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Abstract
Background: Researchers interested in analysing the expression patterns of functionally related
genes usually hope to improve the accuracy of their results beyond the boundaries of currently
available experimental data. Gene ontology (GO) data provides a novel way to measure the
functional relationship between gene products. Many approaches have been reported for
calculating the similarities between two GO terms, known as semantic similarities. However,
biologists are more interested in the relationship between gene products than in the scores linking
the GO terms. To highlight the relationships among genes, recent studies have focused on
functional similarities.

Results: In this study, we evaluated five functional similarity methods using both protein-protein
interaction (PPI) and expression data of S. cerevisiae. The receiver operating characteristics (ROC)
and correlation coefficient analysis of these methods showed that the maximum method
outperformed the other methods. Statistical comparison of multiple- and single-term annotated
proteins in biological process ontology indicated that genes with multiple GO terms may be more
reliable for separating true positives from noise.

Conclusion: This study demonstrated the reliability of current approaches that elevate the
similarity of GO terms to the similarity of proteins. Suggestions for further improvements in
functional similarity analysis are also provided.

Background
Gene ontology (GO) [1] describes gene products based on
their functions and is a structured and controlled vocabu-
lary that has become quite popular among the known tax-
onomies. The root ontology (ALL) of GO consists of three
independent terms: biological process (BP), molecular
function (MF), and cellular component (CC). GO data
provides a novel way to measure the functional relation-
ship between gene products, which is the basis of most

gene correlation studies [2]. Researchers interested in
functionally related genes always hope to improve the
accuracy of the results beyond the boundaries of currently
available experimental data. Addition of knowledge data,
for example, by computing the semantic similarity
between genes may partially address this problem. Most
semantic-based applications follow a three-step approach
that includes semantic similarity calculations of paired
GO terms, functional similarity calculations of all possi-
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ble combinations of related GO terms, and further studies
such as clustering analysis [3-6]. However, optimization
of the methods for elevating the similarity of GO terms to
the similarity of proteins is still required.

In semantic-based applications, it is necessary to compute
the similarity among GO terms before investigating the
similarity between gene products. Fortunately, the
method for calculating two terms in the well-known
semantic tree WordNet [7] has been well established.
When GO emerged, these measures were widely used for
determining the GO lexical instinct. In 2003, Lord et al.
[8] found that sequence similarity was almost consistent
with semantic similarity. Since then, several approaches
have been developed that range from traditional methods
in which the distance of two given nodes is calculated
[4,5] to information-theoretic models in which the over-
all information of the tree structure is measured [3,6].
Similarity information derived from GO has also sup-
ported functional module studies [9]. There have been
many reviews [10-12] in favour of information theory-
based methods such as those proposed by Resnik [13] and
Lin [14] since these methods are not sensitive to link den-
sities, which are a key limitation of distance-dependent
measurements. In this study, Resnik's method was chosen
because it showed the best performance in most evalua-
tions.

Biologists are more interested in the relationship of gene
products than in the scores of GO terms. Various func-
tional similarity approaches have been attempted. In this
paper, these methods are referred to as 'Max' [3,9,15],
'Ave' [6,8,10], 'Tao' [16], 'Schlicker' [17,18] and 'Wang'
[19] (see Fig. 1 for a brief illustration of these methods).
Z. Lei et al. [20] have evaluated various functional similar-
ity measures (2 of these – Max and Ave – were published)
to predict protein subnuclear localization using a well
curated database NPD [21]. Unfortunately, it was difficult
to find a gold standard for assessing the functional rela-
tionship. So we merged the evaluation standards used ear-
lier in semantic similarity research, i.e., we used both
protein-protein interaction (PPI) [12] and gene expres-
sion datasets [11] of S. cerevisiae. The five above-men-
tioned methods were compared, and we hope that the
results would provide a basis for further GO-based simi-
larity studies.

Results
Assessment of functional similarity based on protein-
protein interactions
The functional similarity methods introduced above and
abbreviated as Max, Ave, Tao, Schlicker and Wang were
tested by the receiver operating characteristics (ROC)
analysis. ROC grades the performance of classifiers and
rankers as a trade-off between specificity and sensitivity.

The area under the ROC curve (AUC) is often taken as a
measure of the prediction performance. An area of 0.5
represents random forecasts, while an area of 1 reflects
perfect forecasts. A total of 6,459 S. cerevisiae protein inter-
actions were retrieved from the Database of Interacting
Proteins (DIP) [22] and filtered on the basis of the relia-
bility of their GO annotation. We used 5,946 protein
interactions (including 2,466 proteins) annotated in BP,
4,267 (1,945 proteins) in MF, 6,121 (2,534 proteins) in
CC and 4,088 (1,850 proteins) in ALL as the positive data-
sets. The negative datasets containing the same number of
protein pairs were randomly established based on the
requirement of the ROC analysis (see Methods).

Unexpectedly, the Max method consistently showed the
best performance in spite of the fact that the performances
of all measures were barely distinguishable in MF ontol-
ogy (Fig. 2). The AUC values in Table 1 provide more
details. The Max and Schlicker methods were adequate in
BP ontology and were followed by the Wang, Ave and Tao
methods. Since the tested functional similarity measures
would give different results only when the genes were
annotated by multiple GO terms (refer to Fig. 1), the
number of genes annotated by a single GO term was
investigated. In contrast to 34.6% in BP and 45.1% in CC,
the number of genes annotated by single GO identifiers in
MF was as high as 74% (Table 2). Interestingly, the gene
numbers were distributed differently in each ontology.
There were slight variations in the gene numbers in BP
ontology among the single, double, triple and higher
annotations. CC and MF were likely to assign less annota-
tion terms to genes. This bias was clearer in MF than in
CC. Most of these single annotations belonged to particu-
lar GO catalogues. For example, there were 43% MF single
annotations in 'catalytic activity' and 27% in 'binding',
57.6% CC single annotations in 'organelle' and 28.1% in
'macromolecular complex', and 58% BP single annota-
tions in 'metabolic process' and 23.3% in 'localization'.
These results imply that genes involved in catalytic and
binding activities were mostly of the 'one gene for one
activity' type. Most genes localized in organelles and mac-
romolecular complexes have unique locations in the cell.
Some genes in metabolic and localization processes are
unique to the particular process.

To highlight the contribution of multiple-term annota-
tions, we compared the ROC curves derived from BP and
observed that all methods performed better when single-
term annotations were abolished (Fig. 3). However,
removal of single-term annotations led to less improve-
ment in the case of the Ave and Tao methods but to
approximately 9% improvement in the Max method.
Additional experiments with MF and CC returned very
similar results [see Additional file 1]. However, the AUC
improvements were obtained at a cost. Approximately
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Graphical illustration of functional similarity measuresFigure 1
Graphical illustration of functional similarity measures. A summary of the current functional similarity approaches is 
provided in parallel to give an overview. (a) GO annotations of CDC20 and CDC26 in BP ontology. (b) Semantic similarity 
scores (from the Resnik method) between CDC20 and CDC26 annotations. CDC20 and CDC26 annotated with M (5) and N (6) 
GO terms (represented by small circles in c, d and e) form two groups A and B. The straight lines represent the semantic sim-
ilarity scores between any two GO terms in groups A and B. A total number of 30 (5*6) scores are generated between CDC20 
and CDC26. (c) The functional similarities are defined as the maximum values and average values over the 30 semantic scores 
for the Max and Ave methods respectively. The functional similarity score of CDC20 and CDC26 for Max is 8.87 (score 
between GO:0000022 and GO:0000022, straight black line), while for Ave, the value is 3.89. (d) The bidirectional arrows indi-
cate the reciprocal best-score relations among GO terms. For example, GO:0031145 has the best score (8.8) from 
GO:0007092 among the other terms and vice versa, and the score is accepted. The best term for GO:0016567 is 
GO:0007092, while the best one for GO:0007092 is GO:0031145. The scores between these terms will not be counted. Tao 
took an average of all the accepted scores. The result from the Tao method is 4.5. (e) The maximum semantic score (best hit) 
is determined from each term in Group A to the terms in Group B (the forward arrows), and the process is repeated vice 
versa for the backward arrows. M (5 for CDC20) best hits from A to B and N (6 for CDC26) from B to A are collected. 
Schlicker defined the similarity of two genes as the maximum value of forward and backward average scores. By further com-
bining the information from the MF and CC ontologies and normalizing the result into the range [0, 1], the Schlicker functional 
similarity score of CDC20 and CDC26 is determined to be 0.47. Wang defined the functional similarity between A and B as the 
average of M plus N (11 in the case of CDC20 and CDC26, 5 from each term of CDC20 to CDC26 plus 6 from each term of 
CDC26 to CDC20) directional best hits. The score is 7.3.
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60% of the protein interactions were not covered when
single-term annotations were eliminated. Note that in the
methods section, the number of protein interactions
decreased from 5,946 to 2,414 in the test dataset that con-
tained only multiple annotations.

The PPIs from the Munich Information Center for Protein
Sequences (MIPS) Comprehensive Yeast Genome Data-
base CYGD [23] (14,545 interactions and 5134 proteins,
release date: 19 April 2007) were manually compiled
from the literature and published large-scale experiments.
12741 interactions and 4343 proteins that have GO anno-
tations were used in this additional evaluation. Therefore,
we performed the same analysis for the yeast PPI data set
from the CYGD database. The results were similar to those
described above. For example, the AUC values of BP
ontology were as follows: Max, 0.73; Ave, 0.67; Tao, 0.67
and Wang, 0.70. The details are shown in the supplemen-
tary file [see Additional file 2 and 3].

Assessment of functional similarity based on microarray 
data
Another indicator dataset of the gene function relation-
ship was obtained from microarray data. In this study,
Eisen's [24] dataset was used. Comparison of the correla-
tion coefficients between gene expression correlation and
semantic similarity are shown in Fig. 4. All high correla-
tion values showed the feasibility of our evaluation
approach, which has been reported earlier [11]. Similar to

the results of the PPI test, the Max method exhibited the
best performance, while the Ave and Tao methods showed
the weakest correlation. The correlation coefficients of
ALL indicated that the Max and Schlicker methods outper-
formed the other methods. The performance of all meth-
ods was similar for the MF and CC terms. The statistics of
single annotations in these datasets showed 73.1% of
genes in MF ontology (highest value), 39.8% in BP (low-
est value) and 45.8% in CC.

Test data in BP ontology were chosen to further analyse
the relationship between the semantic similarity and cor-
relation of gene expression. As depicted in Fig. 5, all func-
tional similarity measures exhibited a trend in which
higher expression correlation had stronger semantic simi-
larities. The linearity was noticeable when the expression
correlation value was above 0.6. While the other methods
resulted in an uneven growth curve that was approxi-
mately 0.9 of the expression correlation value, the curve of
the Max method tended towards a stable increasing trend.

Discussion
In this study, we used the expression and PPI datasets of
S. cerevisiae to evaluate five popular functional similarity
algorithms. Applications of these datasets as statistical
standards have been widely reported [4,6,25-28]. Two
evaluation approaches were used because information on
gene function obtained from various lab studies has
shown that no single dataset would be ideal for testing a
knowledge database. In this study, 1,226 proteins and
only 36 protein pairs were found to overlap between the
PPI and expression datasets. The majority of the proteins
had different interactions in these two datasets. Note that
in the case of expression data, only gene pairs that had an
absolute correlation value exceeding 0.6 were regarded as
expression-related genes because little linearity was
detected at lower values, as shown in Fig. 5. Thus, 624 pro-
teins and 4,052 interactions were uniquely represented by
the PPI dataset, and 1,229 proteins and 69,024 correla-
tions were unique to the expression dataset. The majority

Table 1: Areas under ROC

Ontologies Max. Ave. Tao Wang Schlicker

All (Root) 0.847 0.787 0.766 0.826 0.841
Biological Process 0.829 0.765 0.770 0.806 -
Molecular Function 0.722 0.715 0.717 0.718 -
Cellular Component 0.768 0.724 0.738 0.753 -

Areas under the curve (AUCs) are listed to provide detailed 
information on the PPI evaluation. Since the Schlicker method 
requires all three ontologies, it is only suitable in root ontology (ALL).

Table 2: The combined GO annotations of S. cerevisiae, M. musculus and H. sapiens genes in BP, MF and CC

Ontologies 4 annotationsa (%) 3 annotations (%) 2 annotations (%) 1 annotation (%)

S. cerevisiae BP 22.2 15.4 27.8 34.6
MF 1.4 5.3 19.3 74.0
CC 8.4 14.4 32.1 45.1

M. musculus BP 19.6 9.2 31.5 39.7
MF 0 0.7 41.8 57.5
CC 0 0.6 39.6 59.8

H. sapiens BP 17.5 12.5 24.9 45.1
MF 0 1 48.7 50.3
CC 0 0.7 42.3 57.0

Gene numbers (in percentage) annotated by various combinations of GO terms of BP, MF and CC are listed for the S. cerevisiae, M. musculus, and H. 
sapiens datasets.
aMore and include 4 annotations
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of unique genes, and consequently unique relationships,
in these two datasets supported our assumptions.
Although our results on the performance of functional
similarity measures were quite promising, unexpected
semantic similarities may have been obtained due to
poorly annotated genes. This problem may be minimized
in the near future as gene annotations are continuously
refined. Inconsistencies in individual examples did exist
between the PPI and expression datasets. For example,
approximately 25% of the interacting proteins in S. cerevi-
siae had an unexpectedly low expression coefficient
(below 0.1). A plausible reason for this is that 79 expres-
sion profiles in Eisen's data may not be sufficiently sensi-
tive for detecting the interacting proteins; therefore, more
expression data would be required. On the other hand,
false positives are unavoidable in the PPI dataset. Another
possibility is that these genes are simply not related at the
expression level. Therefore, the use of multiple standards
(PPI and expression data) to evaluate the performance of

functional similarity approaches has the advantage of
both coverage and reliability.

In all tests, the Max method consistently showed the best
performance. Shared annotations or closely related GO
terms, which lead to high semantic scores, was probably
one of the reasons. There were 2,622 gene pairs (of 5,946)
that had semantic scores of more than 6, and 2,278 (87%
of 2,622) were contributed by shared GO terms in the
multiple annotation dataset of BP ontology. To obtain
biological details, two case studies are presented, one of
which was supported by expression data and the other by
PPI data. First, we considered two cell division control
proteins CDC20 and CDC26 that have similar expression
profiles. Although there is no PPI information on these
two genes, their significant coexpression correlation value
of 0.77 suggested functional relationships, which was also
indicated by their shared GO annotations (refer to Fig. 1)
and confirmed by other studies [29,30]. The functional

ROC curves of PPI evaluationsFigure 2
ROC curves of PPI evaluations. ROC evaluations of functional similarity measures based on the S. cerevisiae PPI dataset 
derived from DIP are shown. The evaluation was done in (a) biological process (BP), (b) molecular function (MF), (c) cellular 
component (CC), and (d) ALL (root ontology). Since the Schlicker method requires all three ontologies, it is only suitable in 
ALL.
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similarity score calculated by the Max method was 8.9.
CDC20 and CDC26 also have unique annotations such as
'anaphase-promoting complex activation during mitotic
cell cycle' and 'protein ubiquitination', which led to some
low semantic scores, and the Ave method was tuned to
obtain a score of 1.9. Moreover, two interacting proteins
SEC23 and BOS1 (described in the DIP dataset) have sev-
eral annotations in which 'ER to Golgi vesicle-mediated
transport' is their shared term. According to an earlier
report [31], their PPI occurs during the process of 'ER to
Golgi vesicle-mediated transport'. The semantic similarity
deduced by the Max method was 9.5 whereas that
obtained by the Ave method was 0.8.

In these examples, the average method that equilibrates
all related semantic scores may compensate for some
annotation mistakes but apparently leads to a much lower
functional similarity score. The Wang and Tao methods,
in which the best hits of each GO term subset are applied,
enhanced the accuracy. However, the average of all best
hits still led to a relatively low score. The Max and
Schlicker methods, which gave the best scores, showed
much better results. Although genes annotated with mul-

tiple terms may be associated in several ways, the most
likely is through strong relationships, usually indicated by
their shared terms or closely related terms. Other unique
annotations or non-related annotations usually result in
noise during the calculation of functional similarity.
However, it is necessary to acknowledge that in the Max
method, any annotation mistake may lead to false posi-
tive results. Note that in Fig. 2, the performance of the Ave
method was relatively stable when the test dataset
changed. Based on our preliminary findings and the con-
clusion that the sum of similarity scores of matched GO
terms for two proteins shows best performance when
applied to subnuclear localization prediction [20], use of
a weighted average of all related semantic scores in favour
of multiple shared terms may yield better results than any
referred algorithms since there is a lower possibility of
false annotations when multiple shared terms are used. In
future studies, we will introduce an improved algorithm
and some new software tools.

The functional similarity methods were tested in ALL, BP,
MF and CC ontologies to evaluate their respective per-
formances. As shown in Table 1, most methods consist-
ently showed the best performance in ALL, better in BP
and worst in MF. Note that the best performance in ALL
resulted from our unique approach to test data collection.
The ALL dataset contained the least number of proteins
and protein interactions. For an inclusive ALL dataset that
provides widespread protein coverage in BP, MF and CC
(containing 2,764 proteins and 6,424 positive protein
interactions), the performance will drop below that of the
BP ontology (0.785 and 0.676 for the Max and Schlicker
methods respectively). To trade-off coverage for perform-
ance, BP annotations would be the best choice, while the
MF dataset would be the least informative among the S.
cerevisiae datasets. New functional similarity algorithms
need to consider different weights for the contributions of
BP, MF and CC to obtain good performance and coverage.

In order to explain the worst performance or least inform-
ative character of the MF dataset of S. cerevisiae, the
number of genes with single/multiple annotations were
collated as shown in Table 2 and compared with those in
BP and CC. It is very likely that the functional methods
were not distinguishable in MF ontology because of the
high proportion of single-term annotations, which were
much fewer in BP. This raises the question of whether
multiple annotations were responsible for the good per-
formance of the BP dataset. Further analysis in BP ontol-
ogy confirmed this possibility. Multiple-term annotations
would lead to a more reliable functional similarity calcu-
lation. However, the AUC improvements were obtained at
a cost. Approximately 60% of the protein interactions
were not covered when single-term annotations were
eliminated. In order to obtain high accuracy as well as

Improvement of ROC curves after elimination of single anno-tations from the test dataset in the BP ontologyFigure 3
Improvement of ROC curves after elimination of sin-
gle annotations from the test dataset in the BP ontol-
ogy. The four methods (Max, Ave, Wang and Tao) are 
plotted in separate colours. The performances of the meth-
ods after eliminating single annotations are shown by the 
solid lines. Results based on the original dataset are shown by 
the dashed lines. The Schlicker method was not shown 
because it requires more ontology than BP.
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extensive coverage, multiple-term and single-term anno-
tations should be considered, but these should be treated
differently. Table 2 shows an example of the distribution
variations of single/multiple GO annotations in S. cerevi-
siae. Similar scenarios are observed with the human and
mouse datasets; thus, if such functional similarity algo-
rithms are extended to higher organisms and if multiple-
term and single-term annotations are treated differently,
as shown here, the results are expected to be quite prom-
ising.

Our evaluation of functional similarity approaches was
based on S. cerevisiae datasets that have been continuously
revised and improved. These datasets contain sufficient
data that can be used to obtain accurate results. The results
would contribute to the automated integration of prior
and background knowledge in large-scale biological data
mining. In particular, it provides good supporting infor-
mation and suggestions for improving current and future
applications of semantic similarity algorithms, such as
functional similarity search tools [32], mRNA coexpres-
sion analysis, PPI prediction [27] and gene clustering.

Conclusion
Five popular functional similarity methods were evalu-
ated using PPI and expression datasets of S. cerevisiae to
obtain sufficient gene coverage and reliable results. The
tests were consistently in favour of the simple maximum
method. The results suggested that functional similarity
algorithms should introduce different weights for the BP,
MF and CC terms and for multiple annotations. In partic-
ular, multiple and single annotations should be treated
differently for greater reliability together with total cover-
age. Although these findings were based on the informa-
tion obtained from the S. cerevisiae datasets, there is a
good possibility of extending this study to higher organ-
isms such as humans and mice. Functional similarity in
favour of knowledge represented by GO will contribute
more to gene function studies in the near future.

Methods
Data acquisition and data processing
The GO annotation files were downloaded from SGD
released in October 2007 and contained 23,814 GO terms
subdivided into 13,916 biological process (BP) terms,
7,879 molecular functions (MF) terms and 2,019 cellular

Histogram of correlation coefficientsFigure 4
Histogram of correlation coefficients. The correlation coefficients between gene expression correlation and semantic 
similarity are compared among the tested methods. Since the Schlicker method requires all three ontologies, it is only suitable 
in root ontology (ALL).
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component (CC) terms. These vocabularies possessed a
spindle distribution along 16 levels of depth, where the
8th level contained most of the terms. Genes inferred
from electronic annotation (IEA) were eliminated from
further analysis due to the lack of reliability.

We retrieved 6,459 distinct PPIs (including 2,772 pro-
teins) in S. cerevisiae from DIP (release date: 7 October
2007). Considering that genes annotated with terms from
the top levels of the directed acyclic graph (DAG) structure
of GO would create noise, only those terms starting from
the 3rd level and below (3rd–16th levels) were retrieved,
resulting in 5,946 protein pairs (including 2,466 proteins)
from BP, 4,267 pairs (1,945 proteins) from MF, and 6,121
pairs (2,534 proteins) from CC ontology. These were used
as positive datasets for ROC curve analysis. For ALL (root
ontology), 4,088 protein pairs that designated 1,850 pro-
teins were used. Note that the ALL dataset contained the
least number of proteins because the genes should simul-
taneously have the 3rd to 16th levels of annotations in BP,
MF and CC ontologies.

The expression dataset was taken from the study of Eisen
et al. that contained 79 gene expression profiles of S. cere-

visiae. Since most of the proteins in the Eisen dataset were
well annotated in GO, 2,461 non-IEA annotated genes
were obtained.

ROC curve analysis
ROC grades the performance of classifiers and rankers as
a trade-off between specificity and sensitivity. The positive
datasets are described above. The negative datasets with
the same number of protein pairs were generated by ran-
domly choosing proteins from the non-positive genes
located in the GO annotation files. To distinguish the reli-
ability of multiple GO annotations and single GO anno-
tations, positive and negative datasets of PPI containing
2,414 protein pairs annotated by multiple GO terms were
built for BP ontology. The ROC and ROCR libraries in the
R programming language were employed to calculate the
AUCs and draw the graphs [33].

Pearson correlation analysis
Millions of gene pairs were derived from the Eisen [24]
dataset for further analysis of the correlation between
gene expression and semantic similarity. For each gene
pair, the semantic similarity scores and absolute values of
expression correlation were calculated. The well-known

Relationship of gene expression correlation and gene functional similarity in BP ontologyFigure 5
Relationship of gene expression correlation and gene functional similarity in BP ontology. This figure shows gene 
expression correlation (X axis) against gene functional similarity (Y axis) in BP ontology over 100 gene expression intervals of 
Eisen's dataset in S. cerevisiae. Various methods are compared: (a) Max, (b) Ave, (c) Tao and (d) Wang.

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

Absolute correlation values

M
ax

 s
im

ila
rit

y

( a )

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

Absolute correlation values

A
ve

 s
im

ila
rit

y

( b )

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

Absolute correlation values

T
ao

 s
im

ila
rit

y

( c )

0.0 0.2 0.4 0.6 0.8 1.0

2
4

6
8

Absolute correlation values

W
an

g 
si

m
ila

rit
y

( d )
Page 8 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:472 http://www.biomedcentral.com/1471-2105/9/472
Pearson correlation was used to calculate the expression
correlation. Based on Sevilla's [11] study, we split the gene
pairs into 100 groups with respect to the absolute expres-
sion correlation values and then calculated the average of
the correlation values and similarity scores in each inter-
val. Finally, the correlation coefficients between expres-
sion correlation and semantic similarity were computed.
In addition, our study separately covered four aspects
(ALL: considers all hierarchies of GO, BP: biological proc-
ess, MF: molecular function and CC: cellular component).
The barplot library in the R programming language was
used to visualize the correlation coefficient of all proce-
dures.
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