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Abstract

Background: An important emerging trend in the analysis of microarray data is to incorporate
known pathway information a priori. Expression level "summaries" for pathways, obtained from the
expression data for the genes constituting the pathway, permit the inclusion of pathway
information, reduce the high dimensionality of microarray data, and have the power to elucidate
gene-interaction dependencies which are not already accounted for through known pathway
identification.

Results: We present a novel method for the analysis of microarray data that identifies joint
differential expression in gene-pathway pairs. This method takes advantage of known gene pathway
memberships to compute a summary expression level for each pathway as a whole. Correlations
between the pathway expression summary and the expression levels of genes not already known
to be associated with the pathway provide clues to gene interaction dependencies that are not
already accounted for through known pathway identification, and statistically significant differences
between gene-pathway correlations in phenotypically different cells (e.g., where the expression
level of a single gene and a given pathway summary correlate strongly in normal cells but weakly in
tumor cells) may indicate biologically relevant gene-pathway interactions. Here, we detail the
methodology and present the results of this method applied to two gene-expression datasets,
identifying gene-pathway pairs which exhibit differential joint expression by phenotype.

Conclusion: The method described herein provides a means by which interactions between large
numbers of genes may be identified by incorporating known pathway information to reduce the
dimensionality of gene interactions. The method is efficient and easily applied to data sets of ~102
arrays. Application of this method to two publicly-available cancer data sets yields suggestive and
promising results. This method has the potential to complement gene-at-a-time analysis techniques
for microarray analysis by indicating relationships between pathways and genes that have not
previously been identified and which may play a role in disease.

Background duce data sets containing expression levels of tens of
Advances in microarray technology have permitted the  thousands of genes for tens or hundreds of samples, and
monitoring of gene expression in cells with known phe-  thus the analysis of such high-dimensional data is of con-
notypic differences. These experiments commonly pro-  siderable interest.
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In the most basic analyses, two sets of data (e.g., from dis-
ease and normal tissue) are examined for differential gene
expression though statistical testing (including t-tests and
empirical Bayes approaches) followed by multiple-com-
parison corrections. Common testing techniques have
been reviewed [1,2]. A drawback to these methods results
from the fact that each gene is examined individually,
despite the fact that there exist well-established biological
relationships between genes; typically, pathway informa-
tion is incorporated after differentially expressed genes
have been identified (as reviewed [3]). Multi-gene effects
are often contemplated through the use of cluster analysis
[4-6], which attempts to identify associated groups of
genes, or gene-set enrichment analyses [7,8], which iden-
tifies sets in which differentially expressed genes are over
represented. As with single-gene approaches, gene interac-
tions for which the marginal distributions of the individ-
ual genes are similar may be missed by these analyses.

Recent work [9,10] addresses this common drawback by
examining the expression of gene pair combinations and
identifying gene pairs for which the joint association dif-
fers in two phenotypes. Dettling and coworkers [10] pro-
pose a scoring function to flag differential correlation
between genes; for instance, situations in which the two
genes show correlated expression in normal cells but
show anti-correlated expression in tumor cells would be
noted, despite the fact that the marginal distributions of
the individual gene expression levels may be indistin-
guishable. In contrast to the cluster and enrichment anal-
ysis techniques mentioned above, the analysis is not
restricted to single differentially expressed genes; rather,
all possible gene pairs are explored for phenotype-related
dependencies and interactions. This method, which
showed promising results on several datasets [10], has the
power to suggest heretofore unknown interactions
between gene pairs which may have biological relevance
in the phenotypes of interest.

In this work, we expand the aforementioned techniques
[9,10] to incorporate existing biological knowledge by
considering known pathways rather than individual
genes. In order to reduce the dimensionality of the prob-
lem, we employ principal component analysis to define a
summary expression level for the genes known to be
involved in a given pathway. The method presented here
searches for gene-pathway pairs for which a phenotype-
conditional correlation exists between the gene expres-
sion level and the pathway summary expression level.
Measures of the reliability of the pathway summary
expression level are obtained, and significance of the phe-
notype-conditional correlation differences is assessed
through permutation testing.

http://www.biomedcentral.com/1471-2105/9/488

A related analysis has been proposed by Li [11-13], which
searches for pairs of genes (or two orthogonal projections
of a gene set) that are mediated by a third gene. Ho and
collaborators showed [11] that if the mediating variable is
binary (e.g., representing phenotype rather than disease
expression), the Liquid Association score proposed by Li
is formally equivalent to the correlation score propsed in
[10]. The method we propose applies similar mathemati-
cal principles to an independent problem, namely, find-
ing gene-pathway pairs which are driven by phenotype.

In this paper, we detail the methodology illustrated above
and apply it to a public-domain gene expression data set
consisting of normal and tumor prostate cell samples [14]
as well as to gene expression data from lung adenocarci-
noma and squamous cell carcinoma [15]. Several promis-
ing results are obtained for genes that were not previously
identified as having differential expression in the normal
and tumor samples, suggesting that this novel analysis
technique has the potential to reveal new interactions.
Because of the efficiency and scalability of this technique,
it is well suited to the large data sets produced in modern
microarray experiments.

Results and discussion

Algorithm

We wish to identify gene-pathway pairs (G, P) for which
there exists a pronounced difference in association
between phenotypes. In order to reduce the dimensional-
ity of the pathway data, we employ principal component
analysis to define a one-dimensional summary p, of the
expression values of the genes in the pathway P for sample
k. Relationships between pathway summary expressions p
and individual gene expressions g (for which the gene is
not already a known member of the pathway) may then
be compared between two phenotypes. This method has
the advantage of succinctly accounting for expression lev-
els across whole pathways, and has the potential to indi-
cate interactions between genes and pathways that have
not yet been identified.

Simulated cases of interest are illustrated in Fig. 1. Here,
the x-axis is the summary expression level for the pathway
as a whole (p), and the y-axis is the expression level for the
gene (g). Two different situations are depicted: in the top
figure, a strong correlation in gene and pathway expres-
sion in the first phenotype is lost in the second pheno-
type; and in the bottom figure, a strong positive
correlation in gene and pathway expression in the first
phenotype is replaced with an anticorrelation in the sec-
ond phenotype. Biologically, such cases could arise in sit-
uations where the gene plays a role related to a pathway,
and for which the alteration of this interaction affects the
phenotype.
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Joint differential expression examples. Example loss-of-correlation plots. Red crosses indicate one hypothetical pheno-
type; black circles, another hypothetical phenotype. (a) loss of correlation; (b) a reversal of correlation.
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We identify cases such as those illustrated in Fig. 1 by
computing a simple score for each gene-pathway pair,
using a measure of pairwise dependence p(g, p) among
the gene and pathway-summary expressions. By restrict-
ing this measure to just the samples from each phenotype
and obtaining class-conditional correlations py(g, p), o1 (&
p) for phenotypes 0 and 1 respectively, we can define the
Gene-Pathway Correlation Score (GPC-score, Sip) as the
absolute value of difference between these:

Scrc(8 p) = |p1(8 P) - po(8 D). & 2 Gps (1)

where G, is the set of all genes in the pathway of interest.
The gene-pathway pairs (g, p) which lie at the high end of
the distribution are flagged as potentially similar to the
examples in Fig. 1. For a given pair, it is possible to per-
form a permutation test to assess the probability that the
observed score Sip(g, p) would have appeared had there
been no association between the correlations p and the
phenotypes.

Implementation

Here we detail the critical steps of the algorithm: selection
and summarization of pathways, computation of Sipc(g,
p), and identification and significance testing of high-scor-
ing pairs. The steps were implemented using the R lan-
guage for statistical computing [16,17], and an R package
called GPCscore containing the necessary functions is
available [see Additional file 1].

Pathway summarization

Annotations from the Kyoto Encyclopedia of Genes and
Genomes (KEGG [18]) were used to associate the genes
with known pathways. For each pathway, we define the
pathway expression summary as the first principal com-
ponent of the pathway genes' expressions, computed from
the matrix of expression values of the genes included in
that pathway. For sample k, the projection of the gene
expression data along the first principal component pro-
vides a single value p, which we use as the summary
expression level for the pathway in sample k.

Principal component analysis (PCA) is a dimension
reduction technique that produces a set of independent
axes (principal components) as linear combinations of
the original variables such that the greatest variance in the
data comes to lie on the first axis (the first principal com-
ponent), the second greatest variance along the second
principal component, and so forth [19]. In practice, the
principal component basis set is computed by singular
value decomposition of the data. This permits the major-
ity of the variation of a set of coordinates (here, expression
levels of the genes in the pathway) to be summarized by
the lowest order principal components, thus reducing
dimensionality in a dataset while retaining those charac-
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teristics that most contribute to the variance. An alterna-
tive, but less numerically stable approach is to perform
eigen decomposition of the covariance matrix; the vari-
ance projected along each component is given by the
square of the eigenvalue. A complete discussion of PCA
may be found in [19,20].

PCA has recently been proposed as a means by which to
assess collinearity in pre-defined gene sets [21] by com-
puting the number of principal components required to
capture a given threshold of variance. Here, we exploit the
putative collinearity in gene pathways: for each pathway
defined by KEGG, the first principal component of the
expression of the participating genes (PC1) was computed
and kept as a summary of the expression of the genes com-
prising that pathway. Pathways for which the PC1 was not
a meaningful descriptor of the overall activity were
excluded at this point, as described below.

Pathway inclusion criteria

Because of the information loss inherent in reducing the
expression levels of a collection of genes to a single figure,
pathways for which the proportion of variance carried by
the PC1 was less than an arbitrarily set threshold were
considered to be inadequately described by the PC1 alone
and excluded. In practice we required the proportion of
variance carried by the PC1 to exceed 0.60.

Additionally, the (normalized) phenotype-conditional
principal component basis vectors were checked for com-
parability by using a dot-product. Those with non-parallel
class-conditional PCl1s were flagged as having within-
pathway differences resulting from differential expression
of some subset of pathway components. While such cases
may be of biological interest, these pathways could not be
meaningfully compared on a common basis, and so were
excluded from further analysis by this technique.

The minimum dot-product threshold was chosen by sim-
ulating the distribution of pathway PC1 dot-products in
phenotypically similar samples. Specifically, the data
from 50 normal prostate tissue samples was split at ran-
dom into two groups, and the PC1 dot-products for each
pathway were computed between the two groups; this
resampling was carried out 103 times. It was found that
fewer of than 5% (0.042) of resampled dot-products fell
below 0.9, suggesting that 0.9 is a reasonable expectation
of parallelism.

Pathways with compatible basis vectors (i.e., those for
which the class-conditional PC1 basis vectors had dot-
products exceeding 0.9) were retained for further analysis,
and the projection of each sample's expression data onto
the first principal component of the pathway was com-
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puted, thus providing a summary expression level p, in
each sample k for each pathway P .

Gene-Pathway correlations

To address phenotype-related differences in gene-pathway
interactions, correlations between gene expression levels
and pathway summary expression levels were examined.

For each gene-pathway pair, Spearman's rank correlation
was computed separately within each phenotype, and the
absolute value of the difference between phenotypes
Scrc(g p) (Eq. 1) was considered. Spearman correlation is
not strongly influenced by outlying samples, and has the
benefit of being invariant to monotonic transformations
of the data. Pairs for which the gene under consideration
was also an element of the pathway were excluded, as our
interest lies in the interplay between pathways and genes
not already known to be associated with the pathway.
Additionally, to limit the number of pairs for which high
Scpc is attributable to strong diffrential expression in gene
g, pairs in which the gene of interest has a univariate t-test
FDR exceeding a user-set threshold may be excluded.

Gene-pathway pairs meeting the above criteria which had
large Scpc(g p) values were chosen as relevant. The distri-
bution of Sipc(g p) in the prostate data may be seen in

o
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e |
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-15 -1.0 -05 0.0 0.5 1.0 1.5
Difference in Tumor/Normal Correlation Coefficients
Figure 2

Distribution of gene-pathway correlation loss, pros-
tate data. Distribution of loss of correlation between nor-
mal and tumor samples (ie, signed S¢pc) in the prostate data
set (red) and 6 permutation resamplings (black) of all pairs.
While not exhaustive, the few resamplings show a much nar-
rower distribution centered around zero; none of the resam-
pled pairs exhibited values exceding S = 0.9. By contrast, the
observed distribution is wider, and biased towards loss of
correlation in tumor samples with respect to normal sam-
ples.
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Fig. 2. In addition, we required flagged pairs to have a
gene-pathway correlation approaching what would be
expected of an interacting pair in at least one of pheno-
types, as described below.

Pathway Coherence

The GPC-score is motivated by the reasoning that if a gene
g interacts with a pathway P, it will exhibit a high correla-
tion with the summary expression level for that pathway
in biologically normal cells. We examined the strength of
this assumption by taking known pathways, treating a
gene g, of that pathway as "unknown," calculating the

pathway summary expression level p_, — for the pathway

without gp, and then computing a "within-pathway corre-

lation"

p(&p/P—g,) &p€Gp (2)

where G is the set of all genes comprising the pathway.

We expect that the distribution of |p (gp p_,, )| is high

relative to that of |p (g, P)|, § ¢ Gp; indeed, a nonparamet-
ric (Wilcoxon rank-sum) test using the normal prostate
data revealed a significantly higher (p < 2.2-10-1¢) loca-
tion of the in-path correlations versus the out-of-path cor-
relations.

We can define the "pathway coherence" C, as the average
absolute value of the within-path correlations

Cp=|p(8p:P—g, | 8&p<€Gp, 3)

where the bar denotes an arithmetic mean across all genes
in the pathway. We expect that, for most pathways, the
coherence is high relative to a similar average of p(g, p)
across genes unrelated to the pathway, as shown in Fig. 3a.
To ensure biologicaly representivity, it is best to measure
pathway coherence in data from normal or wildtype tis-
sue; indeed, the pathway coherence is systematically
lower in tumor tissue in both data sets tested, as illustrated
in Fig. 3b.

The distribution of p(gp, p_, ) within a given pathway is

used to select high Sp pairs such that the correlation p(g,

p) in one of the phenotypes is similar to or stronger than
the correlations exhibited by genes already known to play
arole in that pathway. In practice, this is achieved by com-

puting the quantile of |p (g, p_g, )| in which |p (g, p)|

would fall and setting a threshold quantile above which |p
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Figure 3

Pathway coherence in normal prostate samples. (a) Q-Q plot of mean correlation across all genes for each pathway vs.
coherenece for each pathway. Pathway coherence has a much broader distribution; in particular, pathway coherence exceeding
0.7 is much more common than the average gene-pathway correlation (across all genes not on the pathway). (b) Pathway
coherence vs. pathway length for normal prostate (black circles) and prostate tumor (red crosses) samples; pathway coher-
ence is systematically lower in tumor samples.
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(g p)| exhibits sufficiently strong correlation to be consid-
ered a likely pathway candidate.

Significance testing

Once pairs of interest are selected, the significance of the
phenotype-conditional correlation difference Sqp(g p)
for a given gene-pathway pair may be assessed via permu-
tation. By constructing data subsets that include only the
genes of interest (the chosen gene and those on the path-
way), resampled computations of S'¢p (8 p) under ran-
dom permutations of the phenotype labels can be
performed in a targeted way with relatively small memory
requirements and computational overhead. The permuta-
tion replicates are likewise subject to the constraint that
the class-conditional PC1 vectors be parallel, and repli-
cates that fail this are not counted; i.e., the permutation
provides the null distribution of S¢p given that the class-
conditional pathway projections are comparable.

Because of the large number of pairs (~10°), a resampling
of all gene-pathway pairs is possible only for a relatively
small number of complete sets; however, this is sufficient
to estimate a null distribution of Sip(g, ). In our appli-
cations, this is much narrower than the observed distribu-
tion (cf Fig. 2). We estimate that the probability of
observing a value Sgpc (g, p) > 0.86 to be less than 10-6. As

expected, the resampled distribution peaks at Sgpc (g 9)
= 0.000, while the peak is at Sgpc(g p) = 0.040 for the

observed distribution.

Application and Testing

The utility of the described method is illustrated by appli-
cation to two publicly-available data sets. The first data set
comprises 52 tumor and 50 normal prostate tissue sam-
ples hybridized to Affymetrix HG-U95A chips [14], pro-
viding expression levels for 12625 genes. Data were
normalized using gc-RMA [17,22] and expressed on a log,
scale. The second is a lung cancer data set of 160 samples,
of which 139 samples were adenocarcinoma and 21 sam-
ples were squamous cell carcinoma [15]. As with the pros-
tate data, the lung data were also derived from Affymetrix
HG-U95A chips monitoring 12625 genes; in this case,
data were normalized using RMA [17] and expressed on a
log, scale.

The KEGG pathway database [18] was used to establish
biologically related gene subsets as described above. Of
the 177 pathways identified from the genes represented
on these arrays, 4 were trivial (i.e., had only a single probe
represented) and were eliminated from further analysis; of
the 173 remaining, the median number of genes per path-
way was 27, and the maximum was 386.

http://www.biomedcentral.com/1471-2105/9/488

For each pathway, the first principal component basis vec-
tor (PC1) was computed conditioned on phenotype.
Because we are primarily interested in gene-pathway pairs
which exhibit joint differential expression between the
two phenotypes, it is necessary to ensure that the pathway
PCls are comparable between the two phenotypes; the
two class-conditional PC1s were considered sufficiently
parallel for dot products with an absolute value > 0.9, as
described above. In the prostate cancer data set, 11 path-
ways exhibited nonparallel PC1 vectors; in the lung cancer
data set, 50 did. As a further criterion, only those path-
ways for which the first principal component represented
60% or more of the total variance were considered in fur-
ther analysis (pathways with less were considered poor
candidates for summarization by a single value).

In the prostate cancer data set, 81 passed this criterion; in
the lung cancer data set, only 38 did.

Projections of each sample's gene expression profile onto
the PC1 for the remaining pathways were computed,
resulting in pathway expression summary values. Correla-
tion coefficients for gene-pathway pairs were computed as
column-wise operations on two matrices (genes vs. sam-
ples and paths vs. samples) for each phenotype, and the
GPC-Score Sgpe(g p) (Eq. 1) was calculated. The compu-
tation of all Sgp values (after normalization) requires
under 300 CPU-seconds, of which 10% was system time,
in an interactive R [16,17] session on a 1.5 GHz PowerPC
G4 with 768 MB memory.

The overall reduction in gene-pathway correlation
amongst the prostate tumor samples with respect to the
normal prostate samples can be seen in the density plots
given in Fig. 2. Gene-pathway pairs were selected on the
basis of high S¢pc(g, p), excluding pairs for which gene g
is known to be a member of pathway P. (Differential path-
way-summary expression levels between phenotypes may
be assessed using a t-test in a manner analagous to exam-
ining differential gene expression. Bonferroni-adjusted p
values for six nontrivial paths with significant differential
summary expression in the prostate data set are given in
Table 1; however, we focus in this paper on gene-pathway

Table I: Differential pathway expression

KEGG ID Pathway description N (genes) p
00061 Fatty acid biosynthesis 6 103
00510 N-Glycan biosynthesis 33 0.019
00460 Cyanoamino acid metabolism 10 0.021
00430 Taurine and hypotaurine metabolism 10 0.023
00642 Ethylbenzene degradation 14 0.038
00930 Caprolactam degradation I 0.045

Pathways with differential PC| expression levels between prostate
normal and prostate tumor tissue at p < 0.05 (unpaired t-test).
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pairs rather than differentially expressed pathways.)
Gene-pathway pairs for which the expression correlation
in one of the phenotypes was above the median of the
within-pathway correlation distribution were considered
likely candidates for a gene-pathway interaction (as
described above). Of those, the gene-pathway pairs with
the highest Sip values from each data set are summarized
in Tables 2 and 3 for the prostate and lung data, respec-
tively.

High SGPC pairs in sample data sets

Prostate data

In the prostate cancer data set, 867492 gene-pathway pairs
were eligible for inclusion using the criteria laid out

Table 2: High Sgpc pairs, prostate

http://www.biomedcentral.com/1471-2105/9/488

above, with median Sipc of 0.09 and Sp¢ values over 1
falling in the 0.999-th quantile of the distribution; the
median loss of correlation between the normal and tumor
sets (i.e., without taking the absolute value in Eq. 1) was
0.03, indicating that the correlations tend to be higher in
the normal samples than in the tumor samples.

At the high-S¢; end of the distribution in the prostate
data, the gene-pathway pairs tend to exhibit similar loss-
of-correlation patterns between the tumor and normal
phenotype; in most cases, a strong correlation between
the gene and the pathway is lost in the tumor samples,
particularly at low values of gene expression. In all flagged
cases, a subset of the tumor samples behave as normal.

Affy HGU95 ID Gene symbol KEGG ID Pathway description Sepc p
39637_at SLC26A2 00300 Lysine biosynthesis 0.928 <le-04
39799 _at FABP5 00300 Lysine biosynthesis 0.829 <le-04
39794_at USP8 00300 Lysine biosynthesis 0.824 <le-04
40773_at MYL5 00300 Lysine biosynthesis 0.82 <le-04
40027 _at ATP5S 00300 Lysine biosynthesis 0.814 le-04
32001 _s_at PCSKé 04742 Taste transduction 0.807 <le-04
32001 _s_at PCSKé6 00600 Sphingolipid metabolism 0.799 <le-04
32001 _s_at PCSKé 05110 Cholera — Infection 0.798 le-04
41275_at E2F5 00300 Lysine biosynthesis 0.798 3e-04
32001 _s_at PCSKé 00604 Glycosphingolipid biosynthesis — ganglioseries 0.786 <le-04
32001 _s_at PCSKé 00061 Fatty acid biosynthesis 0.771 <le-04
32001 _s_at PCSKé 00290 Valine, leucine and isoleucine biosynthesis 0.771 <le-04
39945_at FAP 00300 Lysine biosynthesis 0.768 6e-04
32001 _s_at PCSKé 03060 Protein export 0.765 <le-04
38571 _at FGFRIOP 04740 Olfactory transduction 0.76 <le-04
32001 _s_at PCSKé 00190 Oxidative phosphorylation 0.751 <le-04
38571 _at FGFRIOP 00440 Aminophosphonate metabolism 0.749 <le-04
40176_at TRIM27 00625 Tetrachloroethene degradation 0.742 <le-04
38571 _at FGFRIOP 04630 Jak-STAT signaling pathway 0.739 <le-04
38571 _at FGFRIOP 04020 Calcium signaling pathway 0.737 <le-04
38571 _at FGFRIOP 00150 Androgen and estrogen metabolism 0.734 <le-04
38571 _at FGFRIOP 04930 Type Il diabetes mellitus 0.733 <le-04
32001 _s_at PCSKé 00930 Caprolactam degradation 0.732 le-04
38571 _at FGFRIOP 04340 Hedgehog signaling pathway 0.73 3e-04
38571 _at FGFRIOP 00860 Porphyrin and chlorophyll metabolism 0.728 2e-04
32001 _s_at PCSKé 00903 Limonene and pinene degradation 0.728 <le-04
38571 _at FGFRIOP 04650 Natural killer cell mediated cytotoxicity 0.724 2e-04
38571 _at FGFRIOP 04810 Regulation of actin cytoskeleton 0.721 le-04
38571 _at FGFRIOP 01510 Neurodegenerative Disorders 0.721 <le-04
40925_at C70rf44 00300 Lysine biosynthesis 0.72 le-04
38571 _at FGFRIOP 04660 T cell receptor signaling pathway 0.719 <le-04
861_g at MSH2 03020 RNA polymerase 0.713 <le-04
38571 _at FGFRIOP 00903 Limonene and pinene degradation 0.712 <le-04
38571 _at FGFRIOP 00290 Valine, leucine and isoleucine biosynthesis 0.711 2e-04
38571 _at FGFRIOP 04920 Adipocytokine signaling pathway 0.71 <le-04
38571 _at FGFRIOP 00930 Caprolactam degradation 0.708 0.0013
32001 _s_at PCSKé 00471 D-Glutamine and D-glutamate metabolism 0.707 <le-04
38571 _at FGFRIOP 00140 C21-Steroid hormone metabolism 0.706 le-04
38571 _at FGFRIOP 00562 Inositol phosphate metabolism 0.704 <le-04
38571 _at FGFRIOP 00604 Glycosphingolipid biosynthesis — ganglioseries 0.702 7e-04

High-ranking gene-pathway pairs in prostate data, sorted by descending Sgpc. Affymetrix ID, gene symbol, KEGG pathway ID, and pathway
description are given, along with the GPC scores; p values are based on a permutation test with 104 resamplings.
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Table 3: High Sgpc pairs, lung

http://www.biomedcentral.com/1471-2105/9/488

Affy HGU95 ID Gene symbol KEGG ID Pathway description Sepc p
38835_at TMOISFI 00900 Terpenoid biosynthesis 0.621 5e-04
41129_at TMEM4IB 00900 Terpenoid biosynthesis 0.603 0.0017
39405_at UTPI14C 00900 Terpenoid biosynthesis 0.58 0.0015
32150_at GOLGA4 00900 Terpenoid biosynthesis 0.558 0.0049
1394_at RHOA 00900 Terpenoid biosynthesis 0.534 0.0039
326_j_at RPS20* 03010 Ribosome 0.507 0.0015
39009_at LSM3 03050 Proteasome 0.484 0.0053
37748_at KIAA0232 00900 Terpenoid biosynthesis 0.477 0.0022
33859_at SAPI8 00900 Terpenoid biosynthesis 0.463 0.0072
31853_at EED 03050 Proteasome 0.462 0.0105
38668_at GPATCHS8 00900 Terpenoid biosynthesis 0.461 0.0064
40140_at RNF103 00900 Terpenoid biosynthesis 0.456 0.0077
34326_at COPBI 00900 Terpenoid biosynthesis 0.45 0.0083
33880_at ACSL3 00900 Terpenoid biosynthesis 0.441 0.0119
40623_at UBE3B 00900 Terpenoid biosynthesis 0.422 0.0093
33423_g at SECI3 03050 Proteasome 0.411 0.0089
37891 _at YIPF6 00900 Terpenoid biosynthesis 0.408 0.0105
41159 _at CLTC 00900 Terpenoid biosynthesis 0.408 0.0193
35845_at SEC24B 00900 Terpenoid biosynthesis 0.405 0.0179
32051 _at ALGS8 00900 Terpenoid biosynthesis 0.397 0.0139
39336_at ARF3 00900 Terpenoid biosynthesis 0.385 0.0131
40115_at ATP5CI 03050 Proteasome 0.384 0.0138
38811 _at ATIC 03050 Proteasome 0.378 0.0188
40411 _at NCOA6 00900 Terpenoid biosynthesis 0.377 0.0117
1985_s_at NMEI 03050 Proteasome 0.369 0.0073
35760 at ATP5H 03050 Proteasome 0.356 0.0178
35290_at YTHDF3 00900 Terpenoid biosynthesis 0.348 0.0033
40605_at SNX4 00900 Terpenoid biosynthesis 0.348 0.0163

High-ranking gene-pathway pairs in lung data, sorted by descending Sgpc. Affymetrix ID, gene symbol, KEGG pathway ID, and pathway description
are given, along with the GPC-scores; p values are based on a permutation test with 104 resamplings. *The 326_i_at-Ribosome pair was included in
the analysis due to the absence of annotation data for 326_i_at, but is correcly identified by the analysis as related; see the Results section.

The decorrelated tumor samples almost always result
from tumor gene expressions above (rarely below) the
normal gene expressions. Sample gene vs. pathway
expression plots are given in Fig. 4 to illustrate this sce-
nario. For the flagged pairs listed in Table 2, p-values were
obtained through 10% random permutations of the
tumor/normal labels; for the majority of flagged pairs,
none of the 104permutations produced a difference in
correlation values greater than or equal to the observed
Scpes suggesting p < 104 with an accuracy (based on the
binomial 99% confidence interval) of 5.3 - 10-4; the high-
est p-value obtained was p = 0.0013.

It should be noted that the distributions of Sipc by path-
way and by gene are quite dissimilar in the prostate data;
consider, for instance, variance of Sgpc within each gene
(over all pathways) and within each pathway (over all
genes). Distributions of Var(S|g) and Var(S|p) from the
prostate data set are presented in Fig. 5. It is readily appar-
ent that pathways exhibit larger variation in Sgpc than do
genes, suggesting that the expression of individual genes,
rather than pathways, are typically responsible for the
observed loss of correlation. Put another way, if a given

gene-pathway pair is implicated in a loss of correlation, it
is common for that same gene (but not pathway) to be
implicated in other flagged pairs (as is the case in Table 2);
in a heat map image of S across genes and pathways, this
would be exhibited by the appearance of stripes. (A
threshold FDR value of 0.05 for differential expression the
genes g was chosen to ensure that marginal distributions
of g are similar between phenotypes and limit the number
of high S¢p pairs which are driven by highly significant
differential expression of a single gene.)

The biological significance of the flagged genes and path-
ways are of interest. At the top of the list, solute carrier fam-
ily 26 (SLC26A2), a membrane sulfate transporter,
appears. Evidence exists that SLC26A2 may be involved in
the sensitivity of tumor cells to chemotherapy [23]. The
FGFR1 oncogene partner (FGFR10OP), which occurs 19
times in the top 40 pairs, encodes a largely hydrophilic
protein which is thoughy to play a role in proliferation
and differentiation [24]. FGFR1OP has been found to be
a marker for lung cancer progression, but has so far shown
little association with prostate cancer [25,26]. Proprotein
convertase subtilisin/kexin type 6 (PCSK6) is a member of a
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Figure 4
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High S pairs, prostate data. Sample plots of gene expression vs. pathway expression in normal (black circles) and tumor
(red crosses) prostate samples. Loess curves (solid line) and least squares linear fits (dashed line) for the two classes are given
as a visual guide. Marginal distributions of the data are given as rug plots (black, inward for normal samples; red, outward for
tumor samples). From top to bottom: (a) ubiquitin specific peptidase 8 (USP8) vs. lysine biosynthesis pathway (Sgpc = 0.824);
(b) FGFRI oncogene partner (FGFRIOP) vs. Jak-STAT signaling pathway (Sgpc = 0.739); (c) mutS homolog 2, colon cancer
(MSH2) vs. RNA polymerase pathway (Sgpc = 0.713).
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Variance of S by genes/pathways. Variance in S among genes (a) and among pathways (b) in prostate data. Variance within
genes is much smaller than in pathways, suggesting that high S will tend to be reproduced for other pairs involving the same

gene.
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proprotein convertase family that processes latent precur-
sor proteins into their biologically active products;
amongst its targets are TGFf proteins, which are consid-
ered to have a crucial role in tumorigenesis [24] (while
Scpc is high for the PCSK6-TGFf pathway pair (0.79) the
loading criteria of 0.6 is not met for the TGFS pathway).

A greater diversity of pathways is represented; amongst
those which appear multiple times are several biosynthe-
sis pathways, some of which are found to be differentially
regulated in other cancers [27], as well as several degrada-
tion pathways. For instance, the limonene and pinene
degradation pathway, which appears twice, has been sug-
gested by other studies as playing a potential role in pros-
tate cancer [28], and its expression may be sensitive to
molecules with anticancer activity [29]. Pathways which
are known to be involved in carcinogenesis and cell pro-
liferation, including JAK-STAT signaling, RNA polymer-
ase, and hedgehog pathways, are also represented.

It may reasonably be asked whether the decorrelated
points come from the same samples for all gene-pathway
pairs; i.e., if a subset of the samples are outliers by all such
criteria. Fig. 6(a,b) provides a suggestion that this is not
the case (the points may be compared vertically due to the
common x axis), and this is readily checked by a joint
gene expression plot, Fig. 6(c). As with the gene-path
plots, a subset of the tumor samples is observed to behave
as the normal samples; in fact, the correlation is similar
enough between the tumor and normal samples that Cor-
Score [10] is not particularly high. Yet, it is clear that there
exist samples (exclusively from tumor cells) which exhibit
particularly high expression levels for one, but not the
other, gene; from this we may conclude that the out-of-
correlation points do not originate from the same samples
for the cases depicted in Fig. 6, and that the mechanisms
responsible for overex-pression in one gene are not the
same as that in the other.

Lung data

In the lung cancer data, 113522 gene-pathway pairs were
eligible for inclusion, with median Sgp; of 0.17. Twenty-
eight pairs at the high end of the S distribution for the
lung data are given in Table 3. Plots exemplifying the loss
of correlation seen in the lung data set are given in Fig. 7.
The SCC samples appeared to behave as a subset of aden-
ocarcinoma samples; the breadth of the adenocarcinoma
samples is unsurprising, given the challenges posed by
subclassification within lung adenocarcinomas [15]. As
with the prostate data, 104 resamplings were used for sig-
nificance testing.

In contrast to the flagged prostate pairs, those from the
lung data are dominated by few paths and many genes,
most notably the proteasome (which is responsible for

http://www.biomedcentral.com/1471-2105/9/488

protein degradation) and terpenoid biosynthesis. (The
Wnt signaling, TGFf, and hedgehog pathways did not
meet the loading criteria in the lung data.)

Most interestingly, the probe 326_i_at appears in con-
junction with the ribosome pathway amongst high-S¢p¢
pairs. In fact, 326_i_at is a probe for the ribosomal protein
RPS20 [30] (and hence is part of the ribosome pathway);
the absence of this annotation in the Bioconductor
HGU95AV2 package permitted its inclusion despite the
fact that it fails the g ¢ G, criterion. As a result, the
326_i_at was treated by the analysis as if it were not part
of the ribosome pathway, yet it was clearly identified as a
gene of interest with respect to the ribosome pathway, for
which the expressions are correlated in normal and aden-
ocarcinoma samples but not in squamous cell carcinoma.
As such, the 326_i_at-Ribosome pair represents a strong
example of the sort of pairs which this method is designed
to identify. The plot given in Fig. 8 shows the statistically
significant 326_i_at-Ribosome correlation that is present
in adenocarcinoma and normal lung samples, but not in
squamous cell carcinoma samples.

Conclusion

We presented a method for finding relationships between
the expression of a gene and that of a known pathway,
that are changed across phenotypes. This method defines
the expression of a known pathway via a summary value
based on principal component analysis. The correlation
between the pathway summary expression level and the
expression levels of each individual gene is compared
across phenotypes to search for interesting gene-pathway
pairs. Our approach allows one to efficiently and scalably
examine even millions of such pairs. By restricting analy-
sis to pathways for which the first principal components
can be meaningfully compared and to genes which do not
show differential expression by themselves, higher-order
gene interactions may be compared between phenotypes.
Gene-pathway pairs for which there is a significant disrup-
tion in the correlation across the phenotypes may be
flagged. Our approach may be a useful complement to
gene-at-a-time analysis; the difference is that in single-
gene analyses only the expression of that gene and the
phenotype are typically considered, while in ours we con-
sider jointly the gene in question, all the genes in a path-
way, and the phenotype.

This procedure was applied to prostate and lung cancer
data sets with several promising results. The flagged pairs
from this analysis serve as examples of the utility of this
method, indicating losses of correlation between gene-
pathway pairs for genes which did not exhibit statistically
significant differences in single-gene analyses. In addition
to suggesting heretofore unknown interactions which
could be followed up in biological studies, the method
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Decorrelations do not come from the same samples. Plots of (a) sulfate transporter (SLC26A2) vs. lysine biosythesis
pathway; (b) fatty acid binding protein (FABP5) vs. lysine biosythesis pathway; (c) fatty acid binding protein (FABPS5) vs. sulfate
transporter (SLC26A2). Loess curves and rug plots are given as in Fig. 4. Comparison of the plots reveals that the tumor cell
samples responsible for the loss of correlation in sulfate transporter vs. lysine biosynthesis are not those which also exhibit
loss of correlation in fatty acid binding protein vs. lysine biosythesis; it is clear from (c) that amongst tumor samples, high levels
of expression in one gene do not necessarily correspond to that in the other, suggesting that the outlying points in plots (a, b)

do not originate with the same sample.
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Figure 7
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High Sgpc pairs, lung data. Sample plots of gene expression vs. pathway expression in adenocarcinoma (black circles) and
squamous cell carcinoma (red crosses) of the lung. Loess curves (solid line) and least squares linear fits (dashed line) for the
two classes are given as a visual guide. Marginal distributions of the data are given as rug plots (black, inward for adenocarci-
noma samples; red, outward for SCC samples). From top to bottom: (a) coatomer protein complex (COPBI) vs. terpenoid
biosynthesis pathway (Sgpc = 0.450); (b) Ribosomal protein S20 (RPS20, 326_i_at) vs. ribosome pathway (Sgpc = 0.507); (c)
Sec|3-like protein (SECI3) vs. proteasome pathway (Sgpc = 0.411).
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Figure 8

RPS20 vs. Ribosome pathway summary. Plot of RPS20 (Affymetrix probe 326_i_at) vs. pathway summary expression for
the ribosome pathway (not including RPS20) for normal lung (black filled circles), lung adenocarcinoma (red open circles), and
squamous cell carcinoma of the lung (green crosses); dashed lines depict corresponding least-squares linear fits. A statistically
significant correlation exists in normal and adenocarcinoma samples, but not in squamous cell carcinoma samples.

identified a known interaction which had been over-
looked in the annotation, suggesting that biologically
meaningful associations can be found with this approach.

A concern which follows naturally from these findings is
whether, rather than being pathway specific, the pathway

summaries may represent trends in the overall dataset. In
our implementation, this is an unlikely situation due to
the small proportion of genes that are involved in any par-
ticular pathway: there are 4252 genes that are associated
with any pathway, but the largest pathway meeting the
selection criteria in either data set (the Wnt pathway)
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comprises 184 genes. Accordingly, the projection of the
"global" PC1 onto any single pathway is small and any
pathway PC1 would be a poor descriptor of trends in the
overall dataset. Nonetheless, it is possible that artifacts
adding variability to the samples may affect many path-
way summaries in similar ways. The risk of this can be
reduced by careful normalization and preprocessing.

While the KEGG database [18] was used as a basis for the
PCA summarization in our examples, the method can in
principle be implemented with any definition of gene
groupings for which the first principal component would
be a meaningful descriptor. The use of PCA in this method
constitutes an improvement over simpler approaches
(such as averaging the correlation between the gene of
interest and each of those on a given pathway) in that it
permits the weighing of pathway genes such that those
with greater variation contribute more strongly to the
final result.

The use of the first principal component as a summary of
pathway expression may be further exploited to examine
coordination of pathway activity under different condi-
tions. Measuring pathway-pathway correlations is one
such approach, although overlap of pathway components
may potentially complicate the interpretation of the
results. Another option would be to use a gene set enrich-
ment algorithm [7,31], where, for each pathway P, the
gene scores S¢pc are used to identify other pathways which
are enriched for genes having differential correlation with
pathway P. This could indicate phenotype dependent
pathway coordination.

Future applications of this method could include analysis
by cancer grade or prognosis; for gene-pathway pairs
which have a clear correlation in normal samples, it may
be possible to use deviations from the normal fit as a way
of characterizing tumor samples (which could in turn be
used as a basis for cluster analysis in much the same way
that gene expressions are presently employed). Identify-
ing samples with significant disruption of these relation-
ships may prove valuable in understanding the genetic
basis for the observed clinical differences in prostate can-
cers, possibly opening avenues for more specific therapeu-
tic intervention.

Abbreviations

PC: Principal Component; PCA: Principal Components
Analysis; GPC: Gene/Pathway Correlation; SCC: Squa-
mous Cell Carcinoma.
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