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Abstract

Background: Despite the widespread usage of DNA microarrays, questions remain about how
best to interpret the wealth of gene-by-gene transcriptional levels that they measure. Recently,
methods have been proposed which use biologically defined sets of genes in interpretation, instead
of examining results gene-by-gene. Despite a serious limitation, a method based on Fisher's exact
test remains one of the few plausible options for gene set analysis when an experiment has few
replicates, as is typically the case for prokaryotes.

Results: We extend five methods of gene set analysis from use on experiments with multiple
replicates, for use on experiments with few replicates. We then use simulated and real data to
compare these methods with each other and with the Fisher's exact test (FET) method. As a result
of the simulation we find that a method named MAXMEAN-NR, maintains the nominal rate of false
positive findings (type | error rate) while offering good statistical power and robustness to a variety
of gene set distributions for set sizes of at least 10. Other methods (ABSSUM-NR or SUM-NR) are
shown to be powerful for set sizes less than 10. Analysis of three sets of experimental data shows
similar results. Furthermore, the MAXMEAN-NR method is shown to be able to detect biologically
relevant sets as significant, when other methods (including FET) cannot. We also find that the
popular GSEA-NR method performs poorly when compared to MAXMEAN-NR.

Conclusion: MAXMEAN-NR is a method of gene set analysis for experiments with few replicates,
as is common for prokaryotes. Results of simulation and real data analysis suggest that the
MAXMEAN-NR method offers increased robustness and biological relevance of findings as
compared to FET and other methods, while maintaining the nominal type | error rate.
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Background

DNA microarrays measuring gene expression continue to
grow in popularity, furthering our understanding of the
genetic operation of organisms spanning humans to
prokaryotes. Questions remain, however, about how best
to interpret the wealth of gene-by-gene transcriptional lev-
els measured in microarrays. Over the past few years,
many statistical methods of analyzing gene expression
data in the context of gene sets have been proposed to
simplify and increase the impartiality of gene expression
data analysis. Gene set methods are designed to aid the
investigator in making biological sense of gene expression
data by viewing genes under study in the context of a priori
identified, biologically relevant, gene sets. Gene sets are
groups of genes with some common characteristic (e.g.
function, physical location in the genome, etc.). The most
common methods of gene set analysis either use Fisher's
Exact Test (FET) [1] or the newer Gene Set Enrichment
Analysis (GSEA) method [2,3]. While FET and GSEA are
the most popular, many other methods have also been
proposed, see for example [4-18], and/or reviews of meth-
ods provided in [7,19-21].

Fisher's Exact Test was among the first methods proposed
which used gene sets in statistical analysis of microarray
data. In order to use FET, the genes in the experiment must
first be dichotomized by classifying each gene as "up/
down-regulated" (differentially expressed) or "not regu-
lated." One method of dichotomization identifies genes
with absolute values of log-ratios of expression scores
above a certain cutoff as "up/down-regulated" and those
below the cutoff as not regulated; see, for example,
Schwartz et al. [22]. Once the genes have been dichot-
omized, FET compares the proportion of up/down-regu-
lated genes in the set of interest to the proportion of up/
down-regulated genes not in the set of interest. FET then
uses the hyper-geometric distribution to compute a p-
value based on the difference in the two proportions. As
recently noted by Allison et al. [19] and validated through
simulation by Ben-Shaul, et al. [17], the dichotomization
necessary to use FET yields a loss of information which
translates directly into a loss of statistical power, making
it more difficult to identify real differences in regulation as
statistically significant. Despite this loss of power Fisher's
exact test is still often used in gene set analyses [22,23].

Other methods, like GSEA [2,3], have attempted to
improve on FET. These newer methods do not dichot-
omize, instead they use the full range of quantitative gene
expression data available (i.e. the entire sorted list of log-
ratios of gene expression values). We will call these meth-
ods non-cutoff based methods. In most cases, the newer
gene-set analysis methods that are alternatives to FET have
been developed for human data. As such they assume that
there are multiple replicates (one microarray/chip for
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each person in an experiment) of the data in order to con-
duct permutation based inference. For example, in an
experiment comparing humans with a disease phenotype
to those without, the statistic of interest (e.g. GSEA) is
computed. Then, subjects are randomly assigned a pheno-
type status many, many times and each time the statistic
of interest (e.g. GSEA) is computed. The statistic com-
puted using the true phenotypes is then compared to the
distribution of statistics based on random phenotype
assignment in order to estimate the p-value (the measure
of statistical significance of the strength of association
between phenotype and regulation of the gene set). This
type of permutation-based inference has been termed sub-
ject-sampling [20].

While there are many experimental and analytic similari-
ties in DNA microarray experiments across organisms,
prokaryotic organisms require some unique experimental
considerations [24]. In particular, DNA microarray exper-
iments on prokaryotes typically have many fewer microar-
rays (chips) per experimental comparison. For this reason,
subject-sampling (permuting across the phenotype) can
be impossible, since a moderate number of microarrays
are necessary in order to have a sufficient number of per-
mutations to correctly estimate small p-values. So, despite
recent criticisms of FET, many of the non-cutoff based
methods are not directly applicable to prokaryotic experi-
ments.

There are two web-based software tools focused on
prokaryotes, available for conducting gene set analysis.
The FIVA tool [25] uses FET and a variant of FET proposed
by Breitling et al. [16] which finds the optimal cutoff for
"significant” vs. "non-significant" genes for each gene set.
The JProGo tool [26] implements FET as well as three
other non-cutoff based methods that compare the associ-
ation measures (e.g. log-ratios) of genes in the gene set of
interest with the association measures of the genes outside
of the gene set of interest. The three non-cutoff based
methods are the t-test, the Kolmogorov-Smirnov [K-S]
test, and the unpaired Wilcoxon (Mann-Whitney U) test.

The non-cutoff based methods implemented by JProGO,
however, are less than optimal. Specifically, the t-test
requires a normality assumption about the microarray
data, and is most powerful when testing for a difference in
mean log-ratios between genes in and out of the set,
unlike other methods which test for changes in standard
deviation as well. The Wilcoxon test has received little
consideration in the literature for use in gene set analysis
and so it is unclear how valid and useful this approach is.
The K-S test was considered by Efron and Tibshirani [8]
who proposed an alternative measure, the MAXMEAN sta-
tistic. When comparing K-S to MAXMEAN, MAXMEAN
performed better than K-S in both simulation and real
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data analysis. Efron and Tibshirani also compared
MAXMEAN to a weighted K-S test (the aforementioned
GSEA statistic) with a similar result.

After demonstrating that MAXMEAN is more powerful
than K-S/GSEA, Efron and Tibshirani [8] compare
MAXMEAN to two other statistics (we call these SUM and
ABSSUM in this work). Efron and Tibshirani argue that
neither SUM nor ABSSUM is robust with regard to
changes in both the standard deviation and the mean,
while MAXMEAN is powerful to detect both types of
changes. The arguments of Efron and Tibshirani are made
in the context of experiments on which multiple replicates
are available and, thus, subject-sampling is possible.
These methods [GSEA, ABSSUM, SUM, and MAXMEAN]
have not been evaluated in the context of microarray
experiments for which there are few, if any, replicates
available.

In this work we consider five popular non-cutoff based
gene-set analytic techniques originally proposed using
subject sampling, (permuting the phenotype and, thus,
requiring multiple chips) for use on prokaryotic microar-
ray experiments with few replicates. We first demonstrate
how these five methods can be implemented on experi-
ments where subject sampling is not possible. Then, we
conduct a simulation study comparing the five non-cutoff
based methods with each other and FET for their ability to
maintain nominal a (type I error rate; a measure of false
positives) while giving high statistical power (a measure
of true positives) relative to the other methods. We then
compare the non-cutoff based methods to each other and
FET on real microarray data sets obtained from experi-
ments on Salmonella enterica serovar Typhimurium (S.
typhimurium) and Escherichia coli K-12 (E. coli). Lastly, we
consider the biological significance of the findings in light
of the different methods used.

Results

The five non-cutoff based gene set analysis methods pre-
sented here are GSEA-NR (NR for non-replicated),
ABSSUM-NR, SUMSQ-NR, SUM-NR and MAXMEAN-NR.
These methods are compared to the traditional FET
method. The GSEA-NR procedure uses a weighted Kol-
mMogorov-Smirnov test statistic to compare the distribu-
tion of log-ratios of expression values for genes in the set
of interest to those for genes not in the set. The ABSSUM-
NR method uses the sum of the absolute values of the log-
ratios for genes in the set as the test statistic, the SUMSQ-
NR method uses the sum of the squared log-ratios for
genes in the set as the test statisticc and the SUM-NR
method uses the sum of the log-ratios as the test statistic.
Lastly, the MAXMEAN-NR method uses the maximum of
either (1) the average of the negative log-ratios times the
percentage of genes in the set that have negative log-ratios
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or (2) the average of the positive log-ratios times the per-
centage of genes in the set that have positive log-ratios. We
have modified the original versions of these methods to
compute a p-value by comparing the test statistic for the
gene set of interest to test statistics from random sets (in
our case 50,000 random sets) of the same size selected
from the experiment of interest (a method termed gene-
sampling [20]). FET is implemented with four different
cutoffs (0.5, 1, 2, and 3 on the absolute value of the log-
ratio scale) and p-values are computed based on a hyper-
geometric distribution. While we have implemented
GSEA-NR, SUMSQ-NR, SUM-NR, ABSSUM-NR and
MAXMEAN-NR using explicit gene-sampling, we note that
FET uses gene-sampling implicitly [see [20]].

Simulation Results

We conducted a simulation study to investigate the power
of the different gene set analysis methods. Simulated gene
sets, based on random log-ratios of gene expression val-
ues, were generated by random sampling from both nor-
mal distributions and from mixtures of normal
distributions. Modelling with normal distributions allows
us to consider gene sets that have relatively similar log-
ratios of expression values. Modelling with mixtures of
normal distributions is more flexible, and allows us to
consider gene sets that are composed of subsets of genes
that have similar log-ratios of expression values. Mixtures
of normal distributions can create many different shaped
distributions reflective of the many different types of log-
ratios of gene expression distributions for genes within a
gene set. For each of 2236 different combinations of
parameters (mean of the log-ratios of gene expression val-
ues, standard deviation of the log-ratios, gene set size and
whether or not the gene set was from a mixture of normal
distributions; more detail in Methods: Simulation study) we
simulated 2000 gene sets. For example, if the parameters
were mean = 1 and standard deviation = 0.5 for a gene set
size of 10, ten random values (to be treated as log-ratios)
were selected from a normal distribution with mean 1 and
standard deviation 0.5 to create a gene set. This same proc-
ess was then done 2000 times for each of the 2236 com-
binations of simulation parameters. Simulation settings
were selected to reflect gene set expression values from 18
experimental comparisons made on E. coli and S. typhimu-
rium. Thus, the results of the simulation can be general-
ized to other experiments to the extent that the 18
experimental comparisons selected are similar to other
experimental comparisons. We now describe the results of
these simulations.

Null hypothesis simulation

The null hypothesis simulation (data from gene sets with
mean log-ratios of expression at or close to zero and small
standard deviations) demonstrates that both GSEA-NR
and SUM-NR can give false positive results, while the
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other seven methods [FET 3, FET 2, FET 1, FET 1/2,
ABSSUM-NR, SUMSQ-NR and MAXMEAN-NR] correctly
maintain the type I error rate, though they may be overly
conservative. When the goal is a type I error rate of 0.05
(nominal a = 0.05), Table 1 shows that when the sample
size is at least 10 and the standard deviation is small, the
simulated type I error rate (empirical o) for GSEA-NR can
be very large (averaging between 0.29 and 0.45). GSEA-
NR also has an inflated type I error rate when the nominal
o is less than 0.05 (results not shown). The lack of control
of the type I error rate by all methods considered here is a
virtue of the explicit or implicit gene sampling model used
to assess significance. For a more detailed explanation see
[20].

Alternative hypothesis simulation

In the following sections we compare the five non-cutoff
based methods with each other, the different FET cutoffs
with each other, and then the best of the non-cutoff and
cutoff based methods with each other. All comparisons in
the upcoming sections are made in cases where at least
one of the methods being compared yielded power >
80%, but not all methods being compared have power of
100%, where power is the percent of time that sets are cor-
rectly identified as significantly regulated.

Comparing the five non-cutoff based methods

GSEA-NR

When the mean log-ratios of expression values is less than
or equal to 0.5, the standard deviation of log-ratios is
small, and the set size is large, GSEA-NR tends to have the
best power as compared to the other four methods. How-
ever, situations with small mean log-ratios (near 0), small
standard deviation and large set sizes are exactly when
GSEA-NR has an inflated type I error rate (see Simulation
Results: Null hypothesis simulation). Thus, while GSEA-NR is
sensitive at detecting small and consistent changes in large
gene sets, GSEA-NR appears to be overly sensitive and
thus is eliminated from further comparative analyses.
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SUMSQ-NR
SUMSQ-NR rarely (1% of the time) yields optimal power
when compared to ABSSUM-NR, SUM-NR and

MAXMEAN-NR. Further, in the few cases where SUMSQ-
NR is optimal, ABSSUM-NR often (more than 95% of the
time) yields power within 5% of SUMSQ-NR. Since
SUMSQ-NR compares poorly to ABSSUM-NR, SUM-NR
and MAXMEAN-NR we eliminate it from further consider-
ation.

ABSSUM-NR, SUM-NR, and MAXMEAN-NR

Of the remaining three quantitative methods, we find that
MAXMEAN-NR is the most robust to different distribu-
tions of log-ratios when gene set sizes are at least 10. Table
2 illustrates this by providing the percentage of the time
that any method is within 5% of the maximum observed
power among the remaining three quantitative methods
(SUM-NR, ABSSUM-NR and MAXMEAN-NR). Results in
Table 2 are for o = 0.05, but are similar for other o values
(results not shown).

SUM-NR is typically optimal when the mean of the log-
ratios is large, but the worst when the standard deviation
is large. Further, ABSSUM-NR is typically best when the
standard deviation of the log-ratios is large, as is the case
for mixture distributions with a large mixing proportion,
but performs poorly when the mean is large. MAXMEAN-
NR is typically the second most optimal method of the
three. These results correspond to arguments presented by
Efron and Tibshirani [8] in which they argue that the
MAXMEAN-NR statistic is the most robust to both shift
(mean) and scale (standard deviation) changes. Efron and
Tibshirani, however, only consider gene sets containing
20 genes. We find that the MAXMEAN-NR method is
robust against both mean and standard deviation changes
for gene sets of size 10, 20 and 50. However, MAXMEAN-
NR performs poorly compared to ABSSUM-NR and SUM-
NR when gene set sizes are small and the mean is small.

Table I: Average Type | error rate (empirical o) when nominal o is 0.05

Set Size True mean Standard GSEA-NR  ABSSUM-NR  SUMSQ-NR  SUM-NR MAX- FET I/2 FET | FET2 FET3
log-ratio of deviation of MEAN-NR
genes in the  log-ratios of
set genes in the
set
2-5 genes 0 0.01-0.05 0.0005 0 0 0.056 0 0 0 0 0
0.10-0.20 0.005 0.001 0.0006 0.058 0.002 0.0004 0 0 0
+0.05 0.01-0.05 0.02 0 0 0.056 0 0 0 0 0
0.10-0.20 0.0l 0.002 0.0008 0.06 0.003 0.0005 0 0 0
10 or more 0 0.01-0.05 0.29 0 0 0.13 0 0 0 0 0
genes

0.10-0.20 0.03 0.004 0 0.14 0.0005 0.0001 0 0 0
+0.05 0.01-0.05 0.45 0 0 0.15 0 0 0 0 0
0.10-0.20 0.08 0.006 0 0.15 0.004 0.0002 0 0 0
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Table 2: Percentage of time method is within 5% of the maximum observed power

Gene Set Size Mean of log-ratios Standard deviation of log-ratios ABSSUM-NR SUM-NR MAXMEAN-NR

2-5 0.02-0.24 <10 72 33 15
1.0+ 98 12 16
0.50-0.99 <10 60 76 58
1.0+ 97 26 50
1.0+ <10 89 95 93
1.0+ 100 96 99
10-20 0.02-0.24 <10 60 56 45
1.0+ 100 26 86
0.50-0.99 <10 67 95 93
1.0+ 100 75 87
1.0+ <1.0 99 99 100
1.0+ 100 100 100
50 0.02-0.24 <10 57 78 69
1.0+ 100 66 99
0.50-0.99 <10 88 98 99
1.0+ 100 92 93
1.0+ <10 100 100 100
1.0+ 100 100 100

Evaluating FET cutoffs general rule, when at least a subgroup of genes in the set

In the simulation study, we used four different cutoffs (3,
2, 1 and 1/2) for deciding whether or not a gene was "sig-
nificantly regulated" based on the absolute value of its
log-ratio. As we did when comparing quantitative meth-
ods, we consider only those cases where at least one of the
four FET cutoffs gave adequate (> 80%) power. First, we
found that FET with a cutoff of 2 or 3 never had the max-
imum observed power when compared to FET 1 or FET 1/
2. We note, however, that our simulation study did not
consider average set log-ratios above 2 which would likely
be those situations where FET 2 or FET 3 may be optimal.
When comparing FET 1 and FET 1/2 we found that, as a

had an absolute mean log-ratio of expression values of at
least 1.5, FET 1 provided the maximum observed power,
and when the absolute mean log-ratios of expression val-
ues were less than 1.5, then FET 1/2 gave maximum
observed power (details not shown).

Comparing FET I, FET 1/12 and MAXMEAN-NR

In Table 3 we compare FET 1, FET 1/2 and MAXMEAN-NR
since FET 2 and 3, SUMSQ-NR and GSEA-NR were all
shown to be less than optimal and ABSSUM-NR and
SUM-NR were shown to be less robust than MAXMEAN-
NR in most cases. To do this, we record, for different sim-

Table 3: Percentage of time method is within 5% of the maximum observed power

Gene Set Size Mean of log-ratios Standard deviation of log-ratios FET | FET 1/2 MAXMEAN-NR

2-5 0.02-0.24 <1.0 31 32 55
1.0+ 63 53 20
0.50-0.99 <1.0 25 19 83
1.0+ 66 70 71
1.0+ <1.0 58 66 99
1.0+ 100 76 99
10-20 0.02-0.24 <1.0 20 51 69
1.0+ 100 100 86
0.50-0.99 <1.0 41 56 97
1.0+ 97 90 88
1.0+ <10 93 98 100
1.0+ 100 100 100
50 0.02-0.24 <1.0 24 59 82
1.0+ 100 100 99
0.50-0.99 <1.0 62 87 99
1.0+ 100 100 93
1.0+ <10 100 100 100
1.0+ 100 100 100
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ulation settings, the percentage of the time that a method
is within 5% of the maximum observed power (where the
maximum observed power is the best power of the three
methods considered here: FET 1, FET 1/2 and MAXMEAN-
NR).

Table 3 illustrates that MAXMEAN-NR performs well
when compared to FET 1 or FET 1/2, often performing as
well or better then either FET method. The few cases where
FET methods performed better, tended to be with smaller
means and larger standard deviations, cases when the
ABSSUM-NR method was demonstrated to perform better
than MAXMEAN-NR (see Table 2). When ABSSUM-NR
was compared to FET 1/2 and 1 in the situations where
MAXMEAN-NR does poorly, ABSSUM-NR was within 5%
of maximum power in all cases [details not shown]. All
results in Table 3, are for o = 0.05. While not shown here,
results for other a values yielded similar results.

Results of analyzing experimental data

As described in the Methods: Experimental Data section, we
analyzed 18 different experimental comparisons taken
from three different sets of experiments. Ten of the exper-
imental comparisons were from E. coli and eight were
from S. typhimurium. Table 4 presents the number of sets
found as significantly regulated for each of the 9 gene set
methods across four different o values for these 18 exper-
iments.

In general, the findings from the experimental data were
in line with findings from analysis of the simulated data.
Briefly, 38 of the 141 sets (27%) found as significant only
by the GSEA-NR method were sets with at least 10 genes,
mean expression less than 0.10 and standard deviation
less than 0.20, precisely the circumstances identified by
simulation where GSEA-NR has increased false positives
(see Table 1). Sets found as significant by SUMSQ-NR
were virtually all found by ABSSUM-NR, but ABSSUM-NR
found substantially more sets as significant (see Table 4).
FET 2 and FET 3 found few sets as significant (see Table 4).
Lastly, Table 4 illustrates that both SUM-NR and

Table 4: Number of sets found as significantly regulated across
the 18 experiments

Method a=0.05 0 =0.005 o=0.0005 o=0.0002
FET 3 32 6 3 3
FET 2 78 23 Il Il
FET | 196 85 58 50
FET 1/2 338 109 54 45
GSEA-NR 522 137 6l 50
SUMSQ-NR 311 64 34 31
ABSSUM-NR 444 124 66 57
SUM-NR 573 142 79 67
MAXMEAN-NR 613 181 91 74
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MAXMEAN-NR identify the most sets as significant at all
o values.

Biological significance of findings

In order to validate the statistical methods under study,
the following section considers sets determined to be sig-
nificantly regulated for consistency with what is known
about the biology of the organisms. The emphasis of this
analysis will be on those gene sets found to be significant
by at least one of five methods considered valid based on
the simulation and real data analyses presented earlier,
namely FET 1, FET 1/2, ABSSUM-NR, SUM-NR, and
MAXMEAN-NR. A complete listing of all significant sets
for all five methods and all eighteen experiments is avail-
able in Additional File 1.

E. coli Acetyl Phosphate Mutants

Among the 8 different experimental comparisons that we
considered for the two acetyl-phosphate mutants, only
one was the focus of extensive analysis by Wolfe et al. [27]
and, thus, is the only one considered here. In this compar-
ison the E. coli ackA mutant (able to produce acetyl phos-
phate but not further metabolize it) is compared to the E.
coli pta-ackA mutant (unable to produce acetyl phos-
phate). Our analysis shows that three gene sets (Bacterial
Chemotaxis [19 genes], Flagellum [45 genes| and Ribos-
ome LSU Bacterial [34 genes]) were significantly differen-
tially expressed between the two mutants. The Flagellum
gene set was identified by all five (FET 1, FET 1/2,
ABSSUM-NR, SUM-NR, and MAXMEAN-NR) methods,
the Bacterial Chemotaxis gene set was identified by all but
FET 1 (p = 0.125) while the Ribosome LSU Bacterial set
was identified only by SUM-NR and MAXMEAN-NR.
These findings correspond well with the findings of Wolfe
et al. [27] for genes that were significantly upregulated in
the pta-ackA mutant versus the ackA mutant. The original
study [27] also found genes associated with other proc-
esses significantly upregulated when comparing the ackA
mutant to the pta-ackA mutant, however many of the
genes found by Wolfe et al. are not part of the SEED [28]
tool which was used for the creation of gene sets.

E. coli Sugar-acids

While the microarray data from the Sugar Acids experi-
ments have not been analyzed in detail, a companion arti-
cle has been published in which these data are used to
corroborate specific findings on the regulation of the L-
idonic acid pathway in E. coli [29]. Identification of the
genes most highly induced when grown on L-idonate
using a combination of standard techniques (LacZ
fusions, RT-PCR, northern blotting) (see Table 6 in
Bausch et al. [29]), implicates genes in the D-Gluconate
and Ketogluconate [DGK] metabolism gene set. In line
with these findings, our analysis of the microarray data
comparing E. coli grown on idonate vs. glucose as well as
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a comparison of idonate plus gluconate vs. glucose also
implicated the DGK gene set. The DGK set was found as
significant in the idonate vs. glucose experiment by
ABSSUM-NR, SUM-NR and MAXMEAN-NR but not by
either FET 1 (p = 0.028) or FET 1/2 (p = 0.13), while the
DGK set was found as significant by all methods except
FET 1/2 (p = 0.0005) in the idonate plus gluconate vs. glu-
cose experiment.

S. typbhimurium experiments

Pathogenicity from S. typhimurium infection is conferred
through the activity of genes encoded on a series of at least
5 gene clusters termed Salmonella pathogenicity islands
(SPIs), though not all genes necessary for virulence are
found on SPIs (for a review see Marcus et al. [30]). The
growth conditions used in this study were designed to
mimic different phases of Salmonella infection. In the fol-
lowing analysis, we will focus on the expression of SPIs in
hfq and smpB mutants, which are global regulators of tran-
scription and post-transcriptional processes in the cell
[31,32]; mutant strains are attenuated for virulence in vivo
[33,34].

For conditions mimicking an early infection stage [LB cul-
tures], SPI-1, SPI-4 and SPI-5 are identified as significantly
regulated in one or both mutants [hfq and smpB]. In the LB
log cultures for the hfg mutant, SPI-1 is identified as sig-
nificantly regulated relative to the wild-type by all five
methods. SPI-1 is known to be involved in the intestinal
phase/initial invasion of an infection [30], and hfg has
recently been shown to affect the regulation of hilA, which
is an important regulator of virulence genes encoded in
SPI-1][34]. SPI-4 was identified by all methods except
ABSSUM-NR (p = 0.00036), though this p-value could be
considered borderline significant. SPI-1 and SPI-4 are co-
regulated via hilA activity [35]. SPI-5 was identified as sig-
nificantly regulated by ABSSUM-NR, SUM-NR and
MAXMEAN-NR, but not by FET 1 (p = 0.024) or 1/2 (p =
0.073). SPI-5 encodes an effector protein (sopB) that is
secreted by the type three secretion system (TTSS) of SPI-
1 during invasion, and it has been shown that the sopB is
co-regulated with SPI-1 via hilA[36]. While none of the
methods identify SPI-5 as significant in the smpB mutant
grown in LB log conditions, ABSSUM-NR, SUM-NR and
MAXMEAN-NR calculate p-values very near the selected
alpha of 0.0002 (p values ranging from 0.00028 to
0.00042). In contrast, FET 1 (p = 0.009) and FET 1/2 (p =
0.005) are not close to the selected alpha.

For conditions mimicking macrophage survival [MgM
shock and dilution], SPI-2 is identified as significantly reg-
ulated in three of the four possible cases [shock and dilu-
tion for each of the two mutants] by FET 1, 1/2 and
ABSSUM-NR, once by MAXMEAN-NR, but not at all by
SUM-NR. SPI-2 is known to encode TTSS proteins, effector
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proteins, secretion system chaperones and transcriptional
regulators involved in macrophage survival [30]. None of
the five statistical methods of analysis identified SPI-3,
which is also implicated in macrophage survival, as hav-
ing significantly altered expression levels. This result sug-
gests that hfg and smpB do not play a role in SPI-3
expression.

Many other non-SPI gene sets are implicated by one or
more of the five statistical methods, however we do not
offer a detailed analysis of these data here, merely noting
that the results are in general agreement with what is
known of hfq and smpB mutants in Salmonella and related
bacteria (see Sittka et al. [34], Okan et al. [37] and refer-
ences therein).

Comparing simulation and real data analyses

Overall, the findings from simulation were similar to the
findings from the real data analysis. Specifically, simula-
tion and real data analysis both suggested that the GSEA-
NR method may be overly sensitive to sets with few up or
down regulated genes (false positives). Our finding that
GSEA may be oversensitive is in line with other recent
findings [4]. Dinu et al. [4] propose SAM-GS as an alterna-
tive to GSEA that doesn't have a false positive problem.
We implement SAM-GS as SUMSQ-NR and consequently
find that it never performs as well as ABSSUM-NR. Fur-
ther, our simulation results corroborated results from
Efron and Tibshirani [8] for replicated experiments. Spe-
cifically, ABSSUM-NR detects changes in standard devia-
tion of log-ratios well, SUM-NR detects changes in mean
log-ratios well, but MAXMEAN-NR is robust to detecting
both types of changes.

When considering FET cutoff values, we find that 2 and 3
are not sensitive enough, picking up only a few significant
sets in the real data analysis, while in the simulation FET
2 and 3 were never optimal. The simulation showed
(Table 3) that the MAXMEAN-NR method was more pow-
erful than either FET 1 or 1/2 in most cases, which was fur-
ther corroborated in the real data analysis (Table 4) when
MAXMEAN-NR identified many more sets as significant
when compared to FET 1 or 1/2. In the few cases when
MAXMEAN-NR was not more powerful than either FET 1
or 1/2 (small sample sizes), ABSSUM-NR performed well.

MAXMEAN-NR, SUM-NR and ABSSUM-NR all performed
well when examining the significant sets for their biologi-
cal relevance. Specifically, MAXMEAN-NR, SUM-NR and
ABSSUM-NR were, in general, better than either FET 1 or
1/2 at consistently findings biologically relevant sets (see
Biological significance of findings). In terms of biological sig-
nificance, there was little difference which of the three
non-cutoff based methods was used since each method
failed to identify a biologically relevant set as significant
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at least two times. We note that in many cases when one
of the three methods did not find a biologically relevant
set at statistically significant using a strict a criteria, the set
could be considered borderline significant.

Discussion

Non-cutoff based methods for prokaryotes

We have demonstrated how five methods for conducting
gene set analysis can be implemented on experiments
with few, if any, replicates, as is common for studies of
prokaryotes. In line with previous results comparing cut-
off [FET] to non-cutoff based methods, we find that cutoff
based methods lack robustness and power. Further, we
establish that the MAXMEAN-NR statistic is a powerful
and robust statistic that correctly controls the type I error
rate as long as sete sizes are at least 10. When set sizes are
less than 10, ABSSUM-NR or SUM-NR may be a better
choice.

GSEA-NR picked up a substantial number of false posi-
tives. Interestingly, the originally proposed GSEA proce-
dure [2] [just a K-S test] suffered from the same problem,
which was part of the reason for its updated (weighted)
implementation [3]. That we found the same problems
here suggests that either (1) any amount of weighting in
the GSEA procedure is not enough to overcome the inher-
ent false positive problems of GSEA (this suggestion is
given by Dinu et al. [4]) or (2) that while the weights sug-
gested for human data (the correlation between pheno-
type and genotype) are adequate, our use of the log-ratios
of expression values as the weight in GSEA-NR, is not. Fur-
ther research is necessary to answer this question.

SAM-GS [4] was developed to overcome the limitations of
GSEA [2,3], but when implemented as SUMSQ-NR we
found that it did not perform as well as ABSSUM-NR.
ABSSUM-NR and SUMSQ-NR are relatively similar proce-
dures. However, because SUMSQ-NR squares log-ratios, it
sends log-ratios between 0 and 1 closer to 0, while increas-
ing scores greater than 1. It is possible that this non-opti-
mal handling of gene expression log-ratios between 0 and
1 (counting them less) contributes to its lack of power as
compared to ABSSUM-NR.

In line with Efron and Tibshirani [8], we find that, in gen-
eral, ABSSUM-NR provides the most power to detect
changes in standard deviation, SUM-NR provides the
most power to detect changes in mean and MAXMEAN-
NR is robust to find both types of changes. This sets up an
interesting practical problem. If gene sets are relatively
consistently regulated, SUM-NR is likely the optimal
choice of statistic since mean shifts would be all that
would be expected. On the other hand, for gene sets in
which subsets of genes are regulated, while others are not,
ABSSUM-NR is the optimal choice, since the subset
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change will manifest itself, most noticeably, in a change in
standard deviation. Since in today's environment we
expect some gene sets to be consistently expressed, and
others not, the MAXMEAN-NR statistic provides a robust
approach to detecting both types of changes as significant.

Choosing an «

While we considered a range of a values in the simulated
data analysis, we only considered a. = 0.0002 in the real
data analysis. Alpha of 0.0002 was chosen because it was
roughly equivalent to the Bonferroni adjusted alpha value
of 0.05 divided by the number of gene sets, and was the
smallest alpha value that could be reasonably considered
for p-values based on 50,000 random gene sets. However,
we demonstrated that biologically relevant sets may be
found at p-values in the borderline significant region. This
is not surprising since (1) the Bonferroni method is well-
known to be overly conservative and (2) our null-hypoth-
esis simulation study suggested that the false positive rate
for most methods was much lower than the nominal rate.
While not implemented here because it would hinder the
comparison of different statistical methods, modern false
positive control techniques like the False Discovery Rate
should be implemented in practice.

Limitations of gene sampling methods

All methods considered in this paper (FET, ABSSUM-NR,
GSEA-NR, SUMSQ-NR, SUM-NR, and MAXMEAN-NR)
are based on a gene-sampling model. Understanding gene
sampling is crucial to understanding the limitations of
these analyses. Gene sampling suffers from the major lim-
itation that it always uses a competitive null hypothesis.
That is, instead of having a null hypothesis of "This gene
set is not regulated" the competitive null hypothesis says
"This gene set is no more regulated than the other genes
in the experiment which are not in the set." The implica-
tions of a competitive null hypothesis are that gene sets
are competing with other genes outside of the gene set for
significance. Thus, in experiments where many genes are
regulated, gene sets with small, but real, mean log-ratios
will be less likely to be detected as significant. Further, in
experiments where very few genes are actually regulated
there may be increased false positive findings. For a more
in depth discussion of the implications of a competitive
null hypothesis and gene sampling see Goeman and Buhl-
mann [20].

To date, all gene set analysis methods that do not rely on
gene sampling (instead using subject sampling) require
biological replicates because it is the replicates that are
permuted to assess significance. Thus, for prokaryotic
experiments with few biological replicates, gene sampling
is necessary. There are, however, at least two options
which should be investigated further for their utility in
avoiding gene sampling for prokaryote microarray experi-
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ments. First, if microarray expression values and variabil-
ity in typical experiments or under standard conditions
could be quantified, it may be possible to characterize a
general null hypothesis (gene set is not regulated) proba-
bility distribution. For a first step in this direction see
Wren et al. [38]. Second, while multiple chips are often
not used in prokaryotic microarray experiments, many
prokaryote microarray chips have multiple probes for the
same gene (technical replicates), which are then averaged
to give the signal. Further work is necessary to evaluate
and establish the utility of using information from multi-
ple probes in gene set analyses.

Limitations of the simulation study

While we implemented a relatively comprehensive simu-
lation study, we must acknowledge some of its limita-
tions. First, we did not examine true mean set log-ratios of
more than 2. If true mean log-ratios more than 2 were
examined, the likely result would be that using a cut off of
2 or 3 for FET would be more appealing than FET 1 or FET
1/2. However, as shown in both the analysis of real data
and the simulation study, MAXMEAN-NR is robust to the
problem of determining which FET cutoff is optimal, and
would likely still appear optimal. Second, we modelled
underlying gene set distributions as mixtures of normal
distributions, a flexible modelling framework, which
appeared to capture true variability well for the experi-
mental data and gene sets we examined. However, further
evaluation of the applicability of this model to other
experiments and gene set definitions is necessary. Third,
because all tests examined use a competitive null hypoth-
esis, the simulated power of methods is directly related to
the experimental distribution of log-ratios of expression
values and so conclusions, while based on simulated data,
are still somewhat dependent on the 18 experiments. To
address this limitation we chose 18 experiments, from 2
different labs and a variety of experimental conditions.
However, further experiments should be evaluated for
their similarities/differences to data sets considered in this

paper.

Gene sets

In this paper we used gene sets as defined by SEED subsys-
tems. Similarly, previous authors have used gene sets as
defined by KEGG [39-41], the Gene Ontology [42], Eco-
Cyc [43], and other data repositories. As was demon-
strated earlier [see Biological significance of findings: E. coli
Acetyl Phosphate Mutants], the gene set definitions are
vitally important in determining the types of biological
conclusions that can be made. Specifically, gene sets
should be selected which are relevant and completely
cover the possible biological systems under study.
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Conclusion

DNA microarrays provide the capability to measure
genetic activity across the genome simultaneously as
opposed to merely gene by gene, providing an under-
standing of genetic activity for prokaryotes at the organis-
mal level. However, data analysis methods for this
technology are still far from optimal. The findings dis-
cussed above represent a step in the direction of improved
data interpretation for non or low-replicated DNA micro-
array experiments as are typical for prokaryotes.

Through simulation, real data analysis and evaluation of
results for biological relevance, we find that MAXMEAN-
NR offers a robust and powerful method of conducting
gene set analysis on experiments with few or no replicates,
though ABSSUM-NR or SUM-NR may be optimal for gene
set sizes less than 10. Gene set analysis methods consid-
ered here are limited because they are gene sampling
methods. Further work is needed to overcome the limita-
tions of gene sampling methods for prokaryotes.

Methods

Extensions of gene set methods to non-replicated data via
gene-sampling

We consider five non-cutoff based methods and FET (with
four different cutoffs) in this paper. Each method is
described briefly below. Significance for each of the non-
cutoff based methods is determined using gene sampling
(described in Gene sampling and a competitive null hypothe-
sis).

GSEA-NR

GSEA was originally published by Mootha et al. [2], with
a revised version proposed by Subramanian et al. [3].
GSEA has quickly become one of the most popular meth-
ods of conducting gene set analyses for replicated micro-
array experiments.

GSEA-NR (non-replicated sample version of GSEA) is
implemented as follows. Let L be a list of genes sorted by
their log-ratios of gene expression values. In GSEA-NR
each gene in the set of interest is weighted according to the
absolute value of its log-ratio. A weighted Kolmogorov-
Smirnov statistic (termed the Enrichment Score) is com-
puted, which finds the maximum deviation between the
weighted empirical distribution function [EDF] of genes
in the set of interest versus the unweighted EDF of genes
not in the set. Practically speaking, the test statistic can be
thought of as a non-parametric measure of the difference
in the weighted distribution (e.g. histogram) of genes in
the set versus the unweighted distribution of genes not in
the set. In general, the mathematics of the method as pro-
posed here is the same as the original method as presented
in Subramanian et al. [3].
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ABSSUM-NR

ABSSUM-NR finds the sum of the absolute values of the
log-ratios of genes in the set of interest. ABSSUM-NR was
recently considered by Efron and Tibshirani [8] and first
proposed by [44].

SUMSQ-NR

SUMSQ-NR was recently proposed [4] as SAM-GS and is
similar in nature to ABSSUM-NR. SUMSQ-NR finds the
sum of the squared log-ratios of genes in the set of inter-
est.

SUM-NR

SUM-NR simply finds the sum of the log-ratios of genes in
the set of interest and was recently considered by Efron
and Tibshirani [8].

MAXMEAN-NR

MAXMEAN-NR takes as the statistic the maximum of
either (1) the average of the absolute value of the negative
log-ratios times the percentage of genes in the set that
have negative log-ratios or (2) the average of the positive
log-ratios times the percentage of genes in the set that
have positive log-ratios. MAXMEAN-NR was first consid-
ered by Efron and Tibshirani [8].

Fisher's exact test

Fisher's exact test is implemented by taking the sorted list
of genes L and dichotomizing it by classifying some genes
as up/down-regulated and others as not regulated. To
implement these procedures we used four different cutoffs
(3, 2, 1, and 1/2) for up/down-regulated based on the
absolute values of log-ratios in L. FET then uses the hyper-
geometric distribution to find the p-value of the test. As
described by Goeman and Buhlmann [20], Fisher's exact
test methods are based on an implied gene sampling
model.

Gene sampling and a competitive null hypothesis

Gene sampling is a term coined by Goeman and Buhl-
mann [20] which means that the p-value of the gene set is
based on random sets of genes. In other words, many,
many gene sets of the same size as the gene set of interest
are randomly selected, and the statistic of interest is com-
puted on each of the random sets. The observed statistic is
compared to the distribution of statistics from the ran-
dom sets in order to obtain a p-value.

Experimental Data

There are 3 sets of experiments under analysis. Two of
these experiments involve experiments done on E. coli at
the Oklahoma University Bioinformatics Core Facility by
the Conway Lab [45]. The other experiment was con-
ducted on S. typhimurium as a collaborative effort between
faculty at the Oregon Health and Science University and
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the Sidney Kimmel Cancer Center. In the following sec-
tions we briefly outline the details of these experiments.

E. coli Acetyl Phosphate experiments

A series of six comparisons were made comparing gene
expression values between two different knockout strains
of E. coli K-12 (without ackA and without ackA and pta)
plus the wild-type, grown in tryptone broth [TB] with or
without acetate. The six comparisons analyzed in this
paper correspond to the six comparisons available from
the lab website [45] with much greater experimental detail
given in [27]. The six comparisons are:

1- ackA mutant grown in TB plus 10 mM acetate vs.
wildtype grown in TB

2- ackA mutant grown in TB vs. ackA mutant grown in TB
plus 10 mM acetate

3- ackA mutant grown in TB vs. pta -ackA mutant grown in
TB

4- ackA mutant grown in TB vs. wildtype grown in TB

5- pta -ackA mutant grown in TB vs. ackA mutant grown in
TB plus 10 mM acetate

6- pta-ackA mutant grown in TB vs. wildtype grown in TB

E. coli Sugar Acids experiments

E. coli W1485 was grown on Neidhardt's MOPS minimal
medium containing 0.2% sugar (glucose, gluconate, ido-
nate, or mixtures) in 25 ml volumes in 250 ml Erlenmeyer
flasks with gyrotary shaking at 300 rpm at 37°C. Cells
were harvested for RNA extraction in mid-logarithmic
growth phase (OD = 0.4) and total RNA was prepared and
labeled, and Sigma-GenoSys Panorama membrane arrays
were hybridized as described by [27,46]. There were four
comparisons made in this set of experiments (all in log
phase):

1- Gluconate vs. glucose

2- Idonate plus glucose vs glucose

3- Idonate plus gluconate vs. glucose

4- Idonate vs. glucose

Data is available at [45].

S. typhimurium experiments

S. typhimurium 14028 cells were harvested (1), after

growth at 30°C to log phase in LB (LBlog); (2), after
growth at 30°C to stationary phase in LB (LBstat); (3)
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after transfer of a stationary phase culture grown in LB
into magnesium-deficient MgM medium [26; MgM
medium: 100 mM Tris-Cl, 5 mM KCl, 7.5 mM
(NH4)2504, 0.5 mM K2504, 1 mM KH2PO4, 0.2% glyc-
erol, 0.1% Casamino acids, 8 uM MgCl,|] pH 5.0 and
growth for four more hours at 30°C (MgMshock); (4)
after 100-fold dilution of a stationary phase culture grown
in LB into magnesium-deficient MgM medium pH 5.0
and growth at 30°C to log phase (MgM1:100). This pro-
cedure was performed on (A), wild type [WT] cells; (B),
cells of an hfg (STM4361) knockout mutant; and (C),
cells of an smpB- (STM2688) knockout mutant. Eight total
comparisons are considered in this paper: LBlog (hfq vs.
WT; smpB vs. WT), LBstat (hfg vs. WT; smpB vs. WT), MgM-
shock (hfq vs. WT; smpB vs. WT), MgM1:100 (hfg vs. WT;
smpB vs. WT).

Mutants were constructed using the Red-Swap method
originally developed by Wanner and Datsenko [47]
replacing the entire gene with a 24 nt gene-specific tag.
Total bacterial RNA was isolated using the RNeasy kit
(QIAGEN, Valencia, CA, USA). Superscript II reverse tran-
scriptase (Invitrogen, Carlsbad, CA, USA) and random
hexamers were employed during generation of fluores-
cently labeled cDNA. These targets were then hybridized
onto custom-made non-redundant Salmonella enterica
whole genome PCR product microarrays [48], using
standard Corning GAPS slide protocols. Three independ-
ent biological replicates were interrogated for each condi-
tion and strain (36 hybridizations). Images were scanned
using a Scanarray scanner (Perkin Elmer, Fremont, CA),
and data extracted with ScanArrayExpress 3.0.1 and Quan-
tarray 3.0 software packages. Differential gene expression
was calculated with the WebArray online microarray data
analysis platform [49], using Printtip LOESS and scale
normalizations. The Salmonella data discussed in this
publication have been deposited in NCBI's Gene Expres-
sion Omnibus [50] and are accessible through GEO Series
accession number GSE11486 http://

www.ncbi.nlm.nih.gov/geo/query/
acc.cgilacc=GSE11486.

Gene Sets from the SEED

The SEED is an open-source environment for genome
annotation [28]. In it, genes are organized into subsys-
tems, each representing a set of genes, often correspond-
ing to a metabolic pathway. Based on gene sets defined by
subsystems containing at least two genes from the SEED,
there are 331 gene sets for S. typhimurium and 337 gene
sets for E coli. Set sizes range from two to sixty-eight genes.
Gene set definitions for E. coli and S. typhimurium are
available as Additional files 2, 3, 4, 5.
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Simulation Study

For each gene in a gene set, the log-ratio of expression val-
ues is observed. We hypothesize that the resulting list of
log-ratios for genes in a set is either normal or the mixture
of two normal distributions. Unfortunately, since most
gene sets have only a few genes, statistical tests to validate
the normality or mixture of two normal distributions
assumptions do not have sufficient power to detect prac-
tical deviations from these models [51].

Justification for the assumption of normality or mixture
of normal distributions is as follows. First, if a gene set can
be modelled by a normal distribution, this suggests that
either (1) all genes in the gene set have the same true log-
ratio of expression values and that deviations from the
true log-ratio are observed due to technical and biological
variability or (2) that most genes in a gene set have true
log-ratios near to some number (m), and that fewer and
fewer genes are in the set the farther you are from m.
Option (1) provides a traditional "normal errors"
assumption, assuming that a gene set contains genes that
are very tightly regulated. Option (2) provides a reasona-
ble model for some flexibility in the regulation of the
genes in the set. If a gene set can be modelled by a mixture
of two (or more) normal distributions, this can be
thought of as a situation where a gene set is comprised of
subsets of genes, where each subset of genes is normally
distributed under option (1) or (2).

In order to explore the power of the various proposed
methods for analyzing gene expression data in the context
of gene sets, data was simulated from a variety of condi-
tions. Table 5 shows the values of parameters chosen for
the simulation.

Specifically, 7 is the proportion of genes in the first nor-
mally distributed subset. If 7= 1 then the gene set is nor-
mally distributed, and if 7 # 1 then the set of genes is a
mixture of two normal distributions, where zn of the
genes in the set are in the first normal distribution and (1-
z)n are in the second. x; and i, are the means of the first
and second subsets of genes, respectively. Similarly, o
and o, are the standard deviations of the first and second
subsets of genes. The parameter settings were chosen to

Table 5: Simulation settings

Simulation parameter Levels
T 1.0,0.9,0.8, 05
m +/-2.0, +/- 1.0, +/- 0.5, +/- 0.25
Uy +/- 1.5, +/- 0.5
o, 0.25,05
G, 0.25,0.5
Gene set sizes (n) 2,5,10, 20, 50
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reflect the actual observed values of the mean, standard
deviation, skewness and kurtosis of log-ratios of expres-
sion values within the experiments under study.

Seventeen combinations of n and © were run (n = 2 was
not run for © = 0.95 and 7 = 0.80, and n = 5 was not run
for = = 0.95). Further, there are 128 combinations of the
other parameters (;, 1, 03, 05 8 x 4 x 2 x 2) for a total
of 17 x 128 = 2176 different simulation settings. For each
setting 2000 random sets were created. Each of the ran-
dom sets was then used to compute the nine different
gene set statistics (FET (3, 2, 1, and 1/2), GSEA-NR,
SUMSQ-NR, ABSSUM-NR, SUM-NR and MAXMEAN-NR)
for each of the 18 experiments under study. Each of these
statistics was then compared to an empirical null distribu-
tion created by randomly sampling 50,000 sets of a given
size, from each of the 18 experiments. Power was then
computed as the percentage of the time that the null
hypothesis was rejected out of the 2000 random sets for
each of the 2176 simulation settings for four different o
values (a = 0.05, 0.005, 0.0005, and 0.0002).

A small null hypothesis simulation was also conducted.
For this simulation we chose settings of parameters that
should reflect sets with little to no differential expression.
In this simulation we used three different means: -0.05, 0,
and 0.05, four different standard deviations: 0.01, 0.05,
0.10, and 0.20 and five set sizes (n = 2, 5, 10, 20, and 50),
for a total of (3 x 4 x 5) 60 combinations. For each of the
sixty combinations of simulation settings we generated
2000 random sets, and then ran each of the tests for each
of the 18 experiments being studied.
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Additional material

Additional file 1

Significant gene sets for the 18 experiments. A listing of the significant
gene sets found by FET 1, FET 1/2, ABSSUM-NR, SUM-NR and
MAXMEAN-NR for each of the 18 experiments, along with summary sta-
tistics for the distribution of log-ratios of expression values within each set.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-469-S1.pdf]

Additional file 2

Gene set definitions for E. coli. This is a tab-delimited file with 4290
rows (one for each gene) and 338 columns. The first column gives the
gene ID (b-number); the remaining 337 indicate whether (1) or not (0)
the gene is in the gene set. There are 337 gene sets for E. coli based on
SEED subsystems.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-469-52.dat]

Additional file 3

Gene set names for E. coli. This is a tab-delimited file with 337 rows
(one for each gene set) and 3 columns. The first column is the SEED sub-
system name, the second is the numeric identifier for the set (1-337; cor-
responds to the order of sets in Additional file #2), and the third column
indicates the number of genes in the set.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-469-83.txt]

Additional file 4

Gene set definitions for S. typhimurium. This is a tab-delimited file
with 4493 rows (one for each gene) and 332 columns. The first column
gives the gene ID (STM number); the remaining 331 indicate whether
(1) or not (0) the gene is in the gene set. There are 331 gene sets for S.
typhimurium based on SEED subsystems.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-469-54.dat]

Additional file 5

Gene set names for S. typhimurium. This is a tab-delimited file with
331 rows (one for each gene set) and 3 columns. The first column is the
SEED subsystem name, the second is the numeric identifier for the set
(1-331; corresponds to the order of sets in Additional file #4), and the
third column indicates the number of genes in the set.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-469-S5.txt|
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