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Abstract
Background: The Structural Descriptor Database (SDDB) is a web-based tool that predicts the
function of proteins and functional site positions based on the structural properties of related
protein families. Structural alignments and functional residues of a known protein set (defined as
the training set) are used to build special Hidden Markov Models (HMM) called HMM descriptors.
SDDB uses previously calculated and stored HMM descriptors for predicting active sites, binding
residues, and protein function. The database integrates biologically relevant data filtered from
several databases such as PDB, PDBSUM, CSA and SCOP. It accepts queries in fasta format and
predicts functional residue positions, protein-ligand interactions, and protein function, based on the
SCOP database.

Results: To assess the SDDB performance, we used different data sets. The Trypsion-like Serine
protease data set assessed how well SDDB predicts functional sites when curated data is available.
The SCOP family data set was used to analyze SDDB performance by using training data extracted
from PDBSUM (binding sites) and from CSA (active sites). The ATP-binding experiment was used
to compare our approach with the most current method. For all evaluations, significant
improvements were obtained with SDDB.

Conclusion: SDDB performed better when trusty training data was available. SDDB worked
better in predicting active sites rather than binding sites because the former are more conserved
than the latter. Nevertheless, by using our prediction method we obtained results with precision
above 70%.

Background
In the post-genomic era, functional identification of pro-
teins and their interactions became an essential step for
the understanding of the molecular machinery of the cell.
Advances in structural genomics and proteomics [1-3] are
producing a huge amount of information. Structural
information is useful for inferring the protein biochemi-
cal function because often this function is strongly corre-

lated with the protein 3D structure [4-6]. Moreover,
structural properties can be useful for detecting a set of
special amino acids that is strongly related to function.
These amino acids are the protein functional residues, e.g,
active site and binding site residues. Functional residues
are the key players in protein-protein interactions and in
protein-ligand interactions. Some recent studies have
sought to find the common maximal set of functional res-
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idues for related proteins [7-14]. Those studies aimed at
finding ligand functional sites may have a major impact
on drug discovery development [15].

Protein-ligand interactions can be solved by assessing the
co-crystallized ligand structure. Nowadays, there are sev-
eral applications for this purpose. One such application is
LigBase [16], a 3D ligand-binding database derived from
the Protein Data Bank (PDB) [17]. In LigBase, a ligand-
binding site is an amino acid with at least one atom
within 5 Å from a ligand atom. There are many other
applications based on the same principle, including PDB-
SUM [18], BindingDB [12], and PLD [13]. On the other
hand, protein-protein interactions are hard to solve
because large protein complexes are often more difficult
to crystallize than protein-ligand complexes [19-22].
However, when functional residues of a protein family are
known, they can be used to predict the function of related
proteins. Identifying these residues from amino acid
sequences alone would be useful for the understanding of
the interactions of proteins with no 3D structure defined.

In order to predict functional sites in proteins with
unknown function, the PROSITE database [23] uses a
method based on regular expressions [24] (ScanProsite
[25]) to detect functional site patterns and profiles within
proteins with unknown function. In addition, Henschel
and colleagues [22] presented a method based on hidden
Markov models (HMM) [26-28] to predict functional sites
in both protein-ligand and protein-protein interactions.
Their research compiled sequential segments that consti-
tuted structural features of an interaction site into a hid-
den Markov model, namely the HMM descriptor. In their
study, each Multiple Sequence Alignment (MSA) that rep-
resents a protein family generates fragments according to
the position of functional residues, and for each fragment
an HMM is built. Segmented HMMs are merged into one
final HMM by their linking with insert states. This final
HMM is called the HMM descriptor. Collection of HMM
descriptors can be used to screen sequence databases by
predicting functional site positions. Henschel and col-
leagues [22] focused on the protein-protein functional
site predictions, but they also evaluated ligand-binding
descriptors for the ATP-binding.

Herein, we present a method based on hidden Markov
models (HMM) that uses functional sites of known lig-
and-protein interactions to predict functional sites in
query sequences. Our method was based on the study
done by Henschel et al [22], with some differences. First,
we built the HMM from full MSAs rather than from func-
tional sites of MSA segments. Second, HMMs for the pre-
diction of functional residues were trained with both
multiple sequence alignments based on structural align-
ments and with column alignments which corresponded

to functional residue positions. Third, our approach
focused on predictions of protein-ligand functional sites
rather than predictions of protein-protein functional sites.
The ligand-binding residues are likely to be important in
many applications such as in designing small molecular
inhibitors for drug discovery. Finally, we developed a
web-accessible database, called Structural Descriptor
DataBase (SDDB) that uses our prediction method and
allow the detection of functional sites, biological activity,
and of ligand interactions in query sequences.

The SDDB was built with information from several data-
bases, namely the PDB [17], SCOP [29], PDB-SUM [18],
and CSA [30]. Each family in the SCOP database was asso-
ciated with a library of HMM descriptors. We selected
1,902 SCOP families and 70,215 PDB entries. Functional
sites were obtained from PDBSUM (binding-ligand resi-
dues) and from CSA (active-ligand residues). Structural
alignments were derived from the 3DCOFFEE aligner
[31]. We used the HMMER package [32] for building
HMM descriptors. We also built a user friendly website to
turn both the database and the functional site prediction
method available to anyone interested http://
www.sddb.lncc.br. In this website, query sequences can be
scored by using a library of HMM descriptors. The SCOP
classification, functional residue positions, and ligand
binding interactions are considered in order to indicate
the sequence most likely function. Also, SDDB contains
links to all related databases, which allows the user to
have immediate access to additional information on the
protein of interest.

Results and discussion
In order to validate our prediction method, we performed
experiments using three different data sets. We started by
assessing one specific family, namely the Trypsion-like
Serine proteases. Next, we assessed the remaining SCOP
families. Finally, we compared our results with those on
the ATP-binding study done by Henschel and colleagues
[22]. In the first experiment, the functional residue posi-
tions were defined from protease study [33]. In the second
and third experiments, the functional residue positions
were extracted from the PDBSUM and the CSA databases.
In the first and second experiments we wanted to assess
our prediction method when both data was available,
curated data supplied by expert knowledge and auto-
mated data calculated from computational methods, as
done previously by others [34-36].

Trypsion-like Serine proteases data set
In our first experiment, we only considered SCOP
sequences from the Trypsion-like Serine protease family.
We selected a total of 39 proteins. Sequences were sepa-
rated into 8 groups, according to ligand specificity. These
groups are Chymotrypsin, Elastase, Granzyme, Thrombin,
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Urokinase, Trypsin, Plasminogen Activator, and a hybrid
group formed by Procarboxypeptidase A-S6 subunit III,
Granzyme K, and Neuropsin. Table 1 shows for each
group the PDB identify, chain, start residue and end resi-
due that refer to the PDB coordinate file for each protein
selected. Also, table 1 shows alignment identity for each
group.

We performed cross validation by applying the leaving
one out method [37], in each group. First, training set
sequences were aligned using the 3DCOFFEE tool [31].
Next, for each alignment, positions of binding site align-
ment and of active site alignment were defined, according
to [33]. HMM descriptors were built using both align-
ments and alignment-columns, which corresponded to

Table 1: Groups of Trypsion-like Serine protease.

Group name PDB-Ids Chain Start Residue End Residue Alignment identity

Chymotrypsin 1gmc A 1 245 52%
1cho E 1 245
1azz A 16 246
1eq9 A 16 244

Kallikrein 1ao5 A 16 246 32%
1op8 A 16 246
1aut C 16 243
1bqy A 16 245G
1lo6 A 16 243
1eax A 16 244
1m9u A 16 242

Granzyme 1euf A 16 243 62%
1iau A 16 244
1fi8 A 16 244

Thrombin 1bth H 16 242 47%
1id5 H 16 244
1etr H 16 247
1fjs A 16 244

1h8d H 16 246
1fxy A 16 246
1gvk B 16 245
1pfx C 16 245
1rfn A 16 245

Urokinase 1fiw A 16 254 43%
1fiz A 16 257
1fv9 A 1 244

Trypsin 1d6r A 16 245 73%
1mct A 16 245
1slu B 16 245
3tgi E 16 245

1h4w A 16 246
1hj8 A 16 245
1trn A 16 246

Plasminogen activator 1a5i A 1A 244 46%
1bda A 1A 244
1gvz A 16 246

Hybrid group 1fon A 9 240 29%
1mza A 14 248
1npm A 16 243

Group name, PDB coordinates details, such as PDB-Id, chain, start residue, and end residue of each protein used in first experiment. In addition, the 
later column shows the identity of alignment of each protein group.
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the residues of the functional sites. These HMM descrip-
tors were used for screening and predicting functional res-
idue positions in the test-sequence set.

Table 2 reports precision and recall values for each group,
for e-values > 1. The Trypsion-like Serine protease experi-
ment achieved an average of 99.61% of precision and
99.62% of recall, when predicting the active site. Regard-
ing the binding site predictions, this experiment achieved
an average of 98% of precision and 97% of recall. These
results show that active site residues are more conserved
than binding site residues. Therefore, HMM descriptors
performed better when active sites were assessed. Also, we
assessed protein function prediction by classifying test-
sequence according to the SCOP database. As a result,
100% of the proteins were correctly classified into the
SCOP class, fold, super family, and family. Additionally,
97.1% was classified into its correct domain.

SCOP data set
The second experiment was performed considering the
SCOP families selected for this study (see Method section
for election criterion), with the exception of the Trypsion-
like Serine protease family. A total of 1,901 families were
selected. Similarly as in the first experiment, we per-
formed cross validation by applying the leave one out test
[37]. Sequences in each family were separated into groups
according to their ligand interactions. Training sequences
were aligned using 3DCOFFEE [31]. Binding and active
site alignment positions were obtained by running an
algorithm that recognizes functional ligand residues in
alignments, as explained in Methods. Next, HMM descrip-
tors were built using both alignment and functional lig-
and positions. Finally, each HMM descriptor was used for
screening, predicting, and classifying a test-sequence.

The SCOP families experiment achieved precision of 84%
and recall of 70.8%, in predicting the active site. For bind-
ing site prediction, precision and recall were 78% and
57%, respectively. As observed in the first experiment, our
methodology obtained better results in predicting active
sites rather than in predicting binding sites. Indeed, active
site residues are more conserved than binding residues.
Therefore, we applied different levels of tolerance when
defining an alignment column into a binding or active
site. For instance, we set as binding site columns those
that presented more than 50% of their binding residues
aligned, whereas for active sites columns we required 80%
of active residues aligned. These parameter settings nar-
rowed the active site predictions because they decreased
the number of false positives that could be incorporated
in the training data, which in turn increases precision. The
recall also increases because fewer cases of false negatives
are incorporated in the active site column.

We assessed the classification with respect to the SCOP
database, and found that all proteins were correctly classi-
fied into the SCOP class, fold, super family, and family.
Around 96% of the proteins were classified into their cor-
rect domain.

ATP-binding data set
We compared our results with those obtained by Hen-
schel and colleagues [22]. For that, we assessed HMM
descriptors performance for the particular study of the
ATP-binding site. We considered 94 SCOP families in
which a ATP-ligand or ADP-ligand was present, totalizing
10,520 sequences. Notice that their tests were performed
on SWISS-PROT [38] database, and they used 36,774
sequences, while we used the SCOP database, a dataset
smaller than Swiss-Prot. Unfortunately, direct compari-

Table 2: Matches for Trypsion-like Serine protease groups.

Group name AS Precision AS Recall BS Precision BS Recall

Chymotrypsin 97 98.8 97.8 96.8

Kallikrein 100 100 99 98.6

Granzyme 100 99.2 100 98.9

Thrombin 99.9 100 98 97.2

Urokinase 100 100 97.9 97.1

Trypsin 100 100 100 100

Plasminogen activator 100 99.8 98.5 97.3

hybrid group 100 99.2 96.1 96.3

Precison and recall for each group in Trypsion-like Serine protease data set
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sons are not possible because their source code is not
available. For this experiment we assessed precision-recall
for e-values < 1. Table 3 shows our results and those of
Henschel and colleagues'. Their original results can be
found in table 1[22]. They achieved a precision of
89.43%, whereas we achieved 86.39%. However, our
results had a recall rate of 55.72%, whereas theirs was
25.17%. This indicates that our prediction method has
produced fewer false negatives. While our method
detected more false positives, it also detected more true
positives.

Assessing HMM Descriptors performance
To evaluate the performance of HMM descriptors, we
built precision-recall curves for our first and second exper-
iments. Figure 1-a shows precision-recall curves for active
site predictions, whereas figure 1-b reports precision-
recall curves for binding site predictions. Table 4 shows
protein function classification for both experiments. We
noted that the first experiment performed better than the
second one in all cases. We compared the experiment per-
formance for active site prediction only, and we observed
that the area under the graphic is greater for the Trypsion-
like Serine protease experiment than for the SCOP family
experiment (figure 1-a). Also, figures 1-b shows greater
areas for the Trypsion-like Serine protease experiment.
Results in the first experiment were expected because the
training data set is a curated data, as they were collected
from the literature. We believe, they are more reliable than
computationally-calculated functional residues. This sig-
nificant difference in the performance of these experi-
ments may be due to separation into groups according to
ligand specificity. Proteins from the same family can
present different functional sites when interacting with
the same ligand, i.e., the type of amino acids involved in
interaction might not be the same ones. Thus, these pro-
teins present different ligand specificity. Naturally, the
alignment of proteins with similar ligand specificity keeps
the functional sites aligned. As a result, HMM descriptors
derived from these alignments perform better than those
built by using alignments that contain all the proteins that
interact with the same ligand, which explains the better
results obtained in the first experiment. In any way, HMM
Descriptor performed better achieved precision above
70% and recall above 50%, in both cases.

Conclusion
With this study we aimed to develop a web-based tool that
allowed the use of a computational method for the predic-
tion of functional sites and protein function. For that, we
created a prediction method based on the study of Hen-
schel and colleagues [22] in which they developed a
method for predicting functional sites in proteins with
unknown function. Our web-based tool does two main
tasks: it screens the SCOP database for the prediction of
the protein function, and it pint-points the positions of its
functional residues. Likewise the study of Henschel and
colleagues, our prediction method is based on the hidden
Markov model descriptors and structural properties. How-
ever, our HMMs were built using information from struc-
tural alignments, ligand binding sites, and active sites.

Our web-accessible database is a user friendly interface
that allows users to analyze their own data. After setting
the parameters, users can submit their protein sequences.
Each protein is then analyzed and results are sent by
email. Each sequence submitted is scanned against a
library of HMM descriptors and results are displayed in
two levels. In the first level of results, it shows all predicted
functional residues and protein interactions with its lig-
ands. In the second, it shows the predicted functional res-
idues for each interacting ligand, individually. HMMs and
alignments are available for download in the result page.

To validate our prediction method, we performed experi-
ments that achieved significant precision-recall ranges.
Our approach is accurate in determining protein-ligand
interactions and interaction-residues positions. Therefore,
SDDB is useful for functional annotation and for predict-
ing functional residues. Knowing the positions of func-
tional residues may provide insights into the biological
activity of the protein and reveal new targets for drug
development.

Methods
The web-based tool was developed in Java version 1.5 and
is now served through a Tomcat apache web server run-
ning on a Linux operating system. The web-site was built
with servlets, JSP, and java scripts technologies. To store
our data, we built a relational database manager using
Postgres, version 8.2. The SDDB was populated with data
extracted from public databases such as SCOP, version
1.71, PDB (downloaded in May, 2007), PDBSUM (down-
loaded in May, 2007) and CSA version 2.2.5. PDB is a
repository for 3D structural data of proteins widely used
in structural proteomic analysis. SCOP is a manually
inspected database of protein folds that is particularly
interesting to our study because it describes structural and
evolutionary relationships between proteins, including all
entries in PDB. PDBSUM is a database that provides, for
each PDB file, a summary of the key structural features,

Table 3: Matches for ATP-binding data set.

Precision Recall

Henschel et al 89.43 25.17

SDDB 86.39 55.72

Precison and recall for both Henschel and colleagues prediction 
method, and our approach (SDDB).
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Comparison of Trypsion-like Serine protease and SCOP descriptors through precision-recall curvesFigure 1
Comparison of Trypsion-like Serine protease and SCOP descriptors through precision-recall curves. SDDB per-
formance for all data sets, as measured by precision-recall curves. Each point in the graphic corresponds to a different e-value 
cutoff. A – Active site prediction. B – Binding site prediction.
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including protein-ligand interaction and binding sites
positions. Finally, CSA catalogs catalytic residues in
enzymes of 3D structures. Based on the family level of
SCOP, we extracted and classified the majority of protein-
ligand interactions found in the PDB. HMMs were built
from structural alignment derived from 3DCOFFEE, using
HMMER package. This stage is the so-called training phase
(see below). The Inference phase is the step in which
query sequences are submitted to SDDB tool.

Training Phase
In this phase data was fed into the SDDB to be later used
for inference. Initially, we used other databases to obtain
the necessary data such as SCOP families, PDB structure
files, ligands, and functional ligand residues. Next, struc-
tural alignments were built from the SCOP protein group
using 3DCOFFEE. Finally, HMMER was performed to
build HMM descriptors from both structural alignments
and from functional ligand residues.

Extracting data from external databases
Initially, we selected all proteins in each SCOP family,
except for those proteins without either ligand interac-
tions or shared ligand interactions. Also, we removed the
proteins whose size T was not in the range [M - M/2, M +
M/2], where M is the average size of the sequences in its
respective SCOP family. This step is necessary because
some of the SCOP family sequences greatly vary in size,
which results in alignments with many gaps. As a result,
HMMs built from a gapped alignment do not recognize
homologous proteins well. With this initial data process-
ing we obtained 1,902 families with 70,215 sequences.

Next, selected sequences were separated in groups accord-
ing to the SCOP family level. For each sequence, we
extracted from PDB its three-dimensional structure
required for the structural alignment. From PDBSUM, we
extracted the set of ligands that interact with each
sequence and for each ligand we also extracted its protein
binding sites. Figure 2 shows a LIGPLOT [39] scheme of
the binding ligand residues (downloaded from PDBSUM)
of the interaction between E. coli's DNA ligase (PDB id
1a0i) [40] and the ATP (Adenosine-5'-triphosphate) lig-
and. The active ligand residues of the interaction between
SCOP protein and PDB ligand were extracted from the
CSA database.

Building Structural Groups
Let f be an arbitrary SCOP family. All proteins of f make
up the core structural group of this family, namely SGf
(structural group of f). The alignment of SGf proteins was
called Af and it was used as the starting point for the con-
struction of the HMM descriptor that represents the f,
called by HMMf. A family f is made up of a set of proteins
P = {p1,...,pQ}, where Q is the number of sequences within
an f. Each protein pi ∈ P interacts with a set of ligands L =
{L1,...,Ln} downloaded from the PDBSUM. Each family f
was divided into groups of proteins that interact with the
same ligand. Then, a group was created only by proteins
of f that interact with ligand Li. This group was called SGfLi
(structural group formed by a subset of f that interacts
with Li). Each SGfLi was defined as the side structural
group. The alignment of SGfLi proteins was called AfLi.
This alignment was the starting point for the construction
of the HMM descriptors, namely HMMfLi. An HMM
descriptor was built using both the MSA (Af or AfLi) and
the alignment-columns, which corresponded to the resi-
dues of the functional sites (see below). Figure 3-a shows
how each SCOP family was segmented in structural
groups and how HMM descriptors were created from
these groups.

Algorithm for recognizing functional ligand residues in alignments
The building of HMM descriptors required both the entire
MSA and the columns referring to the amino acid align-
ment of the functional sites. Each protein p within the
alignment has a set of amino acids that form, in regard to
its interaction with a specific ligand, its functional sites,
i.e. the ligand determines the set of functional sites of that
protein. Because each protein p in AfLi has a set of func-
tional sites associated to the Li interaction, we directly
applied the algorithm for the identification of the func-
tional sites. On the other hand, the Af alignment requires
knowing the cumulative sites for all involved proteins,
before applying the algorithm for the identification of
functional sites. The cumulative sites of a protein p were
calculated by combining sets of functional sites of the pro-
tein p with each of its ligands. Thus, if a protein p has inter-
actions with ligands L = {L1,...,Lj}, a set called pLk includes
the positions of the functional sites that are associated to
the interaction between p and Lk, where k ≤ j. As a result,
the cumulative sites of a protein p that has the set of lig-
ands L is created by pL = pL1 ∪... ∪pLj.

Table 4: SCOP classification.

Class Fold Super Family Family Domain

Trypsion-like Serine protease 100 100 100 100 97.1

SCOP 100 100 100 100 96.2

SCOP classification for Trypsion-like Serine protease and SCOP data sets.
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After identifying the cumulative functional sites, we
applied the algorithm described below. Each column in
an MSA is individually assessed. Whenever 50% of the
sequences contained a binding residue in that column,
the column was marked as a binding site of the alignment.
If 80% of the sequences contained an active residue at that
column, then this column was marked as an active site of
the alignment. Therefore, for each alignment A, there is a
array B, with all elected columns of A, that represent func-
tional site positions in A. Therefore, Bf contained func-
tional sites of proteins of f and BfLi contained functional

sites of a subset of proteins of f that interacts with the Li
ligand.

HMM construction

The HMM descriptors were built using an HMMER pack-
age. Given a SGf of a arbitrary SCOP family denoted by f,

we built a HMM from Af and Bf. We also built an HMM for

each alignment in SGfL, where L is the set of ligands that

interact with proteins of the f. Next, we built an HMM for
each protein in Af and AfLi as follows. Each alignment con-

LIGPLOT scheme for binding ligand residuesFigure 2
LIGPLOT scheme for binding ligand residues. The scheme shows the interaction between E. coli DNA ligase protein 
[40] and ATP (Adenosine-5'-triphosphate) ligand. In red are the DNA ligase's binding site residues.
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tains a P = {p1,...,pn} protein subset, where each pi is a pro-

tein of the f, since i ≤ n ≤ Q. For each pi an HMM was built

from its alignment with the consensus-sequence of the
HMM that contains pi. The consensus-sequence is

obtained from the alignment used to build the HMM,
considering the most frequent amino acids in each col-
umn. These HMMs, called HMM classifications, were built
to aid the SCOP classification of proteins of unknown

function. Figure 3-b shows how to build HMM classifica-
tions for a hypothetical family f1. First, the consensus-

sequence (called consensus-sequence f1) is extracted from

. Next, each protein pi in , where  is the

structural group of f1 (see Building Structural Groups sec-

tion), is aligned with consensus-sequencef1 through

hmmalign program of HMMER package. This alignment

HMM f1
SG f1

SG f1

Creating HMM descriptors from SCOP familiesFigure 3
Creating HMM descriptors from SCOP families. Each SCOP family was segmented in structural groups and HMM 
descriptors were created from these groups. A – Image shows the building of HMM descriptors for a hypothetical family, 
namely f1. First,  is built by aligning all proteins of  structural group. Next,  is built from both  alignment 

and functional site positions of , called . Finally, f1 is divided into groups of proteins that interact with the same ligand, 

and  are built in the same way, since L is the number of ligand and 1 ≤ i ≤ N. B – In order, for building HMM classifi-

cations, the  and each protein in  are aligned by producing AcsPi, where 1 ≤ i ≤ Q. The building of 

 classificator is based on AcsPi.

A f1
SG f1

HMM f1
A f1

A f1
B f1

HMM f iL
1

consensus-sequence f1
SG f1

HMM f ip
1
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is called Acspi, where pi ∈  = {p1,...,pQ} and Q is the

number of sequences in f1. Each Acspi results in the build-

ing of .

Inference Phase

After establishing and characterizing the training phase,
the web-tool can then be used for predicting functional
sites and protein function of user query sequences. Users
can submit sequences in fasta format to the web site. Each
sequence p is submitted to the HMMf, where f represents

the families selected by the user. Let  be e-value

assigned to scoring of p by HMMf. If  <θf, p is accepted,

i.e, it is likely that p is a member of the f. The θf is the

threshold necessary in order for p to belong to f. When p
is accepted, the cumulative functional site positions and
the p protein function are predicted, followed by p scoring

by all HMMfLi, where Li ∈ L and L is the set of all ligands

that interact with proteins of f. Similarly, if  <

then p is accepted, where  is the e-value assigned to

scoring of p by HMMfLi, and  is the threshold for con-

sidering p interacting with Li. When p is accepted, the func-

tional sites of interaction between p and Li are predicted.

Predicting binding and active ligand residues
The alignment-columns containing functional sites were
mapped to the HMM states, i.e, either match or insert
states, as shown in figure 4. The figure shows a partial
alignment of proteins for the globin family, in which the
column labeled Bs1 that represents a binding site position
in the alignment mapped to the match state M2. Similar-
ity, the column labeled As1, which represents an active site
position in the alignment, mapped to the match state M8.
Note that the column labeled Bs3 mapped an insert state
I15. Hence all columns in the alignment were represented
by one HMM state. When a protein p is scored by an
HMM, the Viterbi algorithm [41] provides both e-value
and the best path found involving scored p amino acids
through the HMM architecture. This path is the sequence
of states by which the p amino acids were recognized for p
to be classified by the HMM. We knew which of the states
of the HMM represented the functional sites (figure 4), so
we were able to determine whether the amino acids of p
were recognized by those states, and thus predict the posi-
tions of the functional sites of p. For instance, let p = (a1,
a2,...,an) be a protein sequence, where ai is a amino acid in
the i position, and let HMMf be an HMM that represents
an arbitrary family f, then we are interested in
Pr[p|HMMf], which describes the probability of observing

a protein p within HMMf. The Viterbi algorithm give us
both Pr[p|HMMf] and π, where π is the best path of p
through HMMf states. If π is given by M1M2I3...Mn, then it
means that a1 was recognized by the match state M1, a2
was recognized by the M2, a3 was recognized by the insert
state I3, until an was recognized by Mn. Therefore, if M2 is
a state that represents a binding site, it is likely that a2 in p
is a binding site residue.

Annotating query sequences

After submitting a p protein to an HMM descriptor and

verifying that its e-value is smaller than θf, it is necessary

to determine the following parameters for the SCOP clas-
sification: class, fold, super family, family, and domain.
We annotated p by comparing it with all HMM classifica-
tions (see section HMM construction) and by associating
to p the same classification of pi, where pi is the protein

most similar to p, and which belongs to the HMM classi-
fication. For instance, suppose that some protein p has

been scored by  as in figure 3-b. Also, consider

that p has been classified with e-value , where  ≤

. Next, p is scored by each , where pi ∈

{p1,...,pQ} and Q is the number of sequences in f1. Each

 assigns a  e-value to p. Suppose 

<  < ... < , thus p receives the SCOP classification

of p1.
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