes α
directly from the data (called local affinity). In the follow-
ing figures, we compare GCRMA-NN (where α is com-
puted directly from the data using equation 4) to GCRMA-
L (GCRMA with local affinity) and GCRMA-R (GCRMA
with reference affinity).

Latin square dataset
We obtained expression measures for the Human
Genome U133 Latin square dataset after processing it

with GCRMA-R, GCRMA-L and GCRMA-NN. The three
expression measures were evaluated using two
approaches. The first approach is based on AffyComp
[21], a performance evaluation tool for preprocessing
algorithms (see below). The second approach is based on
the number of true positives captured for all the 14 2×
comparisons of the Latin square dataset at a cutoff of four
false positives after using the cyber t test [22]. Cyber t is a
popular variant of the t test, in which a weighted standard
deviation replaces the conventional standard deviation
and an adjusted number of degrees of freedom is used
instead of the conventional degrees of freedom.

Performance of GCRMA-R, GCRMA-L and GCRMA-NN as
reported by AffyComp based on 14 metrics is shown in
Table 2. One notable performance enhancement of
GCRMA-NN over GCRMA-L and GCRMA-R is a 3–4%
increase in the weighted average area under the curve
(AUC) (Table 2). This is a receiver operator characteristics
(ROC) based metric, in which the absolute log-ratios for
the expression summaries, for every comparison of any
two pairs of the 14 arrays (92 comparisons), are sorted.
After that, the number of true and false positives is found,
and then the number of true positives at 100 false posi-
tives is determined for each pair of arrays. Finally, the
resulting values are averaged over the three concentration
groups (low, med and high), weighted by the number of
probesets in each group and a score is recorded. Note that
a perfect algorithm will have a score of 1, where all the
true positives are captured before any false positive is
recorded.

PM O N S

MM O N S
PM PM

MM MM

= + +
= + +

,

φ
(5)

Table 1: Dinucleotide model performance on different datasets

Data set nca npb Single nucleotide model (eq. 1) Dinucleotide model (eq. 4)c

Latin Square [20] 42 248152 PM 0.17 ± 0.01 0.22 ± 0.01
248152 MM 0.40 ± 0.01 0.50 ± 0.01

Golden spikein [16] 6 195994 PM 0.20 ± 0.02 0.22 ± 0.02
195994 MM 0.46 ± 0.02 0.51 ± 0.02

Leukemia [35] 72 201800 PM 0.49 ± 0.06 0.55 ± 0.07
201800 MM 0.60 ± 0.04 0.69 ± 0.04

Etoposide response [34] 60 496468 PM 0.05 ± 0.04 0.08 ± 0.06

496468 MM 0.11 ± 0.06 0.16 ± 0.08
BK knockout [36,37] 20 496468 PM 0.09 ± 0.04 0.13 ± 0.04

496468 MM 0.29 ± 0.050 0.36 ± 0.06

R2 of Naef and Magnasco [15] model (Single nucleotide) and the dinucleotide model for the five data sets used in this study. Results presented as 
average R2 ± SD.
anc: number of chips.
bnp: number of probes.
c The differences in R2 between single nucleotide model and dinucleotide model are all statistically significant (p < 10-3) using paired one-sided 
Wilcoxon and t tests.
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Examining Table 2 shows that the increase comes mainly
from the AUC for low intensity targets (low AUC entry in
Table 2). The low intensity genes make up most of the
genes in a typical Affymetrix experiment [13] and are also
the hardest to detect. Algorithms that perform inference
generally can detect large changes involving highly
expressed genes. It is much more difficult to detect
changes in the more frequently observed genes that pro-
duce low intensities on the array. GCRMA-NN enhanced
the detection of low intensity targets, while maintaining
similar values for the medium and high intensity ones.
The enhancement in detecting low intensity targets is also
evident in the form of an increase in the low detection
slope (low.slope entry in Table 2).

In the crucial category of low intensity genes, we argue
that our algorithm outperforms most of the algorithms
submitted to AffyComp, including GCRMA-R and
GCRMA-L. The AffyComp webpage currently contains
data for 88 algorithms for analyzing Affymetrix microar-
rays. For each of these algorithms, AffyComp defines accu-
racy as the slope obtained from regressing expression
values on nominal concentration. An algorithm with a
perfect accuracy would have a slope of 1, reflecting a per-
fect correspondence between nucleotide concentration
and signal. AffyComp defines precision as the 99.9% per-
centile of the log fold changes of null (true negative)
probesets across arrays. A perfect algorithm would have a
precision of 0 reflecting a fold change of 1 (i.e. no
change). Figure 3 is a plot of precision vs. accuracy for the
Latin Square dataset for the 88 algorithms submitted to
the AffyComp webpage. In Figure 3A, we see that when
looking at overall accuracy vs. precision, the GCRMA-NN
algorithm (blue dot) performs about as well as GCRMA-R
(green dot) and GCRMA-L (red dot). However, for the cru-

cial low intensity genes, for which inference is the most
difficult, GCRMA-NN provides a better accuracy with no
loss of precision (Fig. 3B).

Since the results of AffyComp suggest an improvement for
the low intensity, hard to detect spikeins, we reasoned
that inference performed with GCRMA-NN would be
more successful than inference with GCRMA-R or
GCRMA-L. We therefore applied GCRMA-NN, GCRMA-R
and GCRMA-L to the U133 Latin square dataset. We con-
sidered only the 14 2× comparisons, in which the ratio of
each spikein, between any two consecutive pair of arrays,
is 2. Then we used the cyber t statistic [22] to generate a
list of P values for the null hypothesis that the mean signal
intensity in each comparison is the same. The lists were
ordered, and for each of the 14 comparisons we generated
an ROC curve. Figure 4A shows the average of these 14
ROC curves. For each ROC curve, we determined the
number of true positives captured at an arbitrary cutoff of
four false positives (vertical dashed line in Fig. 4A). The
result of this analysis is summarized in Figure 4B. We see
that GCRMA-NN outperforms GCRMA-R and GCRMA-L
with a small but significant improvement. One-sided Wil-
coxon and t tests reject the null hypothesis that GCRMA-
NN is the same as GCRMA-R and GCRMA-L with all tests
p < 0.005. These are consistent with the results we would
have expected based on the AffyComp comparison (Table
2).

Golden spikein dataset
In order to ensure that our data were valid for more than
one control data set, we next applied GCRMA-R, GCRMA-
L and GCRMA-NN to the "golden spikein dataset" [16],
which is not included in AffyComp. Figure 5 shows a ROC
graph for the differentially expressed genes between the S

Table 2: AffyComp scores for GCRMA-L, GCRMA-R and GCRMA-NN

Metric GCRMA-L GCRMA-R GCRMA-NN Perfect score

Median SD 0.06 0.06 0.07 0
null log-fc IQR 0.05 0.03 0.08 0

null log-fc 99.9% 0.62 0.61 0.64 0
Signal detect slope 0.99 1 0.98 1

Signal detect R2 0.89 0.91 0.91 1
low.slope 0.49 0.48 0.55 1
med.slope 1.05 1.06 1.02 1
high.slope 0.97 0.97 0.96 1

Obs-intended-fc slope 0.99 1 0.98 1
Obs-(low)int-fc slope 0.48 0.47 0.53 1

low AUC 0.44 0.45 0.50 1
med AUC 0.87 0.87 0.86 1
high AUC 0.85 0.86 0.83 1

weighted avg AUC 0.55 0.56 0.59 1

Fourteen AffyComp metrics for the U133 Latin square dataset rounded to two decimal points.
A brief description of each metric is provided under the Methods section.
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and the C "golden spike" samples (see Methods) detected
by GCRMA-R, GCRMA-L and GCRMA-NN. As in the Latin
Square data, the graph shows that GCRMA-NN is capable
of capturing more true positives at lower false positive rate
than both GCRMA-R and GCRMA-L. This supports our
assertion that an improved background correction algo-
rithm can have a noticeable effect on downstream analy-
ses.

Discussion
Background estimation and correction are important
steps in analyzing the data generated by GeneChip arrays.
Improving algorithms for these steps increases the
amount of true "signal" that we can detect from microar-
rays. Understanding background noise on GeneChip
arrays, especially the part contributed by NSB signal,
requires a deeper understanding of the behavior of on-

chip hybridization. Given that we lack a detailed physical
model of on-chip hybridization derived from first princi-
ples, an empirical model that estimates the specific and
non-specific signal based on the data on the array and
probe sequence is a useful tool for understanding the on-
chip hybridization process.

Nucleic acid hybridization in solution is well approxi-
mated by the nearest neighbor model [23], which
describes duplex formation as a function of the two adja-
cent nucleotides and their stacking orientation. This
approach was used by Zhang et al. [24] to model the on-
chip specific and nonspecific hybridization using the free
energy formation for the adjacent nucleotides. Zhang et
al. concluded that the on-chip hybridization parameters
are different than the solution ones. Using a different
approach to background correction, Naef and Magnasco
[15] used single nucleotides to assign an overall affinity
score for a probe based on its sequence away from the
energy contributions of the dinucleotide pairs. This
approach was used to perform background correction for
the GCMRA algorithm [10] while the Zhang et al
approach was used to create the algorithm PerfectMatch
[24]. PerfectMatch estimates the signal and the back-
ground at the same step while GCRMA estimates back-
ground noise first then proceed to signal estimation.
PerfectMatch is, therefore, much more computationally
demanding than GCRMA as the parameter space searched
by PerfectMatch is vast and is sampled with Monte Carlo
methods. Direct comparison of GCRMA and PerfectMatch
has proven controversial. Such a comparison is beyond
the scope of this report, and can be found elsewhere
[9,13,25].

In this report we combine some elements of GCRMA and
PerfectMatch. We replace the single nucleotide model of
Naef and Magnasco with a model in which the affinity of
each probe is a function of its dinucleotide composition.
Because we use GCRMA's approach of separating esti-
mates of background and signal, we can use a linear
model and avoid the Monte Carlo simulation approach of
PerfectMatch [24]. Our approach is therefore both com-
putationally more efficient and guarantees the best fit to
the data. This approach enables us to examine the contri-
bution of different dinucleotides at different positions to
the raw probe signal (Fig. 2), rather than assigning one
weight function to all the dinucleotides, as is done with
PerfectMatch [24]. This allows our model to capture sev-
eral important features of the background data such as the
effect of the first versus the second nucleotide on probe
affinity (e.g. CA vs. CG), and the effect of the stacking ori-
entation (AC vs. CA). In general, we find that the dinucle-
otide approach has more power than the single nucleotide
approach over a wide range of datasets (Table 1).

GCRMA-NN accuracy and precisionFigure 3
GCRMA-NN accuracy and precision. A) Accuracy and 
precision of GCRMA-R (green dot), GCRMA-L (red dot) and 
GCRMA-NN (blue dot) compared to other preprocessing 
algorithms (black dots) submitted to AffyComp [33], infor-
mation retrieved from AffyComp on November, 14th 2007. 
B) As A but for low expressed genes. A perfect score is 
shown as an (×) on both panels. See Results for explanation.
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The mechanism that determines why particular dinucle-
otides affect probe affinities the way they do is, in some
cases, unclear. However, we observe that the NN model
bears some similarities to the models of both Naef and
Magnasco and Zhang et al. All three models emphasize
the importance of the probe middle region; this is proba-
bly due to the surface attachment, as well as to the relative
instability of the free end in RNA-DNA hybridization. The
effect of the stacking orientation is in agreement with the
findings of Zhang et al. [24]. The AN versus CN (where N
refers to any of the four nucleotides: A, C, G, T; AN for
example means AA, AC, AG and AT) asymmetry (Fig. 2A
and 2B) is in agreement with Naef and Magnasco [15].
When comparing these affinity curves to the original Naef
and Magnasco result, it is important to recognize that the
NN model considers the affinity of dinucleotides rather
than single nucleotides. Therefore, we do not necessarily
expect to see the same asymmetry within CN or AN, i.e.
there will be no asymmetry between CA and CC (Fig. 2B),
or between AA and AC (Fig. 2A). The NN model, however,

does show unexpected behavior for the GN and TN dinu-
cleotides. While both G and T show slight asymmetry in
the Naef and Magnasco model, the effect of these two
nucleotides is magnified in the NN model. GN contrib-
utes positively to the signal but not when the second
nucleotide is C (Fig. 2C). TN contributes negatively but
not when the second nucleotide is A (Fig. 2D). This trend
is partially explained by the fact that T forms fewer hydro-
gen bonds than G, therefore contributing negatively,
while the G has stronger binding, thus contributing posi-
tively. This trend is not consistent, and appears to be
dependent on the adjacent nucleotide. It could also be
due to the biotin label present on the RNA target
sequence.

When applied to two control datasets, GCRMA-NN
showed improved performance (Figs. 4, 5) especially on
low intensity targets (Table 2; Fig. 3). We argue that this is
due to better background correction for these targets; a
higher percentage of low intensity signal will be made up

Performance of GCRMA-R, GCRMA-L and GCRMA-NN on the Latin square datasetFigure 4
Performance of GCRMA-R, GCRMA-L and GCRMA-NN on the Latin square dataset. A) ROC curves showing the 
average true positives and false positives across the 14 2× Latin square experiments following application of the cyber t test. B) 
The number of true positives captured for all the 14 2× Latin square experiments at a cutoff value of four false positives 
(dashed vertical line in panel A). The differences in panel B between GCRMA-R, GCRMA-L and GCRMA-NN are statistically 
significant (p < 0.005) using paired one-sided Wilcoxon and t tests.
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of background, so it is therefore not surprising that better
background correction will make more of a difference on
low intensity targets. The detection of low intensity targets
represent the most significant challenge to microarray
analysis algorithms, which makes any enhancement in
the detection of these targets significant.

Conclusion
Incorporating dinucleotide information into a previously
described probe affinity model increases the fit of the
model by 5–10%. The dinucleotide affinities highlight the
importance of the stacking orientation on probe behavior.
This is in agreement with the physical models that
describe hybridization binding affinities.

The results presented here show that the affinity of any
single nucleotide is affected by its neighbor, in addition to
its location along the probe. Considering the second
nucleotide offers more insights into the on-chip behavior
of the four bases in relation to each other. Such insights
are important to develop a better understanding of the on-
chip hybridization process and therefore better analysis
procedures. The model described here enhances the per-
formance of an existing widely-used preprocessing algo-
rithm for GeneChip data. We expect the same model to
enhance the performance of preprocessing algorithm for
other types of arrays, in particular those used for SNP
analysis.

Methods
Datasets
The U133 Latin square dataset
This dataset is composed of 14 experiments (three techni-
cal replicates for each experiment) in which 42 transcripts
are spiked at a concentration range of 0.125–512 pM fol-
lowing a Latin square design. The dataset files were down-
loaded from Affymetrix web site [20]. For AffyComp
analysis, all probesets were included. For the 14 2× com-
parisons the following probesets were excluded following
Affymetrix recommendations: 209374_s_at,
205397_x_at, 208010_s_at. In addition, we excluded any
probesets with a name starting with AFFX- that was not
included in the 42 true positive spikeins.

The Golden spikein dataset
This dataset has more spikein genes than the Latin Square
dataset, but consists of only six microarrays, 3 C (control)
and three S (spikein) [16]. The S pool contains cRNA at
concentration equal to or higher than the C pool [16].
Each pool was hybridized to the Affymetrix Drosophila
array (three technical replicates for each hybridization).
Probesets measuring spikein transcripts were determined
based on the analysis of [17]. We considered all probeset
that measure differentially expressed genes to be true pos-
itives (a total of 1353 probesets).

Several issues have been raised concerning the use of the
Golden spikein dataset in validating GeneChip preproc-
essing algorithms [26-28]. However, the analysis of Pear-
son [29] shows clearly that the Golden spikein dataset can
be used to validate and compare the performance of
GeneChip preprocessing algorithms.

Model implementation
The single nucleotide model was implemented in Perl
[30], the dinucleotide model was implemented in Java.
All the models were fitted using the least squares method.
The fitted parameters for the dinucleotide model for each
of the two datasets were used to generate an affinity.info
matrix for that dataset. This affinity.info matrix was used
in GCRMA analysis later on. Affinity.info matrix genera-
tion was done using a local R script following the steps
found in GCRMA source code (see http://web
pages.uncc.edu/~rgharaib/nnfit). The Java code for the
dinucleotide model is provided at http://web
pages.uncc.edu/~rgharaib/nnfit/FitNN.zip.

Data analysis
All analysis steps were performed using R [31] version
2.5.0 and Bioconductor [32] unless otherwise indicated.

Expression summaries
Expression summaries were generated using the full
model of GCRMA version 2.8.1. The commands used to

Performance of GCRMA-R, GCRMA-L and GCRMA-NN on the Golden spikein datasetFigure 5
Performance of GCRMA-R, GCRMA-L and GCRMA-
NN on the Golden spikein dataset. ROC curves for the 
Golden spikein experiments C versus S after application of 
the cyber t test.
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generate the summaries for GCRMA-NN, GCRMA-L and
GCRMA-R can be found at http://webpages.uncc.edu/
~rgharaib/nnfit. The affinity.info matrix for the U133
Latin square dataset is provided as http://web
pages.uncc.edu/~rgharaib/nnfit/U133NNAffinity.RData,
and the Golden spikein dataset affinity.info matrix is pro-
vided as http://webpages.uncc.edu/~rgharaib/nnfit/Gold
enSpikeinNNAffinity.RData.

AffyComp analysis
Affyomp analysis was done using a locally installed Affy-
Comp 1.14.0 package. All expression summaries were
converted back from the log scale to the original scale and
formatted to a comma-delimited text files using a local
Perl script. Metrics generation for the expression summa-
ries was done using a local R script following the direc-
tions of the package maintainers. The following metrics
were used to evaluate the performance of each algorithm
(definitions are according to Affycomp website [33]):
Median SD is the median standard deviation across repli-
cates. It measures the consistency of the algorithm; the
lower the median SD the more consistent the algorithm.
Null log-fc IQR and null log-fc 99.9% are the interquar-
tile range and the 99.9th percentile of the log fold changes
from probesets, for genes that should not change. A per-
fect score is 0 for both metrics. Signal detect slope is the
slope obtained from regressing expression values on nom-
inal concentrations in the spikein data. Signal detect R2 is
the R squared obtained from regressing expression values
on nominal concentrations in the spikein data.
Low.slope, med.slope and high.slope are as in signal
detect slope, but for probesets targeting low, medium and
high spikeins, respectively. Obs-intended-fc and Obs-
(low)int-fc slopes are slopes obtained from regressing
observed log fold changes against nominal log fold
changes for all probesets, and for those with nominal con-
centration less than 2 pM, respectively. Low, med and
high AUC reflect the area under the ROC curve (with up
to 100 false positives) for spikeins with low, medium and
high intensities, standardized so that optimum is 1,
respectively. Weighted avg AUC is the weighted average
of the previous three ROC curves with weights related to
amount of data in each class (low, medium and high).

ROC curve and cyber t analysis
ROC curve generation was implemented in Java and cyber
t analysis was done in R. Detailed description of the
implementation and the analysis can be found here [34].
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