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Abstract

Background: ldentification of approximate tandem repeats is an important task of broad
significance and still remains a challenging problem of computational genomics. Often there is no
single best approach to periodicity detection and a combination of different methods may improve
the prediction accuracy. Discrete Fourier transform (DFT) has been extensively used to study
primary periodicities in DNA sequences. Here we investigate the application of DFT method to
identify and study alphoid higher order repeats.

Results: We used method based on DFT with mapping of symbolic into numerical sequence to
identify and study alphoid higher order repeats (HOR). For HORs the power spectrum shows
equidistant frequency pattern, with characteristic two-level hierarchical organization as signature
of HOR. Our case study was the 16 mer HOR tandem in AC017075.8 from human chromosome
7. Very long array of equidistant peaks at multiple frequencies (more than a thousand higher
harmonics) is based on fundamental frequency of 16 mer HOR. Pronounced subset of equidistant
peaks is based on multiples of the fundamental HOR frequency (multiplication factor n for nmer)
and higher harmonics. In general, nmer HOR-pattern contains equidistant secondary periodicity
peaks, having a pronounced subset of equidistant primary periodicity peaks. This hierarchical
pattern as signature for HOR detection is robust with respect to monomer insertions and
deletions, random sequence insertions etc. For a monomeric alphoid sequence only primary
periodicity peaks are present. The |/ff — noise and periodicity three pattern are missing from
power spectra in alphoid regions, in accordance with expectations.

Conclusion: DFT provides a robust detection method for higher order periodicity. Easily
recognizable HOR power spectrum is characterized by hierarchical two-level equidistant pattern:
higher harmonics of the fundamental HOR-frequency (secondary periodicity) and a subset of
pronounced peaks corresponding to constituent monomers (primary periodicity). The number of
lower frequency peaks (secondary periodicity) below the frequency of the first primary periodicity
peak reveals the size of nmer HOR, i.e., the number n of monomers contained in consensus HOR.
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Background

Introduction

Repeat sequences are a common feature of genomes [1-3].
The detection and study of periodicity in genomic
sequences has been an area of increasing interest. Signal
processing approaches to periodicity detection methods
are attracting significant attention in genomic DNA inves-
tigations of approximate repeats because they are rather
robust in the presence of substitutions, insertions and
deletions and may identify approximate periodicities in
DNA sequences. Different computational techniques have
been used: Fourier spectral analysis [4-20], wavelet trans-
form [21], DNA walk analysis [22-25], information the-
ory measures [26-28], informational decomposition
[29,30], quaternionic periodicity transform [31], exactly
periodic subspace decomposition [32,33], portrait
method [34], enhance algorithm for distance frequency
distribution [35], etc.

Discrete Fourier transformation (DFT) based methods
Spectral analysis employing Discrete Fourier transform is
used to reveal periodicity in symbolic sequences, like
genomic and protein sequences [7,9,14,16,17,20,36-53],
to investigate long-range correlations [4,5,54,55] and to
study the problem of sequence similarity [14,56-62].

DFT identification of approximate repeats

A peak at a frequency f in Fourier power spectrum of base
correlations of a given genomic sequence shows a kind of
I = 1/f - base periodicity, exact or approximate [14-16,63].
In the ideal case of perfect periodicity, where a fragment
of the length [ is exactly repeated N times, periodicity gen-
erates a series of I-1 equidistant peaks in the power spec-
trum, at frequencies [14,16]:

fi=1Lf=2/L f3=3/L, ... fiy = (-1)]1

Approximate repeats, modified by random insertions
and/or deletions with respect to perfect repeats, typical for
genomic sequences of higher organisms, can often be
identified using Fourier transform [14,16,17]. This proce-
dure results in a characteristic system of equidistant peaks.
However, it was noted that a disadvantage of methods
based on Fourier transform may be that in cases of more
pronounced deletions or insertions the periodicity cannot
be detected, while deletions and insertions are frequent
mutational events in genomic sequences [29,50].

DFT identification of period three hidden periodicity

A sharp peak of period three was found in a search for
periodic regularities on a sample set of human exons
[5,9,10,22,54,60,64]. The three-base periodicity in exons
is caused by unbalanced nucleotide distributions in the
three coding positions, while in intron sequences the
nucleotides distribute uniformly. The relative height of
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the corresponding peak in Fourier spectrum is a good dis-
criminator of coding potential and has been used to detect
coding regions [9,14,37,45,49,65-75].

DFT identification of long-range correlations

Statistical studies of DNA sequences have been instigated
by finding of the 1/fflong-range power-law correlations in
human genomic sequences, indicating the presence of
scale invariant structure [4,5,22], implying that the under-
lying system shows fractal properties [25,76,77]. The lack
of long enough sequences and the use of different meth-
ods of estimating the correlations, leading to some results
not strictly comparable to each other contributed to con-
troversies regarding findings on long-range correlations,
like the presence of these correlations only in non-coding
or in all human genomic sequences, and their presence in
other organisms [5,6,23,36,78-83]. Non-stationary analy-
sis of DNA sequences has shown that both coding and
non-coding sequences exhibit long-range correlations,
with the average spectral exponent of non-coding seg-
ments being higher than its counterpart for coding seg-
ments [84]. With the availability of large sequences and
extended statistical computations, showing power-law
correlations over four or five orders of magnitude, with
exponents which are consistent with previous results
obtained analyzing short sequences, such correlations in
human DNA, with fractal-like scaling, are now commonly
accepted [27,28,45]. It has been pointed out that the
mosaic structure of genome is presumably responsible for
long-range correlations [79,85,86]. At very low frequen-
cies (for example, f < 10-¢) the power spectrum flattens out
[87-89]. It should be noted that the attribution of long-
rang correlations exclusively to large-scale variations of
nucleotide density responsible for 1/f#spectra is not quite
correct. Generally, even large-scale variations of nucle-
otide density may produce patterns different from 1/f#
spectra.

DFT identification of alphoid higher order repeats (HOR)
Here we investigate the application of Fourier analysis to
human alpha satellite tandem repeats and the associated
higher order repeats (HORs). Alphoid arrays consist of
tandem repeats of alpha satellite monomer unit of
approximately 171 bp, which form chromosome-specific
higher order repeats (HOR) or monomeric organization
consisting of diverged monomers [90-104]. Alpha satel-
lite monomers within HOR exhibit substantial mutual
sequence divergence (20-40%), while HORs exhibit
much lower mutual divergence (< 5%) [98]. Such a case is
interesting for Fourier analysis because it has a two-level
hierarchy of approximate homology.

Alpha satellite DNA is characterized by many levels of
hierarchical organization in genomes, from suprachromo-
somal families to chromosome-specific subsets, to poly-
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morphic variation within these subsets [90-103]. The
higher order repeat organization is consistent with linear
sets of diverged monomers becoming the unit of crossing-
over during the process of sequence homogenization. The
HOR units of alpha satellite monomers are organized in
largely chromosome specific manner. The centromere of
each human chromosome is characterized by one or more
subsets of distinct alpha satellite HOR units. Analyses
have revealed the presence of up to several thousand
repeat units arranged in an apparently uninterrupted fash-
ion in the centromere and forming arrays of several mil-
lion base pairs. Alpha satellite HORs have been studied
using restriction enzymes that cut higher order repeat unit
[98,101]. Recently, HORs and monomeric alpha satellites
have been studied by computational analysis of genomic
sequences from the NCBI genome assembly [104-108].

As a case study we consider a 16 mer HOR at the loci D772
and D7Z1 in human chromosome 7 [94-97]. In [104] 16
mers were identified by DOTTER analysis; the presence of
16 mer was reported, but detailed HOR structure was not
presented. In detailed computational studies of genomic
sequence of the 193277-bp clone AC017075.8 (contig
NT_023603.5), the 46 complete and 14 incomplete cop-
ies of 16 mer alphoid HOR were identified in the central
domain (positions 31338 to 177434, total length 148147
bp) [105-107]. Preliminary study of power spectra dis-
cussed the general pattern and the signal-to-noise ratio
[17]. These HOR copies are highly homologous (diver-
gence from consensus less than 0.6% on the average),
while divergence among monomers within each HOR
copy is sizeable (20% on the average). (In accordance
with common practice, monomer deletions or insertions,
which appear in some HOR copies, are not taken into
account in calculating divergence among HOR copies.)
Such a long genomic sequence enables a highly precise
determination of higher order periodicities. In the front
domain of genomic sequence (31337 bp) and in the back
domain (15843 bp), 199 alpha satellite monomers are
present which are not organized into HORs and therefore
are all mutually divergent by 20% or more. Only 29% of
this bordering domain is not of alpha satellite type.

Our goal is to investigate the periodicities in the short-,
medium-, and long-range order, related both to less
homologous alphoid monomeric pattern and to more
homologous alphoid higher-order repeats and to corre-
late the two levels of periodicity, primary (basic monomer
periodicity) and secondary (HOR periodicity).

Results and discussion

DFT identification of HOR in AC017075.8 based on
quartic mapping

The genomic sequence AC017075.8 (193277 bp) from
chromosome 7 was transformed into numerical sequence

http://www.biomedcentral.com/1471-2105/9/466

using quartic mapping (Eq. 5) with parameters (Eq. 6)
(see section Methods). The AC017075.8 sequence is used
as a case study for the use of DFT method for interplay of
monomeric and HOR repeats. In general, regions contain-
ing higher order repeat sequences can be located through
the sliding window analysis, similarly as used in [16] for
primary periodicity sequences. Analyzing complete nucle-
otide sequence we found domains having different repeat
pattern, the central HOR domain and the bordering
domains (front and back domains), in accordance with
identifications obtained using other methods [94-97,105-
108].

The low-frequency part f < 0.01 bp-! of the power spec-
trum of HOR domain in AC017075.8 is displayed in Fig-
ure 1a) and the power spectrum up to the frequency 0.15
bp!in Figure 1b). The computed power spectrum at low
frequencies shows equidistant peaks at frequencies

f,=n-f;, n=1,2,3, ...

The fundamental frequency f; corresponds to the 2734-bp
HOR. (Due to truncation of data set and the associated
precision limit of 7.6-10-%, a more precise value can be
deduced from the systematic of higher multiples).

These equidistant peaks are identified over a very broad
interval, up to n ~ 1000. In fact, all prominent peaks
above the white noise background in the power spectrum
are multiples of the fundamental frequency f;. We note
that such an extremely regular pattern can be rarely found
even in the most regular dynamical systems in physics and
engineering.

In addition to the standard spectral density S (f,) at fre-
quency f, (square of absolute value of Fourier amplitude),
we define an effective spectral density

Sy(f) = sf(fn)j?,
n

renormalized in order to increase the relative weight of
low-frequency with respect to high frequency peaks. The
effective values S, corresponding to frequencies fj, f, =
2f,, f¢ = 6f1, and f;4 = 16f; are 2.025, 0.973, 0.895, and
6.584, respectively.

The prominent peak at the frequency f,, = 0.005852 bp!
corresponds to approximately 171 bp length. More pre-
cisely, 1/f;, = 170.88 bp. It corresponds to a set of alpha
satellite monomers which constitute consensus HOR
(nine 171-bp, five 170-bp, one 172-bp, and one 173-bp
copy variants). Alternatively, the HOR period 1/f; = 2734
bp could be also expressed as multiple of monomer
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Power spectrum of HOR domain in AC017075.8 computed by using quartic mapping (Eq. 6). (2) Low-frequency

section f < 0.01 bp-!. Equidistant peaks above the background of noise are assigned consecutively by integers 1, 2, 3, .
damental frequency of peak no. | is denoted by f,. Frequencies of the peaks no. 2, 3, .

.. The fun-

. are denoted by f, = 3 fis oo

2}, f3=

respectively. (b) Medium frequency section up to f = 0.15 bp-!. Pronounced equidistant peaks above the background of noise

are assigned consecutively by integers [, 2, 3, ...

16-f, from Figure la). Frequencies of monomeric peaks no. 2, 3, ...

The frequency of monomeric peak no. | is the HOR peak at frequency f,, =

are 2-f;, = 2:16f|, 3-f;, = 3:16f,, ..., respectively (in terms of

fundamental HOR frequency f, from Figure la). The noise level is such that the monomeric peaks at frequencies nf|, are clearly

seen above the background.

period 1/f,s= 171 bp. The low-frequency peaks atf,, f,, ...,
f15 are subharmonics of the monomer frequency f, .

In the frequency region above the monomer frequency f;
(Figure 1b), within the set of multiple frequencies nf; (n >
16) we find a prominent subset of higher harmonics at
frequencies that are multiples of the monomer frequency
fi6: 2f16+ 3fi¢: 4f1¢ - This subset with band head at the
frequency f;, will be referred to as monomeric band.

Fourier analysis works well enough for studying relatively
short periodicities while the statistical significance of
longer periodicities will be decreased by the presence of
shorter periodicities [29]. Thus, the statistical significance
of longer periods was predicted to be a sort of smeared
through statistical significance of shorter periods, i.e., for
harmonics with longer periods the damping effect may be
more pronounced [29]. We show here that the DFT
method is applicable to alphoid HORs up to very long
periodicities (up to several kilobases).

Generally, the fundamental frequency for equidistant pat-
tern in the power spectrum corresponds to the periodicity
of highest order in a given sequence, i.e., to the period of
HOR (secondary periodicity). Specifically, in the HOR
domain of AC017075.8 the fundamental frequency in
power spectrum corresponds to the period of HOR con-
sensus unit, 2734 bp.

Although the HOR copies are much more homologous to
each other than the constituent alpha satellite monomers
among themselves, the number of monomers corre-
sponding to primary periodicity (at frequencies f,¢, 2f;,
3fie ---) is much higher than the number of HOR copies
corresponding to secondary periodicity (at frequencies f;,
fa f5 -.), and therefore the peaks of primary periodicity
have higher spectral strengths.

Robustness of DFT results for hierarchical structure of
cascade of primary and secondary periodicities using
different genomic into numerical sequence mapping

The difficulty with DFT approach may be dependence on
a particular labeling adopted. For example, some of the
relevant harmonic structure can be hidden (or exposed)
by the symbolic-to-numeric mapping [111]. To check the
required mapping invariance, we investigate whether the
hierarchical periodic pattern shown in this paper is robust
with respect to a particular choice of procedure for trans-
forming symbolic to numerical sequence.

Test computation for quartic mapping deduced from systematic of
purine/pyrimidine and strong/weak bond characteristics

To test robustness of hierarchical structure obtained in
Figures 1a) and 1b), we have first computed the power
spectrum of HOR domain in AC017075.8, using the quar-
tic mapping (Eq. 5) with parameters (Eq. 8) (Figures 2a)
and 2b)). The quartic parametrization (Eq. 8) was based
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Power spectrum of HOR domain in AC017075.8 computed by using quartic mapping with parameters (Eq. 8).

() Low-frequency section. (b) Medium frequency section.

on combined consideration of purine/pyrimidine and
strong/weak characteristics of nucleotides [113]. Up to an
overall normalization, this spectrum is practically identi-
cal as obtained in the computation in Figure 1. This is
understandable because of linear relation between map-
ping parameters (Eq. 6) and (Eq. 8).

Test computation for quartic mapping deduced from reduced
dimensionality of frequency spectrum in symmetric manner

A further test was performed using quartic mapping (Eq.
5) with reduced dimensionality of the frequency spectrum
representation from four to three with parameters (Eq.
9)-(Eq. 11) from [37]. The computed spectrum in Figures
3a) and 3b) shows a similar pattern of hierarchy of pri-

(a) TiE
31 16
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f(1/op)

Figure 3

mary and secondary periodicity peaks as in Figure 1, con-
firming robustness of the method.

Test computation by summing the squares of Fourier transforms of
indicator sequences

Finally, we test the robustness of hierarchical primary and
secondary periodicity pattern by computing total power
spectrum obtained by summing squares of Fourier trans-
form of indicator sequences (Eq. 4). The resulting power
spectrum in Figure 4 shows a similar hierarchical pattern
as in Figure 1, confirming robustness of the method.
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Power spectrum of HOR domain in AC017075.8 computed by using quartic mapping and reduced dimension-
ality with parameters (Eq. 9)-(Eq. I 1). (2) Low-frequency section. (b) Medium frequency section.
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Hierarchical primary and secondary periodicity pattern in perfect
HOR sequence

The HOR sequence from AC017075.8 in chromosome 7,
studied in Figures 1, 2, 3, 4, is characterized by a low diver-
gence among 54 HOR copies in the sequence of only a few
percent [105-108]. Here we construct an exact HOR
sequence, with divergence among copies equal to zero, by
forming a sequence of 54 identical HOR copies, equal to
the 2734-bp consensus HOR corresponding to
AC017075.8 in chromosome 7 [108]. The resulting power
spectrum (Figure 5) shows a much more pronounced
hierarchical secondary periodicity pattern than obtained
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Figure 5

for realistic HOR sequence in Figure 1. In this way analysis
was extended to give some feel of how this perfect case
appears when the periodicity is disrupted for a realistic
genomic sequence.

Robustness of power spectrum for hierarchical structure of
cascade of primary and secondary periodicities for
imperfect HORs

In the next step we have investigated the robustness of the
hierarchical periodicity pattern with an increase of imper-
fection in the HOR sequence. This is shown by random
insertion of increased length inserted into the HOR

(b) 4
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ﬁ3' f15 11 18 24
& |1 ? 5 8 4o 121314 1920
§7 6 6
1 T T
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Power spectrum of artificially constructed perfect HOR sequence formed by a sequence of 54 exactly identical
HOR copies, equal to the 2734-bp consensus HOR corresponding to AC017075.8 in chromosome 7. Computa-
tion is performed using quartic mapping with parametrization (Eq. 6). (a) Low-frequency section. (b) Medium frequency sec-

tion.
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sequence AC017075.8. Power spectra are presented for:  random insertion (Figure 6e) and 6f)). It is seen that the
10000-bp random insertion (Figure 6a) and 6b)), 30000-  level of noise increases with increase of insertion length,
bp random insertion (Figure 6¢) and 6d)), and 60000-bp  but even in the case of 60000-bp random insertion
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Power spectrum of HOR domain in AC017075.8 with an additional insertion (random sequence obtained by
random number generator) computed by DFT using quartic mapping with parameters (Eq. 8). (a) 10000-bp
insertion; low-frequency section of the power spectrum. (b) 10000-bp insertion; medium-frequency section of the power spec-
trum. (c) 30000-bp insertion; low-frequency section of the power spectrum. (d) 30000-bp insertion; medium-frequency section
of the power spectrum. (e) 60000-bp insertion; low-frequency section of the power spectrum. (f) 60000-bp insertion; medium-
frequency section of the power spectrum. Insertions are placed at the location 65537 in AC017075.8.
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(which is 40% of the total length of HOR copies) the hier-
archical structure of primary and secondary periodicity
can be identified (Figures 6e) and 6f)).

Noisy power spectrum of a random artificial sequence

In order to test that the hierarchical primary and second-
ary periodicity pattern is not a numerical artifact, we have
computed the power spectrum corresponding to a ran-
dom sequence generated by random number generator,
having the same length as the HOR sequence in
AC017075.8 (148147 bp). Computation is performed
using quartic mapping with paramerization (Eq. 8). From
this power spectrum, shown in Figure 7, it is seen that the
computational method does not generate hierarchical
periodicity.

Power spectrum pattern of monomeric alphoid domain in

AC017075.8

The low-frequency power spectrum (f < 0.01 bp-!) of com-
bined front- and back-domains of AC017075.8 is dis-
placed in Figure 8a) and the higher-frequency section in
Figure 8b). A significant difference with respect to the cen-
tral HOR domain is seen in the low-frequency region (Fig-
ure 8a): there are no prominent peaks below the
frequency fi, (1/171 bp1). In the front- and back-
domains there is no peak corresponding to 16 mer HOR
(at frequency f; in Figure 1a), as well as to the multiples of
fi: fo=2f1, f5=3f1, ... fi5 = 15f;, at frequencies below f;
which corresponds to the 171-bp monomer. In that case
the frequency of the lowest peak in the power spectrum
corresponds to the period 171 bp of consensus alpha
monomer and the power spectrum contains only the
monomeric band (primary periodicity). This reveals that
HOR is absent in the front and back domains. A tandem

2

log[S(h)]

—_

l LRGN “i ,ft. ‘n}‘ il ‘ Ml\‘

0. 0.002 0004 0.006 0.008 0.01
f(1/bp)

Figure 7

Power spectrum of artificial random sequence con-
structed using random number generator. Computa-
tion was performed using quartic mapping with
parametrization (Eq. 8).
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of alpha satellite monomers, not organized into HORs, is
referred to as monomeric [96,97]. As seen from our
results, the noise is stronger in monomeric domains
(front- and back-domains) than in the central HOR
domain. On the other hand, the equidistant pattern asso-
ciated with prominent peaks above the frequency f,, (Fig-
ure 8b), for monomeric domain is rather similar as for
HOR domain (Figure 1b).

Absence of low-frequency | f*-noise in DFT power
spectrum

The 1/f - noise is absent in the low-frequency region of
power spectrum of AC017075.8, both in the central HOR
domain (Figure 1a) and in the monomeric front- and
back-domains (Figure 8a). This result is in accordance
with expectations, because the sequence mainly consists
of approximate repeats, without sizeable sequence-wide
base composition fluctuations. Previously, some cases of
absence of long range correlations in repeat sequences
have been found. For example, in a sequence for beta
globin on human chromosome 11 (HUMHBB, 73326 bp)
two 6-kb segments without long-range correlations were
identified, both including stretches of repetitive DNA
[76].

The A+T fraction in the AC017075.8 sequence is almost
constant along the sequence (Figure 9). Using bins of 1
kb, the calculated fraction of A+T nucleotides is 0.625 +
0.008%, with small fluctuations around the average value.
This homogeneity of nucleotide density is in accordance
with expectations that the 1/f# noise is related to varying
ratio of pyrimidines and purines, or other nucleotide
combinations, at base positions along DNA sequence
[24,81].

For comparison, to show that the DFT power spectrum
method used here identifies the low-frequency 1/f# -
noise, if present, we display the power spectrum com-
puted for contig NT_004434.18 from chromosome 1 (Fig-
ure 10). This contig of about 1 Mb lies outside of
(peri)centromeric region and is characterized by the pres-
ence of genes and absence of HORs. The power spectrum
computed using quartic mapping at parametrization (Eq.
7) clearly shows the presence of low-frequency 1/f# -
noise.

Rank ordering for harmonics in alpha monomeric
spectrum

In the power spectrum of our case study for genomic
sequence in HOR domain the equidistant peaks corre-
sponding to multiples of monomer frequency f;, are siza-
bly stronger than the other peaks (Figure 1b). Among the
low-frequency peaks in Figure 1b) the most pronounced
peaks are 10f,, 12f;, and 14f,. The corresponding
lengths are approximately 17 bp, 14 bp, and 12 bp,
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tion (Eq. 6). (a) Low-frequency section f < 0.0l bp-!. Positions corresponding to low-frequency peaks from Figure la), which
are missing here, are indicated by arrows. (b) Medium frequency section up to f = 0.15 bp-!. Peaks are assigned in analogy to

Figure Ib).

respectively. The 14-bp length may be related to the high-
est frequency of appearance of the 6-bp key string TITTTGA
at the distance of 14 bp between two neighboring key
strings. However, in general, the chosen mapping may
influence the rank ordering of harmonics, as seen by com-
paring their relative heights in Figures 1, 2, 3, 4, 5. Thus,
the effect of parameter choice for symbolic-to-numeric
transformation may overshadow the effect of hidden
genomic substructure.
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Figure 9

Histogram of fraction of A+T nucleotides along the
sequence AC017075.8 (bins of 1000 bp).

Absence of periodicity three in power spectrum of HORs

In previous investigations of Fourier power spectra of cod-
ing DNA sequences a major peak was found at the fre-
quency f = 1/3 bp’!, related to the codon structure
[5,14,37]. In the present case of a segment with entirely
noncoding sequence, no peak appears at f = 1/3 bp-! (Fig-
ure 11). This is in accordance with previous conclusions
that the period-3 feature is usually lacking or is weak in
noncoding regions [7,9,37,39,41,66]. For comparison,
using quartic mapping we computed the power spectrum
of CDS from the gene DNAH11 in chromosome 7 (Figure
12). In this power spectrum obtained by computation

2.

log[S(f)]

0.1

0. 0.05 0.15

f(1/bp)

Figure 10

Low frequency l/f’— noise of the power spectrum of
contig NT_004434.18 (I Mb) in chromosome | out-
side of (peri)centromeric region. Computation was per-
formed using quartic mapping at parametrization (Eq. 7).
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Power spectrum of the HOR domain in AC017075.8
obtained by computation using quartic mapping
from Figure | in higher frequency section (up to f=
0.35 bp-1).

using quartic mapping (Eq. 8), at the frequency f=1/3 bp-
1a pronounced peak is present.

Use of power spectrum for identification of hierarchical
primary and secondary periodicity pattern in chromosome
|

The computation of power spectrum, shown here for the
test case of 16 mer HOR in chromosome 7, can be
extended for HOR identification and study in other chro-
mosomes as well. As an example, we present in Figure 13
the power spectrum computed for contig NT_077389.3 in

3 =
Y
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o
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Figure 12

Power spectrum of CDS from gene DNAHI | in
AC004002.1 in chromosome 7 obtained by computa-
tion using quartic mapping (Eq. 8).
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chromosome 1, using quartic mapping with parametriza-
tion (Eq. 8). Here we find a hierarchical pattern of primary
and secondary periodicity (11 mers).

Conclusion

We have demonstrated that DFT is a robust and efficient
method to identify alphoid HORs in alpha satellite
domain of genomic sequence. In the case of nmer HOR
the lowest peak is at the fundamental frequency 1/(171n
bp), which will be referred to as HOR-frequency. It is a
head of band of equidistant peaks at frequencies equal to
consecutive multiples of HOR-frequency, i.e., 1/(171n
bp), 2/(171n bp), 3/(171n bp), ... This band is referred to
as the HOR-band. Some peaks within the HOR-band
form a strong-spectral-power subset with band head at
monomer-frequency 1/(171 bp). This subset forms a
band of equidistant peaks at frequencies which are multi-
ples of monomer-frequency 1/(171 bp), i.e., it corre-
sponds to the peaks at frequencies 1/(171 bp), 2/(171
bp), 3/(171 bp), .... This sub-band is referred to as the
monomeric-band.

In the case of monomeric alpha satellites (not organized
into HOR) the lowest peak is at the monomer-frequency
1/(171 bp). It is a head of monomeric-band built from
peaks at frequencies 1/(171 bp), 2/(171 bp), 3/(171 bp),

DFT was applied here in the case study of genomic
sequence AC017075.8 (193277 bp) from centromeric
region in human chromosome 7. The central domain of
AC017075.8 consists of 16-mer alphoid HOR copies.
Thus the frequency of the lowest peak in the power spec-
trum (HOR-frequency) is 1/(171 - 16 bp). We identified in
the power spectrum as many as one thousand peaks at fre-
quencies equal to multiples of HOR-frequency, forming a
HOR-band. Among these peaks in the HOR-band a subset
of peaks at frequencies 1/(171 bp), 2/(171 bp), 3/(171
bp), .... is characterized by pronounced spectral power
and represents the monomeric-band. This reveals hidden
periodicities in the 171-bp monomer, i.e., a hierarchy of
periodicities within the monomer sequence. Power spec-
tra of both the HOR region and of the monomeric region
show this pattern of hidden higher frequencies.

The case study shows that DFT is robust in detecting
approximate HORs, even in the presence of substantial
sequence insertions and deletions.

Additionally, the applicability of DFT method was shown
for chromosome 1, where a hierarchical pattern of 11 mer
HOR is present.

Computing DFT power spectra for anonymous genomic

sequence using sliding windows for bins of about 50 kb

Page 10 of 14

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:466

(a) 4 T
11
i \
€ D f11 i : 151‘6 5
Pt 6
%_ 24 78?1\0“?13 Y
s 1 | L
B ! I . ‘ | I li" 14'\ | |
o:ﬂ\» b il
I |‘ I (
_ JO W il lm*"‘l ML
0. 0002 0004 0006 0008 0.01
f(1/bp)
Figure 13

Power spectrum of contig NT_077389.3 in chromosome

8). (a) Low-frequency section. (b) Medium frequency section.
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I, using quartic mapping with parametrization (Eq.

and step size of about 10 kb provides an easily recogniza-
ble hierarchical two-level equidistant pattern in the power
spectrum as signature of presence of HOR and gives a sim-
ple method to determine the size of HOR.

Methods

Discrete Fourier transform of genomic sequence

To apply DFT, one should first represent genomic
sequence, a symbol sequence over the alphabet {A, T, G,
C}, as a numerical sequence reflecting the characteristics
of the symbol sequence. Several approaches have been
used for solving the problem of transformation of a sym-
bol sequence to numerical sequence.

A common mapping scheme is to decompose genomic
sequence into four component indicator sequences. These
binary indicator SeqUeNCes, Uy (m), Ur(m) Uc(m) and'uG(m),
take the value of either 1 or 0 at position m depending on
whether the corresponding character is present or absent
at that location, respectively. These indicator sequences
were analyzed by respective Fourier transforms
[5,9,39,40,55]. For pure DNA character strings (i.e., with-
out assigning numerical values), to the binary indicator
sequences Uy(y,), Upm) Ugm) and ugy) correspond the
DFT sequences
U1 Ur(iy Ugqy and ugy (3)
respectively, providing a four-dimensional representation
of the frequency spectrum of the character string. The
quantity obtained by summing the squares of the Fourier
transform of indicator sequences:
S(K) = Jun (k)2 + |us(R) 2 + Jug ()2

|uc(k)|? + 4)

is used as a measure of the total spectral content of DNA
character string at frequency k [9,37,39,40,111].

Fourier transform of a nucleotide sequence was repre-
sented also by sum of pure sequences (Eq. 3) or by their
product [15,109]. A single binary sequence was used by
mapping genomic sequence into purine/pyrimidine rep-
resentation [22], or into weak bond/strong bond repre-
sentation [109]. Alternatively, mapping of DNA symbolic
sequence into a set of quaternions could be utilized via
the use of quaternionic Fourier transform [31].

A quartic mapping of genomic into numerical sequence of
length N was performed by mapping each symbol to a
number [17,37,111]:

X(m) = auA(m) + tuT(m) + Cuc(m) + guc(m), m= 0, 1, 2, vees
N-1 (5)

where a, t, ¢, and g are numerical values assigned to the
characters A, T, C, and G, respectively.

We define the quartic map by ordering numbers of nucle-
otides with increasing frequency in the sequence
AC017075.8 (corresponding to the orientation -) in chro-
mosome 7, which is used for our case study:

a=4,t=3,c=2,g=1 (6)
These values are in accordance with ordering of nucle-

otides with decreasing frequencies in the HOR region, and
therefore they are biased in favor of A and T.

When using sequences from the Build 36.2 assembly (cor-
responding to the orientation +), the corresponding para-
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metrization for quartic mapping is complement to (Eq.
6):

t=4,a=3,g=2,c=1 (7)

In [113] the purine/pyrimidine and strong/weak bond
properties of the four kinds of nucleotides were consid-
ered. The point (1,1) was used to represent nucleotide C
corresponding to its pyrimidine and strong bond proper-
ties; the point (-1,1) to represent nucleotide G corre-
sponding to its purine and strong bond properties; the
point (-1,-1) to represent nucleotide A corresponding to
its purine and weak bond properties; and the point (1,-1)
to represent nucleotide T corresponding to its pyrimidine
and weak bond properties. Then the vectors connecting
the origin to the four points (1,1), (-1,1), (-1,-1) and (1,-
1) have the rotational angles 7/4, 37/4, 57/4,7 /4 with the
x-axis and correspondingly the map defined [113]:

a=7,t=5c=3,g=1 (8)

These quartic map parameters are linearly related to
parameters in (Eq. 6), b =2b'-1 (b and b' stand for the cor-
responding nucleotides in (Eq. 8) and (Eq. 6), respec-
tively).

In [37] the dimensionality of the frequency spectrum rep-
resentation was reduced from four to three in a symmetric
manner with respect to all four components. Three
numerical sequences &, &, &, were defined from the cor-
responding coefficients (a, t,, ¢, 8;), (3y ty Cy &), (ap, by
G, &) by considering the four three-dimensional vectors
having magnitude equal to 1 and pointing to the four
directions from the center to the vertices of regular tetra-
hedron:

V2

& :T[zuT(n)_uc(n)_uG(n)] (9)
o=V [~ uctm] (10)
& =%[SuA(n)—uT(n)—uc(”)—uc(”)] (11)

from which the DFTs are calculated.

In all computations the DFT' was computed using Fast
Fourier Transform (FFT) computer program [115] with

the 1/+/N normalization.

A search for regions of higher order repeats in anonymous
sequence, without prior knowledge on its structure, can be
performed by sliding window analysis, similarly as used

http://www.biomedcentral.com/1471-2105/9/466

in Spectral Repeat Finder [16]. Once a region of HOR
structure is detected, a more precise edge detection of
HOR region can be determined by performing more pre-
cise local search using smaller step size.

Abbreviations
HOR: Higher Order Repeat; KSA: Key String Algorithm;
DFT: Discrete Fourier Transform.
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