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Abstract
Background: Large-scale compilation of gene expression microarray datasets across diverse
biological phenotypes provided a means of gathering a priori knowledge in the form of identification
and annotation of bimodal genes in the human and mouse genomes. These switch-like genes consist
of 15% of known human genes, and are enriched with genes coding for extracellular and membrane
proteins. It is of interest to determine the prediction potential of bimodal genes for class discovery
in large-scale datasets.

Results: Use of a model-based clustering algorithm accurately classified more than 400 microarray
samples into 19 different tissue types on the basis of bimodal gene expression. Bimodal expression
patterns were also highly effective in differentiating between infectious diseases in model-based
clustering of microarray data. Supervised classification with feature selection restricted to switch-
like genes also recognized tissue specific and infectious disease specific signatures in independent
test datasets reserved for validation. Determination of "on" and "off" states of switch-like genes in
various tissues and diseases allowed for the identification of activated/deactivated pathways.
Activated switch-like genes in neural, skeletal muscle and cardiac muscle tissue tend to have tissue-
specific roles. A majority of activated genes in infectious disease are involved in processes related
to the immune response.

Conclusion: Switch-like bimodal gene sets capture genome-wide signatures from microarray data
in health and infectious disease. A subset of bimodal genes coding for extracellular and membrane
proteins are associated with tissue specificity, indicating a potential role for them as biomarkers
provided that expression is altered in the onset of disease. Furthermore, we provide evidence that
bimodal genes are involved in temporally and spatially active mechanisms including tissue-specific
functions and response of the immune system to invading pathogens.

Background
Gene expression is controlled over a wide range at the
transcript level through complex interplay between epige-
netic modifications, DNA regulatory proteins, and micro-
RNA molecules [1-3]. Genome-wide screening of
expression profiles has provided an expansive perspective

on gene regulation in health and disease. For example,
identification of constitutively expressed housekeeping
genes has aided in the inference of sets of minimal proc-
esses required for basic cellular function [4,5]. Similarly,
we have identified and annotated genes with switch-like
expression profiles in the mouse and human, using large
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microarray datasets of healthy tissue [6]. Genes with
switch-like expression profiles represent fifteen percent of
the human gene population. Classification of samples on
the basis of bimodal or switch-like gene expression may
give insight into temporally and spatially active mecha-
nisms that contribute to phenotypic diversity. Given the
variable expression of switch-like genes, they may also
provide a viable candidate gene set for the detection of
clinically relevant expression signatures in a feature space
with reduced dimensionality.

The high-dimensionality inherent in genome-wide quan-
tification makes extracting meaningful biological infor-
mation from gene expression datasets a difficult task.
Early attempts at genome-wide expression analysis used
unsupervised clustering methods to identify groups of
genes or conditions with similar expression profiles [7-9].
Biological insight can be derived from the observation
that functionally related or co-regulated genes often clus-
ter together. Supervised classification methods require
datasets in which the class of the samples is known in
advance. Statistical hypothesis testing [10,11] is used to
identify groups of genes that exhibit changes in expression
associated with class distinction. Significant genes can be
used to build decision rules to predict the class of unseen
samples [12-14]. Unsupervised classification is better
suited for class discovery whereas supervised classification
is tailored for class prediction. In both of these compli-
mentary approaches, dimension reduction can lead to
increased classification accuracy.

Many simple unsupervised learning algorithms rely on
distance metrics to either partition profiles into distinct
groups [15,16] or build clusters from pair-wise distances
in a nested, hierarchical fashion [9]. The optimal number
of clusters must be defined heuristically or in advance and
confidence in cluster membership is difficult to deter-
mine. Model-based clustering provides the necessary sta-
tistical framework to address these concerns while
allowing for class discovery. In model-based clustering, it
is assumed that similar expression profiles are generated
as draws from a set of multivariate Gaussian random var-
iables. Clusters are identified by fitting the parameters of
the cluster-specific distributions to the data. Expectation-
maximization [17-19] or Bayesian methods [20-22] are
used for optimization. Estimation of the number of clus-
ters as well as the incorporation of confidence in cluster
membership is implicit in this process.

Methods such as unsupervised, supervised and model-
based classification provide the means to evaluate switch-
like gene expression patterns in high-dimensional data-
sets profiling diverse biological conditions. For this pur-
pose, we compiled two large-scale gene expression
microarray datasets from publicly available data reposi-

tories. The first dataset included samples spanning nine-
teen different tissue types from healthy donors. The
second dataset included samples from donors with one of
a number of infectious diseases including HIV-1 infection,
hepatitis C, influenza, and malaria. Our results demon-
strate that switch-like genes exhibit tissue and disease-spe-
cific expression signatures. Dimension reduction of
genome-wide expression data through the identification
of switch-like genes enabled highly accurate classification
of samples into tissue-specific and disease-specific clus-
ters. Moreover, analysis of activated switch-like genes in
various disease and tissue types revealed that these genes
participate in specialized or temporally active mecha-
nisms. Further study of genes in the switch-like gene set
may provide biologically significant information about
the molecular basis of phenotype distinction.

Results
Three hundred bimodal genes classify nineteen tissue types 
with high accuracy in model-based classification
A model-based classification algorithm [23] partitioned a
set of 407 microarray samples into bins specific to 19 dif-
ferent tissue types (Figure 1). Classification was based
either on the expression of the complete list of 1265
human switch-like genes (Figure 1 Column 1) or a subset
of this list containing 300 bimodal genes translated into
extracellular matrix or plasma membrane proteins (Figure
1 Column 2). Additional file 1 lists the Affymetrix probe
set identifiers of the bimodal genes along with the full
gene name and the dominant mode ("on" vs. "off" or
"high" vs. "low") of expression in four tissues (brain, skel-
etal muscle, cardiac muscle and lung tissue). Heat maps
shown in Figure 1 depict the posterior pairwise probabil-
ity matrix for each pair of samples. The color of square ele-
ments of the heat maps indicate the number of partitions
in which two samples are assigned to the same cluster,
with yellow being the maximum and blue the minimum.
Rows and columns of the heat map are organized to group
samples of the same tissue type together. The figure shows
that model-based classification correctly grouped micro-
array samples into tissue-specific clusters, even for tissues
with as few as five microarray samples. Two distance-
based clustering algorithms, Kmeans and hierarchical
clustering, identified brain-specific (89 samples) and skel-
etal/cardiac muscle-specific clusters (64/38 samples,
respectively) but failed to differentiate between tissues
with smaller number of samples (Figure 1, Table 1). Con-
sistent with the heat maps shown in Figure 1, the Adjusted
Rand Index (ARI) values shown in Table 2 shows that
model-based clustering outperformed distance-based
algorithms in unsupervised classification of tissue pheno-
types. Our results indicate that a set of 300 bimodal genes
whose products localize to the cell membrane or extracel-
lular matrix compartments are determinants of tissue type
for the nineteen tissues listed in Table 1. Cell-cell/ECM
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Table 1: Microarray datasets used in this study

Tissue Phenotype Data

Tissue No. of Samples Gene Expression Omnibus/Array Express Accn. #

Adipose 10 GSE3526

Adrenal 20 GSE3526, GSE8514, GSE2316

Brain 89 GSE3526, GSE7621, GSE7307, GSE2361, E_AFMX-11, E-TABM-20,

Colon 10 E-TABM-176, GSE8671, GSE9254, GSE9452

Epidermal 25 GSE1133, GSE2361, GSE3419, GSE3526, GSE7307

Heart 38 E_AFMX-11, E-MIMR-27, GSE1133, GSE2240, GSE2361, GSE3526, GSE3585, GSE7307

Kidney 10 E_AFMX-11, GSE2004, GSE2361, GSE3526, GSE7392

Liver 10 E_AFMX-11, GSE2004, GSE3526, GSE6764

Lung 26 E-MEXP-231, GSE10072, GSE1133, GSE2361, GSE3526

Mammary 15 E-TABM-66, GSE2361, GSE3526, GSE7307, GSE7904

Muscle 64 GSE10760, GSE2328, GSE3526, GSE5110, GSE6798, GSE7307, GSE9103,

Ovary 10 GSE2361, GSE3526, GSE6008, GSE7307

Pancreas 6 GSE1133, GSE2361, GSE7307

Peripheral blood 12 GSE7462, GSE8608, GSE8668, GSE8762, GSE9692

Small intestine 7 GSE2361, GSE7307

Spleen 12 GSE2004, GSE2361, GSE3526, GSE7307

Stomach 10 GSE2361, GSE3526, GSE7307

Testis 38 E_AFMX-11, GSE1133, GSE2361, GSE3218, GSE3526, GSE7307, GSE7808

Thymus 5 GSE1133, GSE2361, GSE7307

Infectious Disease

Disease No. of Samples Gene Expression Omnibus/Array Express Accn. #

Hepititis C 147 GSE11190, GSE7123

HIV 41 GSE6740, GSE9927

Influenza A 28 GSE6269

Malaria 15 GSE5418
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interactions activate downstream transcriptional pro-
grams that regulate a diverse set of processes including
growth, proliferation, apoptosis, and cell motility [24,25]
and have often been associated with pathogenesis in mus-
cular dystrophy, multiple sclerosis, and various cancers
[26-29]. Noting that the tissue-specific sample size in the
microarray data ranged from 5 to 89 (Table 1), results
with model-based classification indicate the strength of
tissue-specific signatures in global gene expression and
the ability of bimodal genes to capture such signatures.
Results also indicate that a subset of bimodal genes whose
products are positioned either in the extracellular matrix
or cell membrane is sufficient to identify tissue-specificity
in microarray data. Given the importance of ECM and
MEM proteins in the regulation of cellular function, prod-
ucts of these genes may serve as candidate biomarkers or
therapeutic targets in tissue-specific diseases.

Enrichment analysis reveals tissue-specific functions of 
"on" genes in brain, skeletal muscle, cardiac muscle, and 
lung tissue
Binomial tests were used to identify sets of bimodal genes
biased toward the "on" mode in the tissues that are well-
represented in our microarray dataset (> 25 samples). A
gene by sample heat map (Figure 2A) shows the on-off
modes of expression for all 1265 bimodal genes in 217
samples of brain, skeletal muscle, cardiac muscle and lung
tissue. A black/white element of the heat map indicates a
gene expressed in the "on"/"off" mode in a sample. Figure
2A shows that distinct clusters of "on" and "off" genes are
observed in each of the four tissue types under considera-
tion. We identified 542, 429, 322, and 278 genes over-rep-
resented in the "on" mode and 645, 778, 830 and 896
genes over-represented in the "off" mode in brain, skeletal
muscle, cardiac muscle and lung tissue respectively. Over-
all, this figure indicates the abundance of switch genes
with altered states in different tissues, resulting in accurate
classification of tissue types using microarray data.

Functional enrichment analysis identified gene sets
related to tissue-specific function in sets of bimodal genes
expressed in the "on" mode in brain, skeletal muscle, car-
diac muscle and lung tissues. The GO categories that are
significantly enriched with bimodal genes that are "on" in
brain tissue samples included neural tissue-specific proc-
esses including neural migration, adhesion, recognition
and differentiation, nervous system development, and

synaptic transmission (Table 3). Similarly, the list of
enriched GO terms associated with skeletal and cardiac
muscle tissue samples included terms related to muscle
development and organization, muscle contraction, cal-
cium ion binding, cellular metabolism and muscle-spe-
cific structures such as the sarcoplasmic reticulum,
myofibril, sarcomere and z disc. A number of KEGG path-
ways are also enriched. The KEGG diagram summarizing
cell adhesion molecules is enriched with genes turned
"on" in brain tissue and genes turned "off" in muscle tis-
sue (Figure 2B). Several of these cell adhesion molecules,
such as CDH2, NCAM, NRXN, and NLGN, are expressed
at synaptic junctions [30]. Another subset, including
NFASC and CNTNAP2, is integral to the formation of
myelinated neurons [31]. These results indicate that genes
with bimodal expression patterns in the human genome
tend to be involved with essential functions and structures
in major tissues such as cardiac and skeletal muscle and
brain.

Model-based classification of infectious disease and 
immune response signature
Model-based clustering of bimodal gene expression led to
accurate classification of disease phenotypes in an inde-
pendent dataset of 221 microarray tissue samples profil-
ing infectious diseases. Note that only normal tissue
microarray data and not infectious disease data was used
in the original annotation of switch-like genes. The poste-
rior pairwise probability matrix derived from model-
based clustering partitioned expression profiles of periph-
eral blood mononuclear cells (PBMC) into disease-spe-
cific clusters for HIV-1 infection, hepatitis C, influenza,
and malaria (Figure 3). We focused on microarray data on
PBMCs because these cells recognize pathogen-specific
molecules in the circulation and lymphatic system and
initiate the immune response [32]. In turn, pathogen rec-
ognition induces transcriptional activation of several host
defense signaling pathways [33]. Results presented here
indicate the potential of switch-like genes in the classifica-
tion of disease states using microarray data. Furthermore,
the use of switch genes along with model-based clustering
leads to accurate classification of microarray data belong-
ing to different tissue types that are infected by the same
virus. Model-based clustering differentiated between sam-
ples of hepatitis C infection in PBMCs and liver biopsies
(Figure 3). Thus, model-based clustering captures infec-
tious disease signatures in microarray data in a tissue-spe-
cific manner.

Next, we examined the switch states of bimodal genes in
infectious disease associated microarray data. Of the 1295
bimodal genes analyzed, 192, 160, 148 and 117 genes
were expressed in the "on" mode in the majority of sam-
ples from PBMCs in hepatitis C, influenza A, malaria, and
HIV-1 infection, respectively. In liver biopsies from hepa-

Table 2: Adjusted Rand Index compares observed partitions with 
true classification of samples in tissue phenotype data

Kmeans Hierarchical Model-based

All bimodal genes 0.291 0.463 0.683
ECM/MEM genes 0.456 0.304 0.881
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Model-based clustering of bimodal gene expression identifies cohesive clusters in 19 tissue typesFigure 1
Model-based clustering of bimodal gene expression identifies cohesive clusters in 19 tissue types. Heat map rep-
resentation of posterior pairwise probabilities for classification of tissue phenotype. Left column: classification with 1265 bimo-
dal genes. Right column: classification with 300 bimodal genes translated into extracellular matrix or plasma membrane 
proteins. Top row: Model-based clustering, identifies all tissues distinctly. Middle and bottom rows: Kmeans and hierarchical 
clustering classify samples into three/four tissue types: brain, cardiac and skeletal muscle and remaining tissues. Blue, green, yel-
low, orange and red regions of color bar indicate ovary, stomach, small intestine, pancreas and thymus tissue samples respec-
tively. Tissues in the heat map were ordered according to decreasing sample size from left to right.
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Binarized expression of bimodal genes in brain, lung, skeletal muscle and cardiac muscleFigure 2
Binarized expression of bimodal genes in brain, lung, skeletal muscle and cardiac muscle. Top figure: heat map of 
1265 bimodal gene expression in 217 tissue samples. A black/white point at i, j indicates gene i is "on"/"off" in sample j. Bottom 
figure: bimodal gene expression in KEGG cell adhesion molecules diagram. Genes marked with red are "on" in brain tissue and 
"off" in muscle tissue. Genes marked with yellow are "off" in muscle tissue.
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Table 3: GO categories significantly enriched with "on" genes in brain tissue

Biological Process Cellular Component Molecular Function

▪ Neuron migration ▪ Cytoskeleton ▪ Actin binding
▪ Transport ▪ Microtubule ▪ GTPase activity
▪ Ion transport ▪ Microtubule associated complex ▪ Transmembrane receptor protein tyrosine
▪ Negative regulation of microtubule 
depolymerization

▪ Neurofilament ▪ Structural molecule activity

▪ Cell adhesion ▪ Membrane ▪ Strucutural constituent of cytoskeleton
▪ Neuron adhesion ▪ Integral to membrane ▪ Ion channel activity
▪ Transmembrane receptor protein tyrosine 
phosphatase signaling pathway

▪ Synaptosome ▪ Structural constituent of myelin sheath

▪ Synaptic transmission ▪ Cell junction
▪ Neuromuscular synaptic transmission ▪ Axon
▪ Nervous system development ▪ Growth cone
▪ Synaptogenesis ▪ Synapse
▪ Central nervous system development ▪ Postsynaptic membrane
▪ Neuron recognition
▪ Anterograde axon cargo transport
▪ Neuron differentiation

P-values < = 0.001 indicates significance.

Model-based clustering of bimodal gene expression classifies infectious disease states separately and identifies tissue-specificity in hepatitis C infectionFigure 3
Model-based clustering of bimodal gene expression classifies infectious disease states separately and identifies 
tissue-specificity in hepatitis C infection. Heat map representation of pairwise posterior probabilities derived from 
model-based clustering of infectious disease expression data. Left column: Classification of hepatitis C, HIV, influenza A, and 
malaria profiled in peripheral blood mononuclear cells (PBMCs). Right column: Classification of hepatitis C infection profiled in 
peripheral blood mononuclear cells and liver biopsies.
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titis C infected individuals, 301 bimodal genes are over-
represented in the "on" mode. Biological processes com-
monly enriched in the set of bimodal genes expressed in
the "on" mode in these diseases include B cell receptor sig-
nalling and humoral immune response involving circulat-
ing immunoglobulins (Table 4), processes that are central
in the activation of the antigen-mediated, adaptive
immune system [34-38]. Gene Ontology enrichment
analysis for switch-like genes turned "on" in HIV-1 infec-
tion indicated significant enrichment of the biological
processes of DNA methylation, translational initiation,
negative regulation of protein kinase activity, and
response to calcium (Table 4). The T-cell signaling path-
way was also significantly enriched with bimodal genes
expressed in the "on" mode in HIV-1 infection (Figure 4).
The bimodal genes in this pathway code for the mem-
brane receptor CD45 [39], kinase activator SLP-76 [40],
RAS proteins RASGRP1 and Rho Cdc42, calcium binding
protein CaN, and the transcription factor AP1 [41](Figure
4), all known to be crucial in immune defense system
against viruses. Taken together, our results suggest a signif-
icant role for a subset of bimodal genes in the host-
response to pathogens.

Supervised classification with bimodal genes capture tissue 
specific and infectious disease specific signatures in 
microarray data
A multi-class supervised classification scheme was used to
estimate whether bimodal gene expression signatures
were conserved in smaller subsets of the microarray data
used in our analysis of unsupervised classification and
whether these signatures could be captured by a subset of
just five features (Figure 5). Each dataset was split into
training and test sets in a class-proportional manner such
that two-thirds of the samples in each class were used for
training and one-third for testing. Results over 100 inde-
pendent iterations of training and testing with 5 most dis-
criminative switch-like genes are shown in Figures 6 and
7, respectively, for tissue-specific separation and infec-
tious disease classification. Prediction of tissue-specificity
was accurate in 85% of test samples for all tissues except
colon (10 samples), mammary (15 samples), small intes-
tine (7 samples) and testis (38 samples). Microarray sam-
ples from small intestine tissue were predicted to be either
muscle tissue or pancreatic tissue in 30% and 24% of test
samples respectively, suggesting the persistence of cell-
type-specific expression signatures in heterogeneous tis-

Table 4: GO categories significantly enriched with "on" genes in infectious disease

Biological Process Cellular Component Molecular Function

▪ Immune response1, 2, 3, 4, 5 ▪ B cell receptor complex1, 2, 4, 5 ▪ Antigen binding1, 2, 4, 5

▪ Humoral immune response by circulating 
immunoglobin1, 2, 4, 5

▪ Immunoglobulin complex, circulating1, 2, 4, 5 ▪ Succinate dehydrogenase activity2,3,4

▪ Positive regulation of B cell proliferation1, 2, 4, 5 ▪ Perinuclear region of cytoplasm1, 2, 4, 5 ▪ RNA binding3

▪ Early endosome to late endosome transport1, 

2, 4, 5
▪ External side of plasma membrane1,4 ▪ Structural constituent of cytoskeleton3

▪ Positive regulation of peptidyl-tyrosine 
phosphorylation1, 2, 4, 5

▪ Membrane fraction4,5 ▪ Protein binding3

▪ B cell receptor signaling pathway1, 2, 4, 5 ▪ Cytoplasm3,5 ▪ Electron-transferring-flavoprotein
▪ Activation of MAPK activity1, 2, 4 ▪ Cytoskeleton3 ▪ dehydrogenase activity5

▪ tRNA aminoacylation for protein 
translation1,4

▪ Actin cytoskeleton3 ▪ Endopeptidase inhibitor activity5

▪ Antigen processing and Presentation1,4 ▪ Extracellular region5 ▪ Structural molecule activity5

▪ DNA methylation3 ▪ Proteinaceous extracellular matrix5 ▪ Extracellular matrix structural constituent5

▪ Translational initiation3 ▪ Collagen5

▪ Negative regulation of protein kinase activity3

▪ Defense response3

▪ Inflammatory response4

▪ Hemocyte development4

▪ Cell-cell adhesion4

▪ Pyridine nucleotide biosynthetic process4

▪ Respiratory burst4

▪ Response to calcium ion3,4

▪ Tricarboxylic acid cycle5

▪ Cell adhesion5

▪ Blood coagulation5

▪ Sensory perception of sound3,5

P-values < = 0.001 indicate significance in malaria, influenza A, hepatitis C-PBMCs and hepatitis C-Liver. P-values < = 0.01 indicate significance in 
HIV. 1malaria, 2influenza A, 3HIV, 4hepatitis C-PBMC, 5hepatitis C-liver
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sue samples. Notably, 14% of testis samples were misclas-
sified as ovary, indicating a subset of bimodal genes may
be similarly expressed in reproductive organs of the male
and female. In the case of infectious diseases, multi-class
supervised classification separated microarray samples
from HIV-1 infection, hepatitis C and malaria well but it
has allocated 22% of the influenza microarray samples to
the bin for hepatitis C (Figure 6). These results indicate
that tissue-specific and disease-specific bimodal gene
expression profile signatures are largely conserved in inde-
pendent data and can be captured with as few as five fea-
tures.

We used simulated microarray data in order to gain
insights on which parameters of supervised classification
are determinant of the classification accuracy in datasets

considered in this study. Supervised classification of sim-
ulated gene expression profiles illustrated the strong
dependence of prediction accuracy on sample size, extent
of separation between bimodal peaks and the number of
informative genes. Classification accuracy generally
improved as expression profiles became more bimodal.
Increased sample size and decreased number of informa-
tive genes also resulted in more accurate classification.

Discussion
Development and subsequent commercialization of
microarray platforms has led to extensive investigation of
global gene expression profiles in health and disease.
Expression profiling of diverse healthy tissues provides a
comprehensive perspective of the range of transcriptional
regulation under physiologic conditions [42-44]. Simi-

Bimodal genes that were switched "on" as a result of HIV infection in KEGG T-cell receptor signalling pathwaysFigure 4
Bimodal genes that were switched "on" as a result of HIV infection in KEGG T-cell receptor signalling path-
ways. Bimodal genes marked with red are "on" in the KEGG T-cell receptor signaling pathway in HIV infection.
Page 9 of 18
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Effect of sample size, separation and number of informative genes on classification of simulated expression dataFigure 5
Effect of sample size, separation and number of informative genes on classification of simulated expression 
data. Classification accuracy is measured with the area under the receiver operating characteristic curve, which plots 1-specif-
icity versus sensitivity as shown. Expression data was simulated controlling for the separation between classes, the number of 
samples and the number of genes related to class distinction.

Parameters 

- Separation parameter ( 1- 2/
2)

- Regression coefficients ( )
- Number of samples (n)  
- Number of genes (p) 
- Number of significant genes (M)  
- Number of selected features (N) 
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larly, identification of gene expression signatures indica-
tive of disease subtypes improves our understanding of
the molecular basis of pathology [7,8,45]. Small sample
size and the large number of measurements for each sam-
ple are among the limiting factors that hinder the effec-
tiveness of gene expression profiling and drive the
development of new analytical methods.

Unsupervised clustering of microarray data classifies sam-
ples in an unbiased manner according to similarity in
gene expression profiles. Adaptation of model-based clus-
tering to low sample size, high dimensional datasets [23]
and formalization of statistical approaches for selecting
the optimum number of clusters [46] represent significant
advances. In this study, we used these advanced methods
to cluster and classify infectious disease and tissue pheno-
types in large scale microarray data using a reduced set of

1265 switch-like genes [6,47]. Switch-like genes are iden-
tified through the detection of bimodal gene expression
patterns across diverse biological conditions. Switch-like
genes are likely to be under strict transcriptional regula-
tion and are statistically enriched for cell membrane and
extracellular proteins [47].

We demonstrated that model-based clustering of switch-
like gene expression patterns differentiates between tissue
phenotypes in a microarray dataset with tissue-specific
sample sizes ranging from 5 to nearly 100. Because
model-based clustering operates on the assumption that
samples are drawn from multivariate Gaussian distribu-
tions, the method is particularly well-suited for the analy-
sis of bimodal gene expression profiles. Distance-based
unsupervised classification methods such as Kmeans and
hierarchical clustering also led to accurate classification

Classification accuracy in supervised clustering of tissue phenotypesFigure 6
Classification accuracy in supervised clustering of tissue phenotypes. Values equal the proportion of true class versus 
predicted class membership over 100 iterations of training and testing. Values representing correct classification are outlined in 
bold.
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for tissues with large sample sizes (> 25) but had little dif-
ferentiation potential at small sample sizes. The decrease
in classification accuracy observed with the use of dis-
tance-based clustering may be due to estimation of the
number of clusters via the gap statistic [46]. Incorporating
optimization of the number of clusters into the model fit-
ting process likely improves the performance of model-
based clustering [48,49] such that tissue types with
smaller sample sizes are resolved into separate clusters.

A set of 300 bimodal genes expressed on the extracellular
matrix or the plasma membrane is sufficient to accurately
differentiate between nineteen different tissue types in
model-based clustering even at 5 microarray samples for
tissue type. This set of genes includes those that code for
membrane-bound integrin proteins and ECM proteins
belonging to collagen, laminin, and fibronectin families.
Genes expressed in the "on" mode in brain tissue and the
"off" mode in muscle tissue largely coded for neural-spe-
cific cell adhesion molecules. Supervised classification has
the potential to further reduce the set of 300 bimodal
genes to biomarker sets when considering biomarkers for
tissue-specific diseases. Accurate classification with the
subset of bimodal genes presented in this article demon-
strate the importance of cell/ECM interactions in tissue
differentiation [25] and will prove useful as a priori knowl-
edge in the analysis of microarray data produced by differ-
ent laboratories.

Our study showed that the bimodal gene set identified
using microarray data associated with healthy tissue is
highly effective in differentiating between microarray data
from tissues infected by various infectious diseases such as
the HIV-1 infection, hepatitis C, influenza and malaria.
The classification was unsupervised and the disease signa-
ture was conserved across laboratories. Moreover, bimo-
dal gene sets differentiated between liver and blood cell
tissues infected with the same hepatitis virus. The identifi-
cation of bimodal genes expressed in the activated state in
various infectious diseases and subsequent enrichment
analysis with KEGG pathways provide biological context
to the perturbation of various cell signaling networks
induced by invading viruses. In the infectious disease
states investigated here, bimodal genes expressed in the
"on" mode were related to both innate and antigen-medi-
ated immune responses.

It should be noted that other gene sets determined by fea-
ture selection may be even more discriminative of the
phenotypes included in this analysis than the switch
genes under consideration. Our intent in this study was
not to identify discriminative genes but rather to use
unsupervised clustering to determine whether switch-like
expression patterns are associated with phenotype and
whether previously identified switch-like genes could be
used a priori to reduce the feature space in microarray
analysis. The large body of evidence presented in this
work points to the success of switch-like gene sets in cap-
turing biologically-relevant gene expression signatures
from microarray data.

Given the demonstrated biological relevance of bimodal
expression patterns, it would be worthwhile to determine
the clinical relevance of switch-like gene annotation. Iden-
tification of bimodal genes expressed in the activated state
in complex diseases such as autism, diabetes and cancer
may provide a method for dimension reduction in the
identification of disease-related single nucleotide poly-
morphisms (SNPs) [50] and expression quantitative trait
loci (eQTL) [51,52] in genome-wide association studies.
Both gene sequences and promoter regions of bimodal
genes expressed in the high mode identified from large
scale microarray data could be searched for SNPs and
eQTL linked to the onset of disease or disease progression.
Further studies are needed to investigate the full potential
of clinically relevant classification using switch-like gene
annotation from microarray data.

Conclusion
In this study, we showed that a priori knowledge gained
from compilation of large-scale microarray datasets from
multiple laboratories containing at least 400 samples for
each gene in the array could be successfully used in reduc-
ing the dimension of features in microarray analysis. We

Classification accuracy in supervised clustering of infectious diseaseFigure 7
Classification accuracy in supervised clustering of 
infectious disease. Values equal the proportion of true 
class versus predicted class membership over 100 iterations 
of training and testing.
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reduced dimensionality by focusing on a set of genes with
bimodal expression patterns, i.e. genes that adopt either
an "on" or "off" mode of expression and are tightly regu-
lated at the transcript level. Detection of bimodality using
expectation maximization revealed a list of 1265 bimodal
genes in the human genome. A subset of 300 bimodal
genes was sufficient to differentiate between nineteen dif-
ferent tissue signatures even in small sample sizes. These
genes code for proteins either on the cell membrane or at
the extracellular matrix. Such proteins can be identified in
tissue using fluorescence, Q dots and other methods and
as such are candidate biomarkers for specific tissues.

The set of bimodal genes are capable of capturing infec-
tious disease signatures from microarray data correspond-
ing to hepatitis C, influenza, HIV-1 infection and malaria.
Disease-specific expression patterns of bimodal genes sug-
gest that infection by different pathogens may initiate dif-
ferent host responses mediated by switch-like gene
expression. Determination of "on" and "off" states of
switch-like genes in various tissues and diseases allowed
for the identification of activated/deactivated pathways
that are consistent with existing research data. Classifica-
tion accuracy was exceptional even with class-specific
sample sizes between ten and twenty arrays. The use of a
priori knowledge from public microarray datasets in the
form of bimodal gene sets has clinical implications in dis-
ease subtype classification. Genome-wide association
studies for SNP discovery linked to complex diseases such
as autism and cancer could potentially benefit from
dimension reduction by focusing on regions of DNA that
code for switch-like genes and their promoter regions.

Methods
Datasets
Microarray datasets used in this study were compiled from
the online public repositories Gene Expression Omnibus
(GEO) [53] and Array Express (AE) [54] as described in
additional file2. All datasets were profiled on the
HGU133A or its recently expanded version, the
HGU133plus2 Affymetrix platforms. The datasets used in
the study are shown in Table 1. Accession numbers of
arrays used in this study are listed in Additional File 3 with
corresponding phenotype information.

Normalization
Datasets were first filtered such that only the 22,277 probe
sets common to both the HGU133A and HGU133plus2
platforms were retained. Reference robust multi-chip
averaging (refRMA) [55] was used for normalization.
RefRMA is an adaptation of the classic RMA approach [56]
that is better suited for large datasets. RMA background
adjustment was applied to each array and then the arrays
were normalized by fitting probe level intensities for each
chip to an empirical distribution obtained by applying
quantile normalization to an 800-array training set [47].

Probe affinity effects were estimated by median polishing
on the training set and used to adjust the normalized
probe level measures. Following these steps, probe set
expression values were derived from the median value of
constituent probe level intensities.

Probe set annotation
Probe sets were annotated using Entrez Gene ID, Ensembl
accession number, gene symbol, Gene Ontology terms
[57] and KEGG pathways [58]. Gene identifiers and gene
ontology terms were obtained from the HGU133plus2
annotation information on the Affymetrix website in
March 2008. KEGG pathway annotations were obtained
from the KEGG ftp site on April 28th, 2008.

Identification of bimodal genes
Bimodal genes were identified in expression data of
healthy tissues using a statistical method previously
applied in the detection of switch-like behavior among
mouse [47] and human [6] genes. The expectation maxi-
mization method thus employed has also been used to
detect bimodality in blood glucose concentrations
[59,60]. For each gene, we tested the hypothesis that the
expression distribution fits a two-component Gaussian
mixture model versus the null hypothesis that expression
follows a single normal distribution. To correct for skew-
ness observed in expression profiles, we used the box-cox
transformation [61] as described in detail in our previous
work [6,47]. The distribution of box-cox parameters over
all genes was centered at zero and approximately nor-
mally distributed, suggesting that the degree of skewness
is small for a majority of genes. Parameters of the two-
component mixture model were fit using expectation
maximization [62]. Parameters of the single normal distri-
bution were estimated from gene-specific sample means
and standard deviations. The modified log-likelihood
ratio test statistic -2logλ was used to reject the null
hypothesis. As in our previous work [6,47], p-values were
generated by evaluating the chi-square distribution with
six degrees of freedom at the values of the test statistic.
Genes with p-values less than 0.001 were selected as can-
didate bimodal genes. This subset of switch-like genes was
further reduced by restricting the standardized area of
intersection between the distributions of the component
Gaussians to 10 percent [47]. This reduction assured
bimodality with significant distance between the two
peaks, resulting in a list of 1265 bimodal genes. A subset
of 300 bimodal genes was obtained by identifying genes
with either plasma membrane and/or extracellular mem-
brane among their cell compartment GO categories.

Identification of "on" genes in brain, skeletal muscle, 
cardiac muscle, lung and infectious disease phenotypes
Bimodal gene expression values were binarized by defin-
ing a gene-specific threshold at the intersection of the
probability density functions of the two-component mix-
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ture models [47]. Expression values above this threshold
are described as "high" or "on". Bimodal genes in the "on"
state in a majority of samples of a given phenotype were
identified using a Bernoulli process [47]. Each observa-
tion or sample was modeled as an independent trial. Suc-
cess was defined as expression in the "on" mode. P-values
were calculated from the binomial distribution with an
equal probability of success and failure. A value of p < =
0.01 indicates a significant association between bimodal
gene expression and phenotype.

Functional Enrichment
Gene sets characterized by KEGG pathways and GO terms
were analyzed to identify functional categories enriched
in sets of bimodal genes biased to the "on" or "off" mode
in healthy and disease phenotypes. We assessed the
enrichment of functional gene sets by comparing the
number of "on" or "off" genes observed in a particular
functional group to the number expected by chance [63].
The hypergeometric test was used to assign significance to
the enriched functional gene sets. In functional enrich-
ment, p-values less than 0.001 were considered signifi-
cant.

Distance-based clustering
Two distance-based clustering algorithms, Kmeans [64]
and hierarchical clustering [9], were implemented in the R
statistical environment in order to classify tissue samples
into groups with similar expressions of bimodal genes. In
both cases, we used Euclidean distance as the distance
metric. In our implementation of Kmeans, we ran ten iter-
ations with different initial cluster centroid locations and
retained the cluster partition associated with the minimal
within-cluster sum of squares. In hierarchical clustering,
we used complete linkage to define the distance between
clusters and observations [65]. A single cluster solution
was obtained from the resulting dendrogram by cutting
the tree at a level which produced the desired number of
clusters. In both of these algorithms, the data-driven opti-
mal number of clusters was determined using the gap sta-
tistic, as described below.

Definition of the number of clusters in distance-based 
clustering

The optimal number of clusters  in distance-based clus-
tering was determined with the use of the gap statistic

[46]. The gap statistic tests the null hypothesis that  = 1
i.e. no clusters. Towards this goal, we compared the
within-cluster sum of squares to its expected value under
the reference null distribution, generated from a uniform
distribution aligned with the principal components of the
data [46]. Expression data was clustered into k groups (k =
1, 2,... 25) using either Kmeans or hierarchical clustering
as described above. A set of B reference datasets were gen-

erated by drawing samples from the reference distribution
and clustered in the same manner. The gap statistic (Gapk)

was calculated as:

in which Wkb *, (b = 1, 2,... B and k = 1, 2,... 25) and Wk are

within-cluster sums of squares of the reference and
observed datasets respectively. The estimated number of

clusters  is the smallest value k at which:

Gapk ≥ Gapk+1 - sk+1 (2)

and sdk is the standard deviation of log(Wkb*).

Model-based subspace clustering
A model-based clustering algorithm [23], developed for
the analysis of comparative genomic hybridization data,
was used to cluster tissue samples on the basis of bimodal
gene expression. In this approach, clusters are identified
by finding an optimal partition of samples into K groups
defined by cluster-specific multivariate Gaussian distribu-
tions. It is assumed that clusters can be differentiated by
shifts in the mean expression values for a subset of genes
and samples. Each sample is modeled as follows:

yi = μ + ri × δi + εi (4)

in which yi is the expression value in sample i, μ is a vector
of mean expression values over all samples, ri ∈ (0,1)m

indicates the relevant genes, δi is a vector of mean shifts
and εi is a vector of the variance in expression values. Clus-
ter-specific parameters Θ = (ri, δi) are sampled from a
baseline distribution f0 in a Polya urn scheme or Chinese
restaurant process as described by Hoff:

where fn-1 is the empirical distribution of Θ1,..., Θn and α
is a constant. This process potentially results in less than n
unique draws from the baseline distribution and therefore
naturally leads to clustering. Parameters of the model are
fit from the data using a Gibbs sampling algorithm [23].
We ran the model-based clustering algorithm [23] in the
R statistical environment on 25 parallel Markov chains
with 250 iterations each. We found that each chain
quickly converged to equally likely, unique solutions,
indicating a multi-modal posterior distribution. To obtain

K̂

K̂

Gap B W Wk kb k

b

= ( ) ( ) − ( )∗∑1 log log (1)
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s sd Bk k= +( / )1 1 (3)
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an approximation of the true posterior distribution, we
took the average of the cluster partition with the highest
log-likelihood from each chain as reported elsewhere
[20,21].

Pairwise posterior probabilities
Given a set of clusters obtained from Gibbs sampling, the
probability that two observations belong to the same class
is approximated by the proportion of clusters in which
they are grouped together [66]. For each pair of samples,
the pairwise posterior probability matrix was calculated
as:

in which ci (i = 1,..., n samples) is a vector indicating
which cluster sample i is assigned to. Although the pair-
wise posterior probability is a useful measure in itself, it
does not provide a single cluster partition. For this pur-
pose, a distance metric (Dij) was defined from the pairwise
posterior probabilities equal to Dij = 1 - Pij [64]. A unique
cluster partition can then be found using the complete
linkage method, such that cluster objects are maximally
separated between clusters.

Quantifying the agreement between observed clusters and 
known phenotype
In this study, clustering algorithms were applied to data in
which the true class membership of all samples was
known a priori. The Adjusted Rand Index (ARI) was used
to measure the amount of agreement between the known
and estimated class membership [19,22]. Given two par-
titions of n observations U = (u1,..., uR) and V = (v1,...,
vC), where U indicates the cluster partition and V indi-
cates the true class, the Adjusted Rand Index can be calcu-
lated from the contingency table of the two partitions
(Table 5). An element nij of the contingency table equals
the number of observations in cluster i of class j. Row
sums of the contingency table are equal to ni. and column
sums are equal to n.j. With this notation, the Adjusted

Rand Index is calculated by the formula below and takes
a value of 1 when the two partitions agree completely and
a value of 0 when the index equals its expected value i.e.
the partitions are no better than random.

Supervised Classification
A multi-class supervised learning scheme was used to clas-
sify tissue samples on the basis of bimodal gene expres-
sion. In binary classification of microarray data, training
data was used to rank features by a two-class test statistic
[67]. Discriminative genes were selected from the top of
this ranked list. A decision rule associated with class dis-
tinction in the set of training samples was defined on the
basis of the expression of the selected genes. The decision
rule was then evaluated on an independent set of samples.
To extend the supervised learning scheme to multiple
class problems, we trained separate classifiers to identify
tissue samples of each class vs. all others [68]. Results are
based on 100 independent iterations of the following
training and testing procedure. Prior to classification,
datasets were divided into training and testing sets in a
class-proportional manner such that two-thirds of the
samples in each class were used for training and one-third
for testing. For the jth classifier (j = 1,..., number of
classes), training samples in class j were assigned to class
1. All other samples were assigned to class 0. Discrimina-
tive bimodal genes were identified from the training data
according to the ratio of within class to between class
sums of squares [67]. Diagonal linear discriminant analy-
sis was used to define the distances between test sample i
and samples in class 0 (dco) and class 1 (dc1), respectively
[67]. A confidence measure, defined from 0 to 1, was cal-
culated as dco/(dco+dc1). Values close to 0/1 indicate low/
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Table 5: Contingency table comparing two partitions

v1 v2 < vC

u1 N11 N12 < n1C n1.

u2 N21 N22 < n2C n2.

< < < < <

uR nR1 nR2 < nRC nR.

n.1 n.2 < n.C n.. = n
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high confidence that test sample i belongs to class j. Con-
fidence measures were compared from each classifier and
test sample i was assigned to the class associated with the
highest confidence.

Simulated Data
Synthetic data was used to determine the effect of sample
size, effect size and the number of informative genes on
prediction accuracy in binary classification. In silico
expression datasets consisted of 10, 20, 30, 50, or 100
observations/arrays and 1000 features/genes. Initially, a
binary vector indicating the class membership of each
observation was drawn from a binomial distribution
B(n,0.5). A number of 5, 10, 20, 50, or 100 informative
gene expression profiles were drawn from a pair of multi-
variate normal distributions N1(μ1, Σ) and N2(μ2, Σ) rep-
resenting each class of observations. Non-informative
expression values representing noise genes were drawn
from a mixture of N1 and N2 with mixing probabilities of
1/2 from each distribution. A diagonal covariance matrix
(Σ) was used to simulate independent expression values.
Effect size was measured by a separation parameter
defined for each gene, specifically the distance in class-
specific means divided by the pooled variance. Three
effect sizes (6, 2, 1) were investigated. We used logistic
regression, implemented in the stats package in the R sta-
tistical environment, to generate the response variable
that indicates class membership from the expression data.
Regression coefficients associated with the informative
genes were drawn from a uniform distribution U(0.1,1).
By logistic regression, the probability that the ith observa-
tion is class 1 is given by πi:

in which β1 ... βM are the defined regression coefficients
and x1, i ... xM, i are the expression values of the informative
genes in the ith observation [69]. The simulated dataset
was completed by drawing the response variable yi on the
basis of πi (yi = 1 iff πi > 0.5). In this manner, the relation-
ship between the jth gene and the response variable yi can
be specified exactly (i.e. the value of β), independent of
the sample distribution of gene j.
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