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Abstract
Background: Various measures of semantic similarity of terms in bio-ontologies such as the Gene
Ontology (GO) have been used to compare gene products. Such measures of similarity have been
used to annotate uncharacterized gene products and group gene products into functional groups.
There are various ways to measure semantic similarity, either using the topological structure of the
ontology, the instances (gene products) associated with terms or a mixture of both. We focus on
an instance level definition of semantic similarity while using the information contained in the
ontology, both in the graphical structure of the ontology and the semantics of relations between
terms, to provide constraints on our instance level description.

Semantic similarity of terms is extended to annotations by various approaches, either though
aggregation operations such as min, max and average or through an extrapolative method. These
approaches introduce assumptions about how semantic similarity of terms relates to the semantic
similarity of annotations that do not necessarily reflect how terms relate to each other.

Results: We exploit the semantics of relations in the GO to construct an algorithm called SSA
that provides the basis of a framework that naturally extends instance based methods of semantic
similarity of terms, such as Resnik's measure, to describing annotations and not just terms. Our
measure attempts to correctly interpret how terms combine via their relationships in the
ontological hierarchy. SSA uses these relationships to identify the most specific common ancestors
between terms. We outline the set of cases in which terms can combine and associate partial order
constraints with each case that order the specificity of terms. These cases form the basis for the
SSA algorithm. The set of associated constraints also provide a set of principles that any
improvement on our method should seek to satisfy.

Conclusion: We derive a measure of semantic similarity between annotations that exploits all
available information without introducing assumptions about the nature of the ontology or data.
We preserve the principles underlying instance based methods of semantic similarity of terms at
the annotation level. As a result our measure better describes the information contained in
annotations associated with gene products and as a result is better suited to characterizing and
classifying gene products through their annotations.
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Background
Although the semantic similarity between two GO terms
has been extensively investigated [1-4], how to define sim-
ilarity between two gene products based on GO annota-
tions for a specific application remains unclear [5]. To
date annotation similarity has been computed by four
general approaches: the set-based approach; the graph-
based approach; the vector-based approach; and the term-
based approach. In the set-based approach an annotation
is viewed as a 'bag of words'. Two annotations are similar
if there is a large overlap between their sets of terms. A
graph-based approach views similarity as a graph-match-
ing procedure. Vector-based methods embed annotations
in a vector space where each possible term in the ontology
forms a dimension. Term-based approaches compute sim-
ilarity between individual terms and then combine these
similarities to produce a measure of annotation similarity.

All the above approaches do not consider the semantics of
relationships between terms. How terms are related can
significantly alter how an annotation, which is a set of
terms, is interpreted. In the GO there are two main types
of relations: is_a and part_of. The is_a relation represents
a taxonomic relationship between terms that can be mod-
eled using the improper subset relation, which is a partial
ordering of terms. The part_of relation represents a parto-
nomic relationship between terms that can also be mod-
eled in terms of a partial order. Though the partial orders
represented by taxonomies and partonomies are well
understood there has been little attention given as to how
these two partial orderings combine. Using the various
cases identified by combining taxonomies and partono-
mies we construct an algorithm called SSA (Semantic Sim-
ilarity of Annotations) that identifies the terms that can be
associated with an annotation and terms that relate to
both annotations. Instances associated with these terms
are then used to construct a Resnik-like measure of anno-
tation similarity thus extending the underlying intuitions
behind this term-based measure to the annotation level.

A measure of term or annotation similarity should be
based on a set of principles that form the basis for what is
considered similar. The nature of similarity has been the
focus of intense research in the areas of aesthetics [6,7] and
psychology [8]. In mathematics properties such as identity,
symmetry and the triangle inequality have been used to form
the basis of measures of similarity of mathematical
objects. Principles of term and annotation similarity have
been suggested by various authors. This work intends to
build on these principles and introduce additional princi-
ples that a measure of similarity should seek to satisfy. 

Similarity between objects is normally expressed as a
number that ranges along an interval on the real numbers
�. However the main purpose of similarity is usually to

determine whether two or more objects are similar to a
reference object. For this reason a measure of similarity
can be viewed as a partial order on a set of objects, the
actual numbers play only a secondary purpose. For exam-
ple, we may say that an object X is more similar to Z than
another object Y. Formally this is expressed as sim(X, Z) >
sim(Y, Z). 

In the study of ontological similarity Lin [9] develops the
principles of commonality and difference when constructing
a measure of term similarity. The greater the commonality
between objects the greater the similarity. Likewise, the
greater the difference between objects the greater the dis-
similarity. The source of both the commonality and differ-
ence between terms depends on the method chosen to
measure the descriptiveness of terms. Different sources of
descriptiveness may result in different orderings of simi-
larity between terms or annotations.

Popescu et al. [10] recognize that an important property of
term similarity is that two different terms should have a
non-zero similarity value if the terms are related. They
also recognize that an important property of annotation
similarity is that the descriptiveness of annotations should
be greater than or equal to the descriptiveness of its con-
stituent terms. In this paper this property is called the
monotonicity property.

In defining a measure of similarity a set of relevant prop-
erties that objects can be compared along are identified. In
ontological similarity, whether of terms or annotations,
there are two main sources of similarity: the conceptual or
structural level; and the instance level. At the structural
level we may consider such properties as graph distance,
graph similarity, relation types, common ancestors, etc. At
the instance level we consider the set of instances associ-
ated with a term or annotation. Our measure of ontologi-
cal similarity combines aspects from both levels. Here we
survey how various measures of annotation similarity
combine these properties in various ways to form the
basis for a measure of descriptiveness of a term or annota-
tion.

Set-Based Approaches
Set based methods for measuring the similarity of annota-
tions are based on the Tversky ratio model of similarity
[8,11] which is a general model of distance between sets
of terms. It is represented by the formula

where G1 and G1 are sets of terms or annotations from the
same ontology and f is an additive function on sets (usu-
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ally set cardinality). For  =  = 1 we get the Jaccard dis-
tance between sets:

and for  =  =  we get the Dice distance between sets

[11]:

In this situation the source of descriptiveness of an anno-
tation is its set of terms. Each term and its set of associated
instances is considered independent of other terms. The
commonality and difference between annotations is mod-
eled as set intersection and difference of sets of terms
respectively. Set-based approaches return a similarity of
zero if they do not share common terms ignoring the fact
that terms may be closely related. Because of the atomic
nature of terms in the set-based approach the monotonic-
ity property does not apply.

Vector-Based Approaches
Vector-based methods embed ontological terms in a vec-
tor space by associating each term with a dimension. Usu-
ally a vector is binary consisting of 0's and 1's where 0
denotes the absence (resp. presence) of a term (along a
particular dimension) in an annotation. This has the
advantage that standard clustering techniques on vector
spaces such as k-means can be applied to group similar
terms. What is required is a means of measuring the size
of vectors. This can be achieved by embedding terms in a
metric space (usually Euclidean). The most common
method of measuring similarity between vectors of terms
is the cosine similarity

where vi represents a vector of terms constructed from an
annotation (group of terms) Gi. |·| corresponds to the size
of the vector and • corresponds to the dot product
between two vectors. The source of descriptiveness, com-
monality and difference is the same as the situation for
set-based approaches.

Graph-Based Approaches
An ontology is a directed, acyclic graph (DAG) whose
edges correspond to relationships between terms. Thus it
is natural to compare terms using methods for graph
matching and graph similarity. We may consider the sim-
ilarity between annotations in terms of the sub-graph that
connects terms within each annotation. Annotation simi-

larity is then measured in terms of similarity between two
graphs. Graph matching has only a weak correlation with
similarity between terms. It is also computationally
expensive to compute, graph matching being an NP-com-
plete problem on general graphs [12].

The descriptiveness of an annotation is modeled by the set
of nodes and edges associated with a subgraph. Commo-
nality between annotations is based on the set intersec-
tion while difference is modeled by the set difference
where each set consists of the nodes and edges associated
with each subgraph. Alternatively, the set of edges may be
ignored and only common terms of both graphs are con-
sidered [13-15].

Improving Similarity Measures by Weighting Terms
Set, vector and graph-based methods for measuring simi-
larity between annotations can be improved by introduc-
ing a weighting function into the similarity measure. For
example, the weighted Jaccard distance can be formulated
as:

where, as before, G1 and G2 are annotations or sets of
terms describing data (e.g. a gene product), Tx is the xth

term from a set of terms and m(Tx) denotes the weight of
Tx. This weighting function can be used to represent vari-
ous properties of a term or annotation such as a measure
of vagueness, uncertainty, sense of preference or a combi-
nation of the above. The vector-based approach may be
extended so that values along a particular dimension can
lie on the interval [0, 1] or [0, ). The graph-based
approach can be extended by weighting the edges between
terms in the graph.

Assigning a weight to each term in an annotation allows
for the possibility of introducing the monotonicity prop-
erty into a similarity measure. Using the monotonicity
property, the weight associated with an annotation
should be greater than or equal to the weight associated
with any of its constituent terms. Weights can form an
additional basis on which to measure the descriptiveness
of a term or annotation.

Instance-Based Weights
One approach to assigning weight to an ontological term
is to measure how informative a term is in describing data.
A method of measuring information is to analyze a term's
use in a corpus against the general use of ontological
terms in the same corpus. Information is measured using
the surprisal function:
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ICCorpus(Ti) = -log(p(Ti)) (1)

where p(Ti) corresponds to the probability of a term Ti or

its taxonomic descendants occurring in a corpus. For
example, consider the case where there are 30 distinct
instances in a corpus and 5, 3 and 2 of these instances are
annotated by the terms Ti, Tj and Tk respectively. If Tj and

Tk are sub-types or children of Ti and do not have child

terms themselves then

.

Other Weighting Approaches
Other measures of information can be used not necessar-
ily relying on corpus data. One measure [16] relies on the
assumption that how the ontology is constructed is
semantically meaningful:

where desc(Ti) returns the number of descendants of term
Ti and numTerms refers to the total number of terms in the
ontology.

Term-Based Approaches
In term-based approaches similarity between pairs of
terms from each annotation are computed. These weight-
ings are then combined in order to characterize the simi-
larity between annotations as a whole. There are several
ways to combine similarities of pairs of terms such as the
min, max or average operations. Term-based approaches
depend on a function s(Ti, Tj) where Ti and Tj are terms
from two annotations G1 and G2 respectively. s(Ti, Tj) pro-
vides a measure of distance/similarity between these two
terms. Once distances has been measured between all pos-
sible pairs of terms they are then aggregated using an oper-
ation such as max or the average of all distances. For
example:

More sophisticated term based approaches combine mul-
tiple measures of term similarity and aggregate similarity
values using more complex functions, for example [17].

Graphical Measures of Term Similarity
The simplest approach to measuring similarity between
ontological terms using the graph structure is to measure
the shortest path distance between terms in the graph
[18,19]. Referring to figure 1, in terms of graph distance,
we may consider the terms 'muscle cell proliferation' and
'fibroblast cell proliferation' (graph distance of 2) as being

more similar than the former term with 'fibroblast regula-
tion' (graph distance of 3). However the graph distance
has only a weak correlation with similarity of terms. The
semantic similarity between 'positive fibroblast regula-
tion' and 'negative fibroblast regulation' is far greater than
the similarity between 'muscle cell proliferation' and
'fibroblast cell proliferation' even though both examples
have a graph distance of two. A simple graph distance-
based measure of similarity does not model in a consist-
ent way any notion of commonality or difference between
terms.

A more refined use of graph distance as a basis for a meas-
ure of term similarity is found in the Wu-Palmer measure
of similarity [20]. It uses the idea that the distance from
the root to the lowest common taxonomic ancestor (LCTA)
measures the commonality between two terms while the
sum of the distance between the LCTA and each term
measures the difference between two terms. Combining
these aspects results in the formula:

Where T1 and T2 are the two terms being compared, Tlcta is
the term that corresponds to the lowest common taxo-
nomic ancestor between T1 and T2. Troot denotes to root
node of the ontology (assuming that the ontology has
only one root). dist(Ti, Tj) denotes the graph distance
between terms Ti and Tj. The 2 * dist(Tlcta, Troot) component
of the denominator serves to normalize the measure.

Instance-Based Measures of Term Similarity
Similarity may be measured using an instance based
measure of semantic similarity as computed by either Res-
nik (eqn. 2) or Lin (eqn. 3). Resnik [21,22] exploits the
informativeness of the lowest common ancestor between
terms as a measure of semantic similarity:

sResnik(Ti, Tj) = ICCorpus(Tlcta) (2)

where Tlcta denotes the lowest common taxonomic ances-
tor between ontological terms Ti and Tj. This measure only
accounts for the commonality between terms.

Another method of measuring similarity derived by Lin
[9] is:

which has the advantage that it maps onto values on the
interval [0, 1] unlike Resnik's measure which maps onto
the interval [0, ). Lin's measure also accounts for both
the commonality and difference between terms. Resnik's

IC TCorpus i( ) log .= − ( ) ≈+ +5 3 2
30

1 099

IC T
desc Ti
numTermsOnt i( )

log( ( ) )
log( )

= − +
1

1

S G G
s Ti T jj

m
i
n

m navg( , )
( , )

1 2
11= =∑=∑

∗

sWu Palmer T T
dist Tlcta Troot

dist T Tlcta dist T− = ∗
+

( , )
( , )

( , ) (1 2
2

1 22 2, ) ( , )Tlcta dist Tlcta Troot+ ∗

s T T
ICCorpus Tlcta

ICCorpus Ti ICCorpus T j
Lin i j( , )

( )

( ) ( )
=

∗
+

2
(3)



BMC Bioinformatics 2008, 9:468 http://www.biomedcentral.com/1471-2105/9/468

Page 5 of 26
(page number not for citation purposes)

An Example of an Ontology of GO TermsFigure 1
An Example of an Ontology of GO Terms. Nodes in the graph correspond to ontological terms. Edges correspond to 
relations between terms. Lower down terms in the diagram are descendants of terms higher up in the diagram if connected by 
an edge.
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measure does have the desirable property that terms close
to the root of the ontology have a low similarity however.
This is not the case for Lin's measure.

The only structural property that both Resnik and Lin
exploit is the lowest common taxonomic ancestor. To
overcome this weakness Jiang and Conrath [23] integrate
graph distance based measures of similarity into informa-
tion based approaches. They construct a generalized
weighting measure between a child and its immediate par-
ent that accounts for the number of out edges and depth
of terms along the shortest path between the compared
terms in the ontology. While they acknowledge that other
relation types might be relevant to measuring similarity
their measure is based solely on the taxonomic or is_a
relations in the ontology.

New Approaches to Annotation Similarity
Beyond the set, vector, graph and term-based approaches
to measuring similarity of annotations exist other meth-
ods that introduce the additional properties discussed
above such as monotonicity and taking into account the
semantics of ontological relations.

Similarity Based on Fuzzy Measures
The monotonicity property leads naturally to the use of
fuzzy measures as a basis for measuring the descriptive-
ness of an annotation. Using the information content
measure of terms described in eqn. 1 as the basis for meas-
uring similarity a fuzzy measure is constructed. A fuzzy
measure is a weighting on sets of terms such that the
weight associated with a set of terms is greater than or
equal to the weight associated with any of its subsets.

Popescu et al. [10] use fuzzy measures to induce a weight-
ing m for an annotation from its constituent terms. This
weight is extrapolated from the weights of individual
terms by using the formula for constructing a Sugeno -
fuzzy measure: For a set of terms Ga, Gb and Gc where Gc =
Ga  Gb and Ga  Gb =  a -fuzzy measure for Gc is

m (Gc) = m (Ga) + m (Gb) +  * m (Ga) * m (Gb)

where  is a value that ensures that m(Gc)  m(Ga) and
m(Gc)  m(Gb). Given that the weights (fuzzy measure
densities) m for individual terms Ti in an annotation are
known then  can be determined by solving the following
equation:

In [10] the weight for each term is based on the ICCorpus
measure (eqn. 1). The similarity of two annotations, rep-

resented by a set of terms G1 and G1 from the same ontol-
ogy, are compared using the similarity function:

where  and  are the -fuzzy measure functions

that characterize G1 and G2 respectively. The relatedness of

terms is accounted for by augmenting each annotation
with the lowest common ancestors for each pair of terms
from each annotation. This ensures a non-zero similarity
between annotations containing related terms.

However, an ontology models other aspects of relatedness
that should be taken into account. Relations between
terms in an annotation can be used to identify redundant
terms whose relevance to the descriptiveness of an anno-
tation is already accounted for by other terms. For exam-
ple, if two terms in an annotation are taxonomically
related the existence of the parent term is implied by the
existence of the child term.

If redundancy of terms is not taken into account it may
lead to too many or too few instances being associated
with the term. This is especially true when a term is
part_of another term. The instances associated with the
annotation consist of the parts and not what the instances
are part of.

Exploiting Semantics of Ontological Relations
Wang et al. [14] account for the different contributions
that terms related by is_a and part_of relations make to
the descriptiveness of a term. The semantic contribution
that ancestor terms make to a child term is calculated by:

where Tanc, i denotes the ancestors of term Ti and  is cal-

culated as

where we  [0, 1] is a number that corresponds to the
semantic contribution factor for edge e. childrenOf(Tx) is a
function that returns the immediate children of Tx that are
ancestor terms of Ti. In this paper wis_a = 0.8 and wpart_of =
0.6. The similarity of two terms is computed by the for-
mula
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A term-based approach is taken to measuring the similar-
ity between annotations G1 and G2. The similarities of the
most similar pairs of terms from each annotation are aver-
aged over to calculate the similarity between annotations:

where  and |Gy| denotes

the number of terms in annotation Gy.

Wang et al. make the observation that the instance based
measures of term similarity will produce varying results
based on the corpus chosen. They keep a fixed value for
the contribution each relation type makes to the descrip-
tiveness of a term. This does not account for the varying
influence of terms on each other throughout the ontology
even if the graph distance is the same. Exploiting the cor-
pus statistics, if used appropriately, may account for this
drawback. As with all term-based methods, where terms
from each annotation are compared in a pairwise fashion,
it is difficult to see how the monotonicity property is
ensured when measuring the similarities between two
annotations.

Methods
The Gene Ontology relates terms using is_a and part_of
relations. We develop a measure of informativeness that
provides a description of an annotation that takes into
consideration the relations between terms. We use the
informativeness measure of a term (eqn. 1) as the basis for
providing a description of an annotation. We define an
algorithm called SSA that combines the instances of terms
while taking into account how these sets of instances are
related by how their associated terms are related in the
ontology. This results in a set of instances that can be said
to be associated with an annotation and not just a term.
We can then extend the concept of instance based seman-
tic similarity of terms, such as Resnik's measure, to anno-
tations.

Interpreting Annotations from Taxonomies
A taxonomy induces a partial ordering on a set of terms by
the improper subset relation . If Ti is_a Tk and Tj is_a Tk
then the set of instances associated with both Ti and Tj are
subsets of Tk. Assuming that we know of all possible
instances that can be associated with a term, whatever
properties that instances of both Ti and Tj share can be

associated with any of the instances that can be associated
with Tk. This forms the basis for measuring the common-
ality between terms used in instance-based measures of
similarity between terms.

The difference between terms Ti and Tj is modeled by the
difference between the set of instances associated with
each term. If we have two or more terms from a taxonomy
in an annotation then it is reasonable to argue that the set
of instances associated with an annotation should be the
intersection of the set of instances associated with each
term. The informativeness of the annotation is then based
on the set of instances resulting from this intersection.

Interpreting Annotations from Partonomies
The part_of relation between terms denotes the concept
that one term is 'part of ' another. It provides an alternative
notion of relatedness between terms. An ontology consist-
ing only of part_of relations is known as a partonomy. An
example of a simple partonomy is wheel part_of car. It
would not make sense to say that a wheel is_a car. The
study of partness is complicated by the fact that there are
many kinds of part_of relations. Yet the study of partness,
known as mereology [24], has shown that there are also
common aspects to all types of part_of relations, namely
that part_of relations form a partial ordering on the sets of
instances associated with each term.

According to the GO Consortium's usage guidelines since
2004 [25] the part_of relation should be interpreted as
'necessarily part of' where Ti part_of Tj means that all
instances of Ti are part of one or more instances of Tj. The
converse is not necessarily true. For example, all nuclei are
part of cells but not all cells contain a nucleus. Bittner [26]
models such a part_of relation using an improper partial
order i.e. for term Ti with descendant terms Tj.

Tj part_of Ti Tj part_of Ti (4)

Annotations consisting of terms such that one term is
part_of another should view the child term as being rele-
vant to the annotation while the parent term provides
redundant, contextual information. For example, con-
sider an annotation consisting of two terms Ti and Tj from
a partonomy. If Tj part_of Ti then the annotation should
be interpreted as the set of instances of Tj. All we can say is
that the number of instances of Ti associated with the
annotation can be no more than the number of instances
of Tj. In general, an annotation consisting of terms
belonging to a partonomy consists of terms that provide
the set of instances that can be associated with the anno-
tation while other terms provide the context in which
these instances are embedded.
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Partial Order Constraints for GO Annotations
Figure 2 shows a subset of the GO consisting of both
part_of and is_a relations. According to the taxonomic
is_a relations both 'mitochondrial chromosome' and
'mitochondrial nucleoid ' are 'mitochondrial part's. A
measure of descriptiveness of a term should at least say
that both 'mitochondrial chromosome' (a) and 'mito-
chondrial nucleoid ' (b) are more descriptive than 'mito-
chondrial part' (c), i.e. a, b  c. Likewise, the part_of
relation in figure 2 indicates that a part_of b. Here we can
see how the part_of relation provides additional indirect

information about descriptiveness not represented by the
taxonomic relations. If an annotation consists of the
terms 'mitochondrial chromosome' and 'mitochondrial
nucleoid' then the annotation should be interpreted as the
set of instances of 'mitochondrial chromosome'. If the terms
'mitochondrial part' and 'chromosome' are added to the
annotation then the same set of instances should be asso-
ciated with the annotation. All additional terms are
already implied by the existence of 'mitochondrial chro-
mosome' in the annotation. If we had either treated the
part_of relation as an is_a relation or ignored it then the

A Subset of GO Terms and RelationsFigure 2
A Subset of GO Terms and Relations. An example of where the part_of relation plays an important role in interpreting 
annotations. If an annotation contains the term 'mitochondrial chromosome' then all other terms shown in the graph are 
redundant. The diagram also shows various cases that describe how terms relate to each other.
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C h r o m o s o m e
O t h e r  P a r t s

i s _ a

i s _ a

i s _ a

i s _ a

i s _ a

p a r t _ o f

p a r t _ o f
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annotation would have been interpreted as the set of
instances that are both 'mitochondrial chromosome' and 'mito-
chondrial nucleoid'. With this interpretation we would have
possibly returned an empty set of instances since chromo-
somes are not nucleoids.

The GO consists of many examples similar to the one
described above. In general, the GO can be viewed as a
taxonomy interspersed with part_of relations. Two terms
are said to be directly related if there exists a series of rela-
tions on a single path between them. Terms that are not
directly related along a path in the graph are indirectly
related via a common ancestor. For example there may be
other terms that are part_of 'mitochondrial nucleoid' in
which case the term 'mitochondrial chromosome' is only
related to the other parts by an indirect path of part_of
relations. Though not shown, the terms 'mitochondrial
nucleoid' and 'chromosome' are only indirectly related via
a common ancestor through a number of is_a relations.
When interpreting an annotation it is necessary to account
for such situations.

In general, as described in table 1, there are nine cases to
handle when trying to account for how terms are related.
Terms or their taxonomic descendants may be directly
related to each other in the ontology via a single path.
Alternatively they may be indirectly related to each other
via a common ancestor in which case we consider the two
paths from the common ancestor to each term. A path
may be homogeneous in that it consists of relations of
only one type i.e. all relations are either only is_a or only
part_of. Such paths are denoted by IS and PART respec-
tively. A path that is inhomogeneous, consisting of both
is_a and part_of relations, is denoted by MIXED.

Directly Related Cases
There are three cases to handle when there exists a single
path between terms in the ontology: IS, PART and MIXED

paths. The first case is the generalized case of taxonomic
relations where Ti IS Tj. For two terms Ti and Tj, where Tj is
the parent term and Ti is a descendant, and a set of n inter-
mediate terms {Tn} such that:

it can be inferred that Ti  Tj. Where terms are related by a
PART path a similar argument can be inferred for how two
terms are ordered.

For the MIXED case there exists a mixture of is_a and
part_of relations. The nature of the MIXED relationship is
ultimately determined by the part_of relations. For exam-
ple, if Ti MIXED Tj then this can be interpreted as Ti part_of
Tj. There may be several is_a relations traversed along a
MIXED path from Tj to Ti before a part_of relation is
encountered. This means that Ti can only be part_of a sub-
set of the instances of Tj. This subset is identified by the set
of instances associated with the term (labeled Tk in table
1) which is the parent term of the first part_of relation
encountered along a MIXED path from Tj to Ti. This results
in the partial order:

Ti  Tk  Tj

where Ti is the descendant of Tj, Ti is the parent and Tk
denotes the first term before a part_of relation is encoun-
tered while traversing the MIXED path in the ontology
from Tj to Ti. This form of reasoning can be further
extended along the rest of the MIXED path to produce a
more detailed partial order. However if the ultimate goal
is to only determine the partial order between Ti and Tj
then such induction of this reasoning is unnecessary.

Indirectly Related Homogeneous Cases
There are three cases to handle where both the paths to the
common ancestor between terms are homogeneous: IS –

T T T T T Ti
n n

n
n

n
n

j⊆ ⊆ ⊆ ⊆ ⊆−1 2 1

Table 1: Partial Order Constraints

Situation Ordering

Directly* Ti IS Tj (Ti)  (Tj)
Ti PART Tj (Ti)  (Tj)
Ti MIXED Tj via Tk (Ti)  (Tk)  (Tj)

Indirectly Via Tlca * Ti IS Tlca, Tj IS Tlca (Ti), (Tj)  (Tlca)
Ti PART Tlca, Tj IS Tlca (Ti)  (Tj)  (Tlca)
Ti PART Tlca, Tj PART Tlca (Ti), (Tj)  (Tlca)
Ti MIXED Tlca via Tk, Tj IS Tlca ( (Ti)  (Tk)), (Tj)  (Tlca)
Ti MIXED Tlca via Tk, Tj PART Tlca (Ti), (Tj)  (Tk)  (Tlca)
Ti MIXED Tlca via Tk, Tj MIXED Tlca via Tm ( (Ti)  (Tk)), ( (Tj)  (Tm))  (Tlca)

Overview of general forms of relation based ordering for directly and indirectly related terms. Terms are indirectly related via a common ancestor 
term Tlca. Instances of terms Ti and Tj may be part of the common ancestor Tlca via terms Tk and Tm respectively.  denotes a function that measures 
the number of instances (our source of descriptiveness) of terms. These orderings assume complete knowledge of all instances associated with a 
term.
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IS, PART – PART and IS – PART (or PART – IS). In the first
case, where Ti IS Tlca and Tj IS Tlca, since both terms Ti and
Tj are taxonomic descendants of a lowest common ances-
tor Tlca then it should be expected that the number of
instances associated with Ti and Tj are less than the
number of instances associated with Tlca. This results in the
partial order

Ti, Tj  Tlca

An annotation consisting of two such related terms can be
interpreted as the set of instances that are associated with both
Ti and Tj. A similar form of reasoning can be applied to the
PART – PART case. The partial order for the final case IS –
PART (or PART – IS) can be derived in a similar fashion to
the inhomogeneous direct MIXED case. If Ti IS Tlca and Tj
PART Tlca then it can be inferred that Tj PART Ti. If an anno-
tation consists of two such terms then it should be inter-
preted as the set of instances of Tj. As a partial order
constraint this can be modeled as

Tj  Ti  Tlca

Indirectly Related Inhomogeneous Cases
Indirectly related inhomogeneous cases occur when terms
are related by a common ancestor in the ontology and one
or both of the paths connecting the common ancestor
with each term consists of an inhomogeneous set of rela-
tion types. There are three such cases to account for: IS –
MIXED (or MIXED – IS), PART – MIXED (or MIXED –
PART) and MIXED – MIXED.

The partial order for the first case IS – MIXED (or MIXED
– IS) can be handled by considering each path separately.
The partial order for the Ti IS Tlca path is Ti  Tlca. The par-
tial order for the MIXED path is Tj  Tk  Tlca which is
derived in the same way as the directly related MIXED
case. Combining the two partial orders results in

(Tj  Tk), Ti  Tlca

If an annotation consists of two such terms then it should
be interpreted as the set of instances of Tj that are part of
instances that are of type Ti and Tk.

The PART – MIXED (or MIXED – PART) case requires
slightly more reasoning about to construct its associated
partial order. If Ti PART Tlca and Tj MIXED Tlca then it can
be inferred that both Ti and Tj are part of Tlca. Because Tj is
only part of a subset of the instances associated with Tlca,
the instances associated with Tk, then Ti can only be part
of the set of instances associated with Tk also. This results
in the partial order

Tj, Ti  Tk  Tlca

An annotation consisting of two such related terms
should be interpreted as the set of instances of Ti and Tj that
are part of the same instances of Tk.

The final case MIXED – MIXED occurs when paths from
both terms to the common ancestor consist of a mixture
of relation types. The partial order for such a case can be
constructed by looking at each path separately. If Ti
MIXED Tlca then the partial ordering is Ti  Tk  Tlca. Simi-
larly for Tj MIXED Tlca we get Tj  Tm  Tlca. Combining the
two partial orders results in

(Ti  Tk), (Tj  Tm)  Tlca

If an annotation consists of two such terms then it should
be interpreted as the set of instances of Tiand Tjthat are part
of the same instances of Tkand Tm.

The SSA Algorithm
The SSA algorithm is based on the nine cases of term relat-
edness described above. The SSA algorithm derives the set
of instances that can be associated with an annotation
from the set of instances associated with that annotation's
constituent terms. There are two aspects to the algorithm:
identifying which terms are the contextual, redundant
instances and which terms' instances can be associated
with the annotation. For example, a contextual instance
may be 'mitochondrial nucleoid' that provides the context
for the set of instances of 'chromosome'. Throughout we
denote the set of contextual terms by exclTerms and the set
of terms whose instances can be associated with the anno-
tation as inclTerms. numInst(Ti) denotes the number of
instances associated with Ti.

The above partial order constraints were constructed
under the ideal assumptions assumed by the partial order-
ings in taxonomies and partonomies. In reality there only
ever exists an incomplete set of instances associated with
terms and some adjustment of the number of instances is
required if the partial order constraints are to be satisfied.
Terms that are taxonomically related are guaranteed to
satisfy the taxonomic constraints. However, terms that are
partonomically related may not satisfy their associated
partial order constraints. In these cases some adjustment
of the number of instances associated with a term is nec-
essary. For example, if Ti PART Tj and there are no
instances associated with Tj in the corpus while there are a
number of instances associated with Ti then in order to
satisfy the PART constraint the number of instances of Tj
is set equal to the number of instances associated with Ti.

The algorithm consists of the following steps:

• For each distinct ordered pair (Ti, Tj) of terms in annota-
tions G1 and G2 respectively
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- Identify the case that corresponds to how Ti is related
to Tj

* Terms are assigned to inclTerms or exclTerms
depending on case

* The number of instances associated with a term
may be adjusted if the case allows

• Remove any terms from inclTerms also found in excl-
Terms

• Return the sets inclTerms and exclTerms

where an ordered pair of terms (Ti, Tj) means that (Ti, Tj)
 (Tj, Ti). In the following sections we identify how each

case assigns terms to inclTerms and exclTerms and adjusts
the number of instances associated with each term used to
compare annotations.

Direct Cases
The IS constraint where one term in an annotation is a
special case of another term can be implemented as fol-
lows:

1 if (Ti IS Tj)

inclTerms  inclTerms  Ti

exclTerms  exclTerms  Tj

In this situation the term Tj is viewed as being the com-
mon taxonomic ancestor of both terms.

The PART constraint where one term is a part of another
term can be implemented as:

2 if (Ti PART Tj)

inclTerms  inclTerms  Ti

exclTerms  exclTerms  Tj

if (numInst (Tj) < numInst(Ti))

numInst(Tj) = numInst(Ti)

In this situation the term Tj is viewed as providing the con-
text that instances of Ti are part of.

The case is similar for Ti MIXED Tj. In these cases we are
relating terms that belong to two different lines of taxo-
nomic inheritance where terms have a possibly incom-
plete set of associated instances. In order to ensure that the
partial order constraint associated with this case is imple-

mented correctly if Tj has fewer instances associated with
it than Ti then we adjust the number of instances associ-
ated with Tj to be equal to the number of instances associ-
ated with Ti.

The MIXED constraint where Ti is a part of another term Tj
via an intermediate term Tk can be implemented similarly
to the PART case:

3 if (Ti MIXED Tj)

inclTerms  inclTerms  Ti

exclTerms  exclTerms  Tj

exclTerms  exclTerms  Tk

if (numInst(Tk) < numInst(Ti))

numInst(Tk) = numInst(Ti)

if (numInst(Tj) < numInst(Ti))

numInst(Tj) = numInst(Ti)

In this situation the term Tk is viewed as providing the
context that instances of Ti are part of.

Indirect Homogeneous Cases
In the indirect homogeneous cases compared terms Ti and
Tj are indirectly related via a common ancestor Tlca along
homogeneous paths. The first such case is where Ti IS Tlca
and Tj IS Tlca. In this situation the number of instances
associated with Tlca provides a measure of similarity
between Ti and Tj:

4 if (Ti IS Tlca &Tj IS Tlca)

numInst(Ti), numInst(Tj)  min(numInst(Ti),
numInst(Tj))

inclTerms  inclTerms  Tj  Ti

exclTerms  exclTerms  Tlca

In the case where Ti PART Tlca and Tj PART TlcaTlca provides
the context in which instances of Ti and Tj are embedded.

5 if (Ti PART Tlca &Tj PART Tlca)

numInst(Ti), numInst(Tj)  min(numInst(Ti) 
numInst(Tj))

inclTerms  inclTerms  Tj  Ti
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exclTerms  exclTerms  Tlca

if (numInst(Tlca) < numInst(Ti))

numInst(Tlca) = numInst(Ti)

Since terms from two different lines of taxonomic inherit-
ance are being compared and the set of instances associ-
ated with each term is incomplete an adjustment of the
number of instances associated with each term is neces-
sary.

The final homogeneous indirect case occurs when Ti PART
Tlca and Tj IS Tlca. This is equivalent to Ti PART Tj since if Ti
is a part of Tlca and Tj is a kind of Tlca then Ti is a part of Tj.

6 else if (Ti PART Tlca &Tj IS Tlca)

inclTerms  inclTerms  Ti

exclTerms  exclTerms  Tj

exclTerms  exclTerms  Tlca

if (numInst(Tj) < numInst(Ti))

numInst(Tj) = numInst(Ti)

if (numInst(Tlca) < numInst(Ti))

numInst(Tlca) = numInst(Ti)

As with other cases the number of instances associated
with each term are adjusted to ensure that the partial order
constraint associated with the case is satisfied.

Indirect Inhomogeneous Cases
In these cases one or both paths from Tlca to terms Ti and
Tj contain inhomogeneous types of relations. Throughout
this section the term Tk is a term in the ontology such that
Tm MIXED Tk and Tk IS Tn if Tn is an ancestor of Tm in the
ontology.

The first such case occurs where for two indirectly related
terms being compared, Ti and Tj, there exists an MIXED
path from Ti to Tlca via Tk and an IS path from Tj to Tlca.

7 if (Ti MIXED Tlca &Tj IS Tlca)

inclTerms  inclTerms  Ti

exclTerms  exclTerms  Tlca

if (numInst(Tk) < numInst(Ti))

numInst(Tk) = numInst(Ti)

if (numInst(Tlca) < numInst(Tk))

numInst(Tlca) = numInst(Tk)

Since the relationship between Ti and Tj cannot be refined
further than their relationship via Tlca only Tlca is assigned
to exclTerms.

The second case occurs when Ti MIXED Tlca via Tk and Tj
PART Tlca. Since Tj is part of Tlca and Ti is part of Tk which is
a kind of Tlca then Tj is a part of Tk.

8 if (Ti MIXED Tlca &Tj PART Tlca)

inclTerms  inclTerms  Ti

inclTerms  inclTerms  Tj

exclTerms  exclTerms  Tk

exclTerms  exclTerms  Tlca

if (numInst(Tk) < numInst(Ti))

numInst(Tk) = numInst(Ti)

if (numInst(Tk) < numInst(Tj))

numInst(Tk) = numInst(Tj)

if (numInst(Tlca) < numInst(Tk))

numInst(Tlca) = numInst(Tk)

The final case occurs when both terms Ti and Tj are MIXED
related to Tlca via Tk and Tm respectively. What is common
between both terms Ti and Tj is that they are both part of
Tlca. The number of instances associated with each term is
adjusted to satisfy the partial order constraints associated
with this case.

9 if (Ti MIXED Tlca &Tj MIXED Tlca)

inclTerms  inclTerms  Ti

inclTerms  inclTerms  Tj

exclTerms  exclTerms  Tlca

if (numInst(Tk) < numInst(Ti))

numInst(Tk) = numInst(Ti)
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if (numInst(Tm) < numInst(Tj))

numInst(Tm) = numInst(Tj)

if (numInst(Tlca) < numInst(Tk))

numInst(Tlca) = numInst(Tk)

if (numInst(Tlca) < numInst(Tm))

numInst(Tlca) = numInst(Tm)

After all terms have been compared with each other it is
necessary to remove any terms from inclTerms that are
found in exclTerms. This can occur when one comparison
assigns a term to inclTerms while another comparison
identifies the term as belonging to the excluded set. After
all terms are compared each term in inclTerms should have
the same number of instances associated with it. The
number of instances that are associated with an annota-
tion G is equal to the minimum number of instances that
can be associated with any of the terms in inclTerms  G.

Finding the Nearest Common Annotation
Just as in semantic similarity of terms, where there is a
common ancestor between two terms, there exists a near-
est common annotation between two annotations. The
concept of a nearest common annotation allows the
extension of information based semantic similarity meas-
ures of terms, such as Resnik's and Lin's measures, to
information based measures of semantic similarity of
annotations.

We define the nearest common annotation (NCA) between
two annotations G1 and G2 to be the annotation contain-
ing terms related to both annotations. The NCA should
have the minimum possible number of instances associ-
ated with it such that either G1 or G2 can be derived from
it. The set of terms exclTerms which results from applying
SSA to two annotations G1 and G2 will return the set of
terms associated with the NCA.

Measuring Similarity
By introducing the notion of nearest common annotation
we can naturally extend Resnik's measure to measuring
similarity of annotation. The LCA between two terms is
replaced with the NCA of two annotations G1 and G2.
Likewise, instead of applying ICCorpus (eqn. 1) to instances
associated with a term we apply ICCorpus to instances of an
annotation. Thus the extension of Resnik's measure from
terms to annotations G1 and G2, SSAResnik, becomes:

where maxNumInst is the number of distinct instances in
the corpus.

Lin's measure may be extended as follows:

In this case the SSA algorithm is used to find the non
redundant terms that can be associated with an annota-
tion.

Example
We compare the similarity of two gene product's annota-
tions that returns a high measure of similarity when com-
pared using our measure SSAResnik. Two gene products,
AAH1 and FUR1 whose annotations (listed in table 2)
were taken from the SGD database [27] were compared
producing a similarity value of 5.678. The number of
instances associated with each term were obtained from
the GOA [28]s. cerevisiae table of GO assignments.

FUR1's annotation consisted of six terms: {GO:0004845,
GO:0005622, GO:0008655, GO:0009116, GO:0016740,
GO:0016757}. Each term's description is found in table
2. Likewise, AAH1's annotation consists of twelve terms:
{GO:0000034, GO:0004000, GO:0005634,
GO:0005737, GO:0006146, GO:0009117, GO:0009168,
GO:0016787, GO:0019239, GO:0042254, GO:0043101,
GO:0043103}. The NCA is constructed by applying the
SSA algorithm to identify the set of contextual terms com-
mon to both annotations. Terms such as the root term 'all'
are immediately added to exclTerms. The term 'cellular
component' (GO:0005575) is added to exclTerms since
another term 'cell part' is is_a related to it. The term 'nucle-
obase metabolic process' (GO:0009112) is a more specific
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type of 'nucloebase, nucleoside and nucleotide process'
(GO:0055086) and the terms are added to inclTerms and
exclTerms respectively. Similar assignments occur for
'nucleobase metabolic process' (GO:0009112)/'cellular
metabolic process' (GO:0044237), 'nucleobase metabolic
process' (GO:0009112)/'cellular process' (GO:0009987)
as well as other terms.

The SSA algorithm return nine contextual terms, {'all'
(all), 'cellular process' (GO:0009987), 'cellular metabolic
process' (GO:0044237), 'nucleobase metabolic process'
(GO:0009112), 'nucleobase, nucleoside, nucleotide and
nucleic acid metabolic process' (GO:0006139), 'nucleo-
base, nucleoside and nucleotide metabolic process'
(GO:0055086), 'cell part' (GO:0044464), 'intracellular'
(GO:0005622), 'catalytic activity' (GO:0003824), 'meta-
bolic compound salvage' (GO:0043094)}. The resulting
annotation contains terms from all three ontologies in the
GO. There are 19 instances associated with the annota-
tion. The number of instances is determined by the most
specific term: 'metabolic compound salvage'
(GO:0043094). The total number of instances in the cor-

pus is 5554. . Since the

highest value that SSAResnik could return for the chosen cor-

pus is ~8.622, taking the natural log of , 5.678 cor-

responds to high degree of similarity.

Results
To validate our approach the discriminatory power of our
method to identify clusters of related gene products was
compared against Wang's measure of annotation similar-
ity that also exploits the differences between types of rela-
tions. The average similarity of gene products found in the
same biochemical pathway in the SGD database was com-
pared against the average similarity of the same gene
products compared with gene products found in other
pathways. A large difference between these two values
indicates the effectiveness of a similarity measure in dis-
covering new pathways in a set of gene products. Average
similarity of annotations inside and outside pathways was
measured under four conditions: all terms; cellular com-
ponent terms only; biological process terms only; and
molecular function terms only.

A better test would be to take the average similarity of a set
of gene products found in the same pathway and find the
average or max of the average similarities of all other sim-
ilarly sized sets of gene products. Of course this is intrac-
table since the computational complexity of such a test is

O(n!) since there are  ways of creating a set of size n

from a set of N elements.

Figure 3 show the results of a comparison of SSAResnik with
Wang's method and M axResnik on measuring the average
annotation similarity, using all terms, of gene products
inside and outside a pathway [data for figures 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 is found
in Additional file 1]. The first 35 pathways are insuffi-

SSAResnick = − ( ) ≈log .19
5554
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1
5554
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n
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Table 2: Example Annotations and Their Descriptions

Gene Term Description

AAH1 GO:0000034 adenine deaminase activity
GO:0004000 adenosine deaminase activity
GO:0005634 nucleus
GO:0005737 cytoplasm
GO:0006146 adenine catabolic process
GO:0009117 nucleotide metabolic process
GO:0009168 purine ribonucleoside monophosphate biosynthetic process
GO:0016787 hydrolase activity
GO:0019239 deaminase activity
GO:0042254 ribosome biogenesis and assembly
GO:0043101 purine salvage
GO:0043103 hypoxanthine salvage

FUR1 GO:0004845 uracil phosphoribosyltransferase activity
GO:0005622 intracellular
GO:0008655 pyrimidine salvage
GO:0009116 nucleoside metabolic process
GO:0016740 transferase activity
GO:0016757 transferase activity, transferring glycosyl groups
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ciently annotated to produce meaningful results. Similar-
ity values for SSAResnik and MaxResnik were normalized to
allow for direct comparison between similarity values. All
measures behave similarly, the similarity values returned
by Wang's method tends to increase as values returned by
SSAResnik increase. All measures tend to settle to an average
similarity value when genes inside and outside a pathway
are compared. Wang's method returns a higher value on
average with values ranging between 0.5 and 0.6 as inter-
nal gene similarity increases. SSAResnik and MaxResnik returns
values between 0.3 and 0.4 for the average similarity value
of genes inside a pathway with genes outside a pathway as
similarity of genes within a pathway increases. If pathways
are identified by the difference between the average simi-
larity of gene products inside and outside a cluster then
SSAResnik and MaxResnik have greater discriminatory power.
SSAResnik and MaxResnik behave identically for most path-
ways when all terms are considered.

As shown in figures 4, 5, 6, when only terms from the cel-
lular component sub-ontology are used the difference
between SSAResnik and MaxResnik becomes clear.
MaxResnik returns a very high average similarity value
between terms inside and outside a pathway. This may be
an artifact of the low number of instances associated with
cellular component terms. However when SSA is applied
the average similarity values between annotations inside
and outside pathways remains consistently low. SSARes-
nik returns a comparatively high average similarity value
for annotations inside pathways for approximately half
the cases to which it can reasonably be applied. Wang's
method behaves similarly to MaxResnik in this situation.

As shown in figures 7, 8, 9, if only biological process terms
are used further dissimilarity between MaxResnik and SSARes-

nik can be observed. The average similarity values of anno-
tations inside a pathway with annotations outside a
pathway is much higher for MaxResnik than for SSAResnik.
Wang's method and SSAResnik behave similarly. Similarity

Normalized SSAResnik vs Wang's Method vs Normalized MaxResnikFigure 3
Normalized SSAResnik vs Wang's Method vs Normalized MaxResnik. Values shown correspond to the average annotation 
similarity values between gene products with other gene products in the same pathway (taken from the SGD biochemical path-
ways database) and between gene products in a pathway with other gene products not found in the pathway.
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values of annotations inside a pathway remain consist-
ently higher than when the same annotations are com-
pared with annotations outside the pathway for all
methods.

The source of the similarity between SSAResnik and MaxResnik
can be identified when only molecular function terms are
used, as shown in figures 10 and 11. In this case both
methods behave exactly the same since there are no part
of relations to exploit when comparing terms. Wang's
method, shown in figure 12, returns a consistently high
average similarity value for annotations inside a pathway
compared with annotations outside a pathway.

Further discriminatory power can be achieved by consid-
ering the standard deviation of similarity values inside
and outside a pathway. A set of gene products paired with
other gene products in a pathway tend to have a high
standard deviation of similarity values over all pairs
mainly due to the small number of pairs being compared.
Conversely, pairing gene products inside a pathway with
those found outside the pathway should produce a set of

similarity values with a lower standard deviation since
annotations are expected to be dissimilar and values come
from a larger set.

Figures 13, 14, 15 shows the standard deviation of simi-
larity values of annotations consisting of cellular compo-
nent terms inside pathways. MaxResnik returns a low
internal standard deviation while reporting a consistently
high standard deviation of similarity values when annota-
tions inside a pathway are compared with annotations
outside a pathway. The standard deviation of annotation
similarity values between different pathways returned by
both SSAResnik and Wang's method are both consistently
low. The standard deviation of all methods behave simi-
larly as average similarity of annotations, consisting only
of biological process terms, within pathways increase, as
shown in figures 16, 17, 18. The same is also true of anno-
tations consisting of molecular function terms, as shown
in figures 19, 20, 21.

Average Pathway Similarity Values of Annotations Consisting only of Cellular Component Terms Using SSAResnikFigure 4
Average Pathway Similarity Values of Annotations Consisting only of Cellular Component Terms Using SSARes-

nik. Average of SSAResnik similarity values of gene products inside and outside a pathway.
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Average Pathway Similarity Values of Annotations Consisting only of Cellular Component Terms Using MaxResnikFigure 5
Average Pathway Similarity Values of Annotations Consisting only of Cellular Component Terms Using 
MaxResnik. Average of MaxResnik similarity values of gene products inside and outside a pathway.
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Average Pathway Similarity Values of Annotations Consisting only of Cellular Component Terms Using Wang's MethodFigure 6
Average Pathway Similarity Values of Annotations Consisting only of Cellular Component Terms Using 
Wang's Method. Average of Wang's measure of similarity of gene products inside and outside a pathway.
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Average Pathway Similarity Values of Annotations Consisting only of Biological Process Terms Using SSAResnikFigure 7
Average Pathway Similarity Values of Annotations Consisting only of Biological Process Terms Using SSAResnik. 
Average of SSAResnik similarity values of gene products inside and outside a pathway.
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Average Pathway Similarity Values of Annotations Consisting only of Biological Process Terms Using MaxResnikFigure 8
Average Pathway Similarity Values of Annotations Consisting only of Biological Process Terms Using MaxRes-

nik. Average of MaxResnik similarity values of gene products inside and outside a pathway.
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Average Pathway Similarity Values of Annotations Consisting only of Biological Process Terms Using Wang's MethodFigure 9
Average Pathway Similarity Values of Annotations Consisting only of Biological Process Terms Using Wang's 
Method. Average of Wang's measure of similarity of gene products inside and outside a pathway.
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Average Pathway Similarity Values of Annotations Consisting only of Molecular Function Terms Using SSAResnikFigure 10
Average Pathway Similarity Values of Annotations Consisting only of Molecular Function Terms Using SSARes-

nik. Average of SSAResnik similarity values of gene products inside and outside a pathway.
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Average Pathway Similarity Values of Annotations Consisting only of Molecular Function Terms Using MaxResnikFigure 11
Average Pathway Similarity Values of Annotations Consisting only of Molecular Function Terms Using MaxRes-

nik. Average of MaxResnik similarity values of gene products inside and outside a pathway.
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Average Pathway Similarity Values of Annotations Consisting only of Molecular Function Terms Using Wang's MethodFigure 12
Average Pathway Similarity Values of Annotations Consisting only of Molecular Function Terms Using Wang's 
Method. Average of Wang's measure of similarity of gene products inside and outside a pathway.
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Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Cellular Component Terms Using SSAResnikFigure 13
Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Cellular Component 
Terms Using SSAResnik. Standard deviation of SSAResnik similarity values of gene products inside and outside a pathway.
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Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Cellular Component Terms Using MaxResnikFigure 14
Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Cellular Component 
Terms Using MaxResnik. Standard deviation of MaxResnik similarity values of gene products inside and outside a pathway.
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Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Cellular Component Terms Using Wang's MethodFigure 15
Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Cellular Component 
Terms Using Wang's Method. Standard deviation of values of Wang's measure of similarity of gene products inside and 
outside a pathway.
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Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Biological Process Terms Using SSAResnikFigure 16
Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Biological Process Terms 
Using SSAResnik. Standard deviation of SSAResnik similarity values of gene products inside and outside a pathway.
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Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Biological Process Terms Using MaxResnikFigure 17
Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Biological Process Terms 
Using MaxResnik. Standard deviation of MaxResnik similarity values of gene products inside and outside a pathway.
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Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Biological Process Terms Using Wang's MethodFigure 18
Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Biological Process Terms 
Using Wang's Method. Standard deviation of values of Wang's measure of similarity of gene products inside and outside a 
pathway.

�����	
�������8��
�

����5�	
�
���

���������5����
����
7������7��������������

"

"#$

"#%

"#&

"#'

(

(#$

( , (+ (* $) +( +, %+ %* )) &( &, ,+ ,* ') *( *, ("+ ("* (() ($( ($, (++ (+* (%) ()( (),

4������
������
4����
��
������
��������4������
������



BMC Bioinformatics 2008, 9:468 http://www.biomedcentral.com/1471-2105/9/468

Page 24 of 26
(page number not for citation purposes)

Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Molecular Function Terms Using SSAResnikFigure 19
Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Molecular Function Terms 
Using SSAResnik. Standard deviation of SSAResnik similarity values of gene products inside and outside a pathway.
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Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Molecular Function Terms Using MaxResnikFigure 20
Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Molecular Function Terms 
Using MaxResnik. Standard deviation of MaxResnik similarity values of gene products inside and outside a pathway.
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Discussion and conclusion
The SSA algorithm provides the basis of a framework for
extending instance based measures of term similarity to
annotations. The algorithm's construction is based on the
set of cases for how terms are related to each other when
the ontology consists only of is_a and part_of relations.
Due to the incomplete nature of the set of instances asso-
ciated with a term it is necessary to adjust the number of
instances associated with a term in order to satisfy the par-
tial order constraints of each case fully. As the number of
annotations of gene products increase and ontological
terms are applied more consistently it may be possible to
satisfy the constraints without such adjustment. Alterna-
tively, the partial order constraints can be used to develop
a similarity method which is less dependent on the set of
instances associated with terms.

When terms from all three sub-ontologies (CC, BP and
MF) are used similarity of annotations between MaxResnik
and SSAResnik are equivalent on proteins found in the SGD
database. This is due to the high degree of specificity of
molecular function terms, which are not related parto-
nomically, which causes the two measures to return the
same values. When only cellular component and biologi-
cal process terms are used, based on the experimental evi-

dence, SSAResnik becomes a better identifier of proteins
belonging to pathways. SSAResnik may identify new gene
products that belong to pathways but have a different
molecular function to those proteins already identified as
belonging to the pathway. Molecular function terms only
play a small role in identifying new pathway proteins
since proteins tend to have different molecular functions
inside pathways.

By finding the set of instances that can be associated with
an annotation it is possible to preserve, at the annotation
level, the properties of instance based methods used to
measure the similarity of terms. For two given annota-
tions, the nearest common annotation (NCA) is a mini-
mal set of terms such that either annotation could be
derived from it. The SSA algorithm provides a method for
finding the set of terms associated with the NCA.

By combining the SSA algorithm with Resnik's measure
and the concept of nearest common annotation we have
developed a measure that provides good discriminatory
power to identify possible pathways and other functional
groups from gene product annotations. More generally,
the set of cases and their associated constraints further

Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Molecular Function Terms Using Wang's MethodFigure 21
Standard Deviation of Pathway Similarity Values of Annotations Consisting only of Molecular Function Terms 
Using Wang's Method. Standard deviation of values of Wang's measure of similarity of gene products inside and outside a 
pathway.

�����	
�������8��
�

����5�	
�
���

���������5�������7����� ��7

�������������

"

"#$

"#%

"#&

"#'

(

(#$

( , (+ (* $) +( +, %+ %* )) &( &, ,+ ,* ') *( *, ("+ ("* (() ($( ($, (++ (+* (%) ()( (),

4������
����	�
4����
��
����	�
��������4������
����	�



Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2008, 9:468 http://www.biomedcentral.com/1471-2105/9/468

Page 26 of 26
(page number not for citation purposes)

extend the set of principles that a reasonable measure of
annotation similarity should be built on.
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