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Abstract

Background: Large biological data sets, such as expression profiles, benefit from reduction of
random noise. Principal component (PC) analysis has been used for this purpose, but it tends to
remove small features as well as random noise.

Results: We interpreted the PCs as a mere signal-rich coordinate system and sorted the squared
PC-coordinates of each row in descending order. The sorted squared PC-coordinates were
compared with the distribution of the ordered squared random noise, and PC-coordinates for
insignificant contributions were treated as random noise and nullified. The processed data were
transformed back to the initial coordinates as noise-reduced data. To increase the sensitivity of
signal capture and reduce the effects of stochastic noise, this procedure was applied to multiple
small subsets of rows randomly sampled from a large data set, and the results corresponding to
each row of the data set from multiple subsets were averaged. We call this procedure Row-specific,
Sorted PRincipal component-guided Noise Reduction (RSPR-NR). Robust performance of RSPR-
NR, measured by noise reduction and retention of small features, was demonstrated using
simulated data sets. Furthermore, when applied to an actual expression profile data set, RSPR-NR
preferentially increased the correlations between genes that share the same Gene Ontology terms,
strongly suggesting reduction of random noise in the data set.

Conclusion: RSPR-NR is a robust random noise reduction method that retains small features well.
It should be useful in improving the quality of large biological data sets.

Background

Biological data are likely to contain random noise. It may
be possible to statistically identify and reduce such ran-
dom noise, especially in large data sets. Principal compo-
nent analysis (PCA), also known as singular value
decomposition, has been used for the purpose of statisti-
cal reduction of random noise [1]. Small variances associ-
ated with higher-order principal components (PCs) are
nullified as random noise. PCA has been used for analysis

of large biological data sets, such as expression profile
data [1,2]. Although PCA is useful for capturing major
trends in data, it could result in loss of important informa-
tion. A typical form of expression profile data is a matrix
with thousands of rows (genes) and tens or hundreds of
columns (biological samples). Large biological data sets
usually have many small features as well as large ones.
Small features consisting of small numbers of rows and
columns do not contribute much to the overall variance of
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the data. Therefore, PCs associated with small features are
among the high order PCs. Consequently, small but bio-
logically important features may be removed as noise. It is
inevitable that severe dimensionality reduction in a global
space, such as that often applied using PCA, will result in
loss of signal from truly high-dimensional data in which
many dimensions are represented by small features.

Here we present a robust unsupervised method for reduc-
tion of random noise in large data sets, which we call
Row-specific, Sorted PRincipal component-guided Noise
Reduction (RSPR-NR). We applied the method to Arabi-
dopsis Affymetrix microarray expression profile data col-
lected in multiple experiments. The correlations between
expression profiles of gene pairs that share Gene Ontology
(GO) biological process and cellular component terms
were significantly increased while those of gene pairs that
do not share GO terms were decreased. RSPR-NR clearly
exceeded the performance of PCA in this test using a real
data set. Thus, RSPR-NR can facilitate gene discovery by
reducing random noise while retaining small features in
expression profile data.

Results

RSPR-NR algorithm

This noise reduction procedure can be applied to an m
rows x n columns (m > n) data matrix, D, in which the ran-
dom noise is assumed to be normally distributed with a
mean of zero. In general, we expect m and n to be in the
range of thousands and 30-200, respectively. RSPR-NR
was coded in R (ver. 2.5.1) [3]. The R script for RSPR-NR
is freely available for non-commercial use at http://

www.cbs.umn.edu/labs/glazebrook/NSF2010/program/
RSPR-NR/RSPR.htm.

The core RSPR-NR procedure is as follows.

(1) PCA without centering or scaling was applied to D
using the columns as the coordinates, to obtain the PC-
coordinated data matrix P. The values in each row of P are
called the PC-coordinates of the data point (i.e., the row).

(2) In each ith row of P, the PC-coordinates were squared
and sorted in descending order, yielding the sorted
squared PC-coordinate matrix, S.

(3) For each element s;; in the ith row and the jth column
in §, the probability p;; = P(x > s;), for which s;; is derived
from the normal noise model, was determined using the
jth order distribution of the squared random noise. The
squared values of random values sampled from the stand-
ard normal distribution N(0,1) assume the p2-distribu-
tion with one degree of freedom. ¢(x; 1) and C(x; 1)
denote the probability density function and the cumula-
tive distribution function of the y2-distribution with one
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degree of freedom, respectively. When n values sampled
from c(x; 1) are put in decreasing order, the value in the
jth rank is drawn from a distribution with probability den-
sity function

filx)= Clx; 1) (1 - C(x;1)) e(x;1),

n!
(G-D!(n-j)!

and cumulative distribution function
Fi(x) = B(C(x; 1);n-j + 1,j),

where B(y; u, w) is the cumulative distribution function of
the Beta distribution with parameters u and w [4].

To calculate py, the scaling factor g; for the ith row was
determined as

median(F}, (0.5)[k=1,2....,n)

1

median(sjj|k=1,2,...,n)

This scaling was based on the assumption that the median
and the higher ranked columns in the ith row of § contain
no signals but noise. Then

pij=1-Fjasy).

For practical efficiency, only p; for j< [ %] were calcu-

lated because of this assumption. These p; were corrected
for Benjamini-Hochberg False Discovery Rate (FDR) [5] to

obtain g;;. The remaining g for j > [%] were set to 1.

(4) Noise-reduced data was generated. The elements in
the PC-coordinate data matrix P corresponding to the g
that were larger than the preset FDR were nullified as ran-
dom noise to obtain a noise reduced matrix, P,,. Note that
the column positions of the corresponding elements in P
were the positions before the sorting procedure in step
(2). P,, was transformed back to the original coordinate
system by the inverse of the rotation transformation used
in the PCA to obtain the noise reduced data matrix D,,,.

The core RSPR-NR procedure was applied to subsets com-
posed of a relatively small number of rows randomly sam-
pled from the large data set. The standard conditions
were: the number of rows in a subset was approximately
3.33 times the number of columns in the data matrix, and
the number of times each row was sampled was 20. This
was done by sampling each row 20 times in different sub-
sets, each of which was subjected to the core RSPR-NR
procedure. The results of the core RSPR-NR corresponding
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to each row of the original data set from 20 subsets were
averaged to yield the final RSPR-NR output values.

The core idea underlying RSPR-NR

Selection of only low ranked PCs in PCA results in loss of
small features. Nevertheless, a small number of PC-coor-
dinates may be sufficient to capture even small features,
provided that they are properly chosen for each row from
all the PC-coordinates. This is because variances from
even small features can affect determination of high
ranked PCs. If this is the case, a relatively small number of
PC coordinates selected for each row could capture fea-
tures of various sizes quite well. This idea was explored
using an Arabidopsis gene expression data set.

We used log-transformed expression level ratio data
because RSPR-NR assumes that the mean of the random
noise distribution in each row of the data matrix is zero.
In the data set used, each of the 15,863 rows corresponds
to one probe set of the Affymetrix GeneChip® and each of
the 60 columns corresponds to one biological sample. See
Methods for details of the data set. The columns of the
data set were transformed to the PC-coordinates. The
squared PC-coordinate values vary greatly from probe set
to probe set (Figure 1A). For example, probe set
249054 _at (purple) appears to have significant coordi-
nates in some of the high ranked PCs, suggesting it may be
part of a pattern not captured by the top few PCs. In step
(2) of the core RSPR-NR procedure, the squared PC-coor-
dinates were sorted in descending order for each probe
set.

In step (3), the squared and ordered PC-coordinates were
compared with the order distributions of squared and
ordered random numbers sampled from the standard
normal distribution. The latter is the random noise
model. For this comparison, the squared PC-coordinates
in each row were scaled so that the median value of the
squared PC-coordinates in the row became equal to the
median of the 50 percentile values in all the ranks of the
ordered noise distributions. This scaling is based on the
assumption that the squared and ordered PC-coordinates
in the median and higher ranks contain only noise. In Fig-
ures 1B and 1C, the squared, ordered, and scaled PC-coor-
dinates for four probe sets are shown as colored solid
curves, and the 50 percentile values in the ordered noise
distributions are shown as black dashed curves. The black
dotted curves represent the p-value of 0.01 (upper tail)
across the ranks. The squared, ordered, and scaled PC-
coordinates that are larger than the dotted black curve cor-
respond to the p-values smaller than 0.01 and are signifi-
cant at the threshold p-value of 0.01. Note that in the
actual RSPR-NR core procedure, the FDR-corrected p-
value was used for the statistical test (see above). How-
ever, in this section, the fixed p-value of 0.01 was used as
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a threshold for the demonstration purpose because the
FDR-corrected p-value depends on the p-value distribu-
tion and is difficult to visualize in this figure format.
Using this statistical test, 9, 7, and 15 significant PC-coor-
dinates were identified for the example probe sets
265244 _at (blue), 249123_at (red), and 252618_at
(green), respectively (Figure 1C). The probe set 249054 _at
(purple) did not have any significant coordinates despite
the impression given by Figure 1A. The actual PC-coordi-
nates selected as significant ones for 265244_at were in
PCs 2,3,7,4,1,10, 27, 11, and 14, those for 249123_at
were in PCs 2, 12, 1, 8, 16, 17, and 24, and those for
252618_atwere in PCs 1, 3, 5, 10, 7, 9, 31, 33, 17, 6, 22,
26, 13, 2, and 14. The orders of the listed PCs are the
decreasing order of the squared PC-coordinates. The selec-
tions and orders of the listed PCs illustrate that the contri-
butions of the PCs to the signal in different rows of the
data set vary to a large extent. This observation of highly
variable contributions of the PCs strongly suggests that
the statistical test applied to each element of the PC-coor-
dinated data matrix help retain small features and justifies
building a noise reduction method, RSPR-NR, based on
this idea.

In step (4) of the core RSPR-NR procedure, the PC-coordi-
nates for which the corresponding squared PC-coordi-
nates are tested insignificant in the statistical test are
nullified, and the remaining PC-coordinates are trans-
formed back to the original coordinate system to yield a
noise-reduced data set.

Simulations for Optimization and Evaluation

It is impossible to accurately estimate the amounts of ran-
dom noise and signal in real data. Therefore, for the pur-
pose of parameter optimization and performance
evaluation, we used simulated data sets in 2,000 rows x 60
columns matrices, in which we could know the exact
amounts of signal and noise for each element of the data
matrices. Figure 2 illustrates the steps of the simulation.
First, predetermined numbers of large and small blocks
were generated to mimic large and small signal features in
data (30 large and 60 small blocks in Fig. 2A). This is a
simulated signal matrix. Second, normally distributed
random noise of a predetermined variance was added to
the simulated signal matrix to obtain a simulated data
matrix (Fig. 2B). The simulated data matrix was subjected
to a treatment, RSPR-NR (The subset row number is 200,
the repeat number is 20, and the FDR is 0.0316 in Fig. 2C;
see below for these parameters.) or PCA (Figs. 2D-F). Any
values in a treated matrix that differed from the original
signal matrix were defined as noise. The performance of a
treatment was measured by the ratio of the root mean
square (RMS) of noise after the treatment to that before
the treatment (noise RMS ratio). Details of the simulation
procedure are provided in Methods.
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A statistical test to determine significant PC-coordinates. The squared PC-coordinates of four example probe sets in
the PC-coordinated system are shown. The square-root scale is used for the vertical axis of each plot. (A) The squared PC-
coordinates were plotted along the PCs in descending order of their associated variances. The dashed curve shows the vari-
ance associated with each PC. (B) The squared PC-coordinates were plotted in descending order of their values after scaling.
The dashed curve shows the 50 percentile values of the ordered noise distributions, and the dotted curve shows a p-value of
0.0l (upper tail) for the ordered noise distributions. (C) A close-up view of the left part of (B). The coordinates whose squared
values were above the p-value threshold were designated significant. Although the FDR-corrected p-value was used for this
statistical test in the actual core RSPR-NR procedure, the uncorrected p-value is used for the sake of explaining the concepts
in this figure.
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A. Simulated signal matrix B. Simulated data matrix

[

Figure 2

Visualization of noise reduction performance with a simulated data set. In each panel, the thin rectangular image on
the left shows a complete view of the 2000 rows X 60 columns matrix, and the large square image on the right shows a close-
up image of the red-enclosed part of the matrix. (A) Simulated signal matrix. (B) Simulated data matrix, in which random noise
was added to (A). (B) was subjected to RSPR-NR (C), PCA with PCs|-3 kept (D), PCA with PCsl-9 kept (E), or PCA with
PCs1-26 kept (F). See Figure 3 for the reasons that these numbers of top PCs were kept in PCA. Yellow, gray, and blue show
positive, zero, and negative values, respectively. The parameters used for the simulated data set were 30 large and 60 small sig-

nal blocks and a noise variance ratio of 0.01. The parameters used in RSPR-NR were a subset row number of 200, a repeat
number of 20, and an FDR of 0.0316.
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It is clear that RSPR-NR retained small features very well
while reducing the overall noise level (Fig. 2C). The noise
RMS ratio for RSPR-NR was 0.63. To compare the per-
formance of RSPR-NR with that of PCA, the number of
top PCs that should be kept was explored. Figure 3A
shows the percentage of the total variance of the simu-
lated data matrix that can be explained by each PC. Since
there were clear drops in the relative variance right after
PC3 and PC9, two options, keeping the top three PCs
(PCs1-3, which explain 73.6% of the total variance) and
keeping the top nine PCs (PCs1-9, 91.6% of the total var-
iance), were investigated. Unlike RSPR-NR, PCs1-3 clearly
could not handle the complexity of the simulated signals
(Fig. 2D). Most small features were lost or widened, and
large features caused shadows of non-random noise. This
tendency was still evident even with PCs1-9 (Fig. 2E). The
noise RMS ratio for PCs1-3 and PCs1-9 were 2.46 and
1.23, respectively, which indicate that these treatments
increase noise instead of decreasing it. Since it was not evi-
dent how many top PCs should be kept to obtain the best
noise RMS ratio, we calculated the noise RMS ratio for all
the possible numbers of top PCs (Fig. 3B). When the
number of top PCs kept was lower than 13, PCA actually
increased the noise as the noise RMS ratio is higher than
1. When the top 26 PCs were kept (PCs1-26, 97.4% total
variance), the noise RMS ratio reached a minimum at
0.76, which is still larger than that of RSPR-NR, 0.63. In
the visualized data matrix resulting from PCs1-26 (Fig.
2F), small features were retained well, however, the
remaining noise is higher compared with RSPR-NR (Fig.
2C). Thus, using the simulated data set, RSPR-NR outper-
formed PCA even when the optimum number of top PCs
were kept.

Sampling Multiple Subsets for Each Row from a Large
Data Set

The sensitivity of PCs for capturing small features is higher
when the number of rows is limited (when the columns
are the coordinates), as the variances of small features rel-
ative to that of random noise become larger. So, we
decided to randomly sample rows and make subsets with
a smaller row number before applying the core RSPR-NR
procedure. The number of rows in each subset needs to be
at least as large as the number of columns to have the
number of PCs at least as large as the number of columns.
On the other hand, a number of rows per subset that is too
low would allow large peaks of random noise to signifi-
cantly influence determination of PCs. If PCs are influ-
enced by peaks of noise so that noise is no longer random
in the PC-coordinate system, such noise will not be
removed in step (4) of the core procedure. One way to
reduce such an effect of noise peaks on the final output
data set is to sample each row of the original data set mul-
tiple times in different subsets, and then average the
results corresponding to each row of the data set from dif-
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Number of top PCs to keep in PCA for noise reduc-
tion. The simulated data set used in Figure 2 was subjected
to noise reduction by PCA. (A) The relative variance associ-
ated with each PC. The total variance of the data set was
scaled to 100%. The bars for PC3 and PC9 are labeled
because the variance values with the PCs immediately after
them dropped noticeably. (B) The noise RMS ratio resulting
from PCA with different numbers of top PCs kept. The val-
ues for two data points at PCs|-12 and PCs|-26 are indi-
cated in the plot. The noise RMS ratio value of 0.76 at PCs| -
26 was the best when PCA was used. The dashed horizontal
line at the noise RMS ratio value of 0.63 indicates the noise
RMS ratio value that was achieved by RSPR-NR.
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ferent subsets to yield a final output value for the row.
Based on these considerations, we used simulation to
explore two parameters: the number of rows per subset
(subset row number), and the number of times each row
is sampled (repeat number), to empirically determine the
parameter values for good noise reduction performance.

For the sake of simplicity, only one signal block condition
of 30 large and 60 small blocks, one noise variance ratio
of 0.01, and one FDR of 0.0316 were used in the simula-
tion. Figure 4A shows the noise RMS ratio distributions in
50 simulations for different subset row numbers with the
repeat number fixed at 20. Note that the subset row
number of 2,000 means that no subset sampling was per-
formed as 2,000 is the number of rows in the complete
data matrix. The best result was obtained using a subset
row number of 200, which yielded a median RMS ratio of
0.62. However, among subset row numbers ranging from
100 to 1,000, the difference in performance was relatively
small. Thus, RSPR-NR performance is relatively insensi-
tive to the subset row number, and the choice of the sub-
set row number is not very critical. Hereafter, a subset row
number of 200, 3.33 times the number of columns in the
data matrix, was used unless otherwise specified. For data
sets not exactly divisible by the subset row number, the
actual subset numbers were adjusted with small values to
equalize the sampling numbers of each row.

A similar simulation was performed with different repeat
numbers. Figure 4B shows that the higher the repeat
number, the lower the noise RMS ratio, as expected. How-
ever, the level of noise RMS ratio improvement decreases
as the repeat number becomes larger. A higher repeat
number leads to a longer computing time. We decided
that the repeat number of 20 yields satisfactory perform-
ance. The repeat number of 20 was chosen for the stand-
ard setting and used hereafter unless otherwise specified.

Robust Performance of RSPR-NR

In the last section, only one condition of signal block
numbers and one condition of noise variance ratio were
used in the simulation. However, real data sets have wide
ranges of signal and noise conditions, and it is generally
impossible to know such conditions in real data sets. An
unsupervised noise reduction method must perform well
under wide ranges of conditions. We performed simula-
tions under wide ranges of signal and noise conditions.

Figure 5A shows the distributions of the noise RMS ratios
resulting from RSPR-NR with four different FDR values,
0.01, 0.0316, 0.1, and 0.316 (labeled as o 0.01, o 0.03, o
0.1, and a 0.3 at the bottom of Fig. 5) and PCA with the
optimum number of top PCs kept when different levels of
signal complexities were applied to the simulated signal
matrices. Each box and whiskers shows the distribution of
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the noise RMS ratios in 40 simulations. The simplest pat-
tern 1 had 10 large and 20 small signal blocks while the
most complex pattern 4 had 40 large and 120 small signal
blocks. The noise variance ratio was fixed at 0.01. In each
signal pattern, RSPR-NR accomplished noise reduction
(noise RMS ratio < 1), and the performance was relatively
insensitive to the FDR value (Fig. 5A). Furthermore, at any
data complexities tested, RSPR-NR with any FDR values
tested outperformed PCA with the optimum number of
top PCs kept. For each simulation, the median number of
PC-coordinates kept per row in RSPR-NR and the opti-
mum number of top PCs kept in PCA were recorded (Fig.
5B). Note that in RSPR-NR the PC-coordinates kept were
not necessarily in the top PCs and the number of them
varies row by row. The optimum number of top PCs kept
in PCA increased as the pattern became more complex.
Whereas the optimum number was slightly above 10 with
pattern 1, the optimum number exceeded 30, which is the
half of the original dimensionality, with pattern 4 (Fig.
5B, far right section). The median number of PC-coordi-
nates kept per row in RSPR-NR also increased, indicating
that RSPR-NR automatically adjusted the number of PC-
coordinates kept per row according to the complexity of
the signal. However, the numbers of them in RSPR-NR
were always smaller than those in PCA.

Figure 5C shows the noise RMS ratios resulting from
RSPR-NR and PCA when different levels of the noise vari-
ance ratio (0.00316, 0.01, 0.0316, and 0.1) were applied
to the simulated data matrices. The signal pattern 3 was
used, and each box and whiskers shows the distribution of
the noise RMS ratios in 40 simulations. With all the noise
variance ratios tested and with all the FDR tested, RSPR-
NR showed substantial noise reduction. It always outper-
formed PCA with the optimum number of top PCs to
keep, except for one condition with the highest noise var-
iance ratio of 0.1 and with the highest FDR of 0.316. The
noise reduction performance of RSPR-NR increased as the
noise level gets higher. Again the performance of RSPR-
NR was relatively insensitive to the FDR condition except
for FDR of 0.316. The optimum number of top PCs kept
in PCA decreased as the noise level increased (Fig. 5D). At
the lowest noise level (noise variance ratio = 0.00316), the
optimum number of top PCs kept exceeded 30. The
median number of PC-coordinates kept per row in RSPR-
NR also decreased as the noise level increased, indicating
automatic adjustment of the number of PC-coordinates
kept per row in RSPR-NR. However, again numbers of
them in RSPR-NR were always smaller than those in PCA
with the optimum number of top PCs to keep.

The simulations with various signal complexities and
noise levels demonstrated that RSPR-NR performs well
within the tested ranges, and its performance is relatively
insensitive to the FDR level. This robust noise reduction
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Figure 5 (see previous page)

Robust performance of RSPR-NR. Simulated data sets with different levels of signal complexity (A) and noise variance
ratio (C) were treated with RSPR-NR and PCA, and the distributions of the resulting noise RMS ratio in 40 simulated data sets
are plotted. For PCA, the number of top PCs to keep was determined for the minimal noise RMS ratio in each simulation, by
the procedure illustrated in Figure 3B. The distributions of the medians of the numbers of PCs kept in RSPR-NR and the distri-
butions of the optimum number of top PCs kept in PCA for (A) and (C) are shown in (B) and (D), respectively. Four FDR con-
ditions of 0.01, 0.0316, 0.1, and 0.316 were used in RSPR-NR and indicated as o. 0.01, o 0.03, 0.1, and o 0.3. The signal
pattern conditions used in (A) and (B), which are indicated at the top of the plots, are 10 and 20 (pattern |), 20 and 40 (pattern
2), 30 and 60 (pattern 3), and 40 and 120 (pattern 4) large and small blocks. A noise variance ratio of 0.01 was used in (A) and
(B). The noise variance ratios used in (C) and (D), which are indicated at the top of the plots, are from left 0.00316, 0.01,
0.0316, and 0.1. For the signals, 30 and 60 large and small blocks (pattern 3) were used in (C) and (D). For all panels, a subset
row number of 200 and a repeat number of 20 were used in RSPR-NR.

performance of RSPR-NR makes it suitable for unsuper-
vised noise reduction. In contrast, the optimum number
of top PCs kept in PCA varies over a wide range dependent
on the complexity of signal and the noise level. We could
determine the optimum number of top PCs for PCA in the
analyses shown in Figures 3 and 5 because we knew the
exact signal in the simulation. In real data, we cannot
determine the optimum number of top PCs in this way.
The optimum number of top PCs for the best noise RMS
ratio performance is much higher than the number that
can be estimated by a conventional method based on the
variance associated with each PC (Fig. 3). A severe under-
estimate of the number of top PCs kept in PCA results in
an unsatisfactory noise reduction performance - it could
even increase the noise RMS (Fig. 3B). Therefore, PCA is
not as good an unsupervised noise reduction method as
RSPR-NR.

Noise Reduction with Actual Data

Whereas simulations allow exact quantitation of noise in
a data set before and after a treatment, block signals used
in the simulations may not be good approximations of
signals in actual expression profile data sets. Therefore, it
is important to demonstrate that RSPR-NR provides a
benefit in analysis of a real expression profile data set. It is
challenging to identify reasonable metrics to evaluate use-
fulness of RSPR-NR using a real data set. We chose to use
the Gene Ontology (GO) term conservation in evaluation
of RSPR-NR performance. The GO terms comprise a con-
trolled vocabulary to describe gene and gene product
attributes in three categories of molecular function, bio-
logical process, and cellular component http://www.gene
ontology.org/[6]. It has been reported that genes involved
in related biological processes tend to have similar expres-
sion profiles [7-10]. If this is true, we can expect reduction
of random noise to result in statistical enrichment of sim-
ilarly-regulated genes among genes that share GO terms.

Among the three categories of GO terms, we chose to use
the biological process and the cellular component catego-
ries because the other category, molecular function, does

not imply similarity in expression profiles. For example,
different genes with a molecular function of "transcrip-
tion factor activity" can be regulated very differently. We
defined GO term relatedness as follows. To conclude that
members of a gene pair share GO terms, we required the
Jaccard similarity, which is the ratio of the element num-
bers between the intersection and the union of the GO
term sets for the two genes, to be equal to or greater than
0.5. To conclude that members of a gene pair do not share
GO terms, we required that they not share any GO process
and component terms, and have at least 6 terms in union,
thereby restricting gene pairs to very well annotated ones.

The Arabidopsis expression profile data set introduced
above was used. As the total number of gene pairs in the
data set exceeds 1.2 x 108, for practicality 80,000 gene
pairs were randomly sampled and analyzed. First, overall
trends of changes in the angles between pairs of gene vec-
tors (i.e., change in the cos! values of the cosine correla-
tions between gene pairs; "angle change" axis) were
visualized along the angle before RSPR-NR treatment
("angle before" axis; Fig. 6A). In general, RSPR-NR
improves correlations between gene pairs (i.e., the angles
get smaller for the gene pairs with "angle before" < 0.5 =,
and larger for the gene pairs with "angle before" > 0.5 7).
This was expected as RSPR-NR is a type of dimensionality
reduction method. The question is whether the gene pairs
that share GO terms tend to have a higher level of correla-
tion improvement than the gene pairs that do not. To ena-
ble a comparison of such relative angle changes, we used
loess [11] to define the normalization curve along the
"angle before" axis (gray curve in Fig. 6A). The gene pair
data were normalized by subtracting the loess fitted values
from the "angle change" values (Fig. 6B). In this relative
angle change plot, the data points for the gene pairs that
share or do not share GO terms were identified (Figs. 6C
and 6D, respectively). The gene pairs that only had small
correlation before RSPR-NR (i.e., 0.3 7 < "angle before" <
0.7 1) were excluded from this analysis because it is likely
that many of these gene pairs truly do not have significant
correlations. The mean values of the relative angle change
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Figure 6

Preferential correlation changes between gene pairs. RSPR-NR was applied to the Arabidopsis expression profile data
set. The cosine correlations between each of 80,000 randomly sampled gene pairs before and after RSPR-NR were recorded.
The angle corresponding to each cosine correlation value was used in the plots. (A) The angle change from before RSPR-NR to
after RSPR-NR is plotted along the angle before RSPR-NR, for the sampled gene pairs. A loess fit curve for the distribution is
shown in gray. (B) From (A), the loess fit curve values were made zero (gray line) to normalize the distribution in small ranges
of the angle before. The angle change value after this loess-based normalization is called the relative angle change value. This
relative-angle-change-vs.-angle-before plot is used in (C) and (D). (C) The gene pairs that share GO process and component
terms (Jaccard similarity = 0.5) are plotted. (D) The gene pairs that do not share any GO process and component terms and
that have more than 5 GO terms in union among the sampled gene pairs are plotted. In both (C) and (D), the gene pairs with
low correlation before RSPR-NR (an angle range between 0.3w and 0.77) are excluded. The parameters used for RSPR-NR
were a subset row number of 200, a repeat number of 20, and an FDR of 0.0316. The dot sizes in the plots were adjusted
according to the density of dots in each plot.
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for the gene pairs sharing GO terms were -0.0029 © and
0.0047x for "angle before" < 0.3 n and "angle before" >
0.7m, respectively. This result indicates that the correla-
tions between the gene pairs sharing GO terms were statis-
tically increased. The mean values of the relative angle
change for the gene pairs not sharing GO terms were
0.0035 n and -0.0027 = for "angle before" < 0.3 m and
"angle before" > 0.7 =, respectively. This result indicates
that the correlations between the gene pairs not sharing
GO terms were statistically reduced.

To test the significance of these observations, nine more
randomly sampled sets of 80,000 gene pairs were ana-
lyzed (Table 1). The means of the mean relative angle
changes for the total of 10 samples were -0.0040 7, 0.0044
m, 0.0033 &, and -0.0026 =« for sharing GO terms, "angle
before" < 0.3 ® and > 0.7 n, and not sharing GO terms,
angle before" < 0.3 © and > 0.7 =, respectively. All these
sample means were significant as the probabilities of any
of them being zero or having the opposite sign were < 10-
¢ (one-sample, one-sided t-test). These relative angle
change values may seem small. However, the mean and
SEM of the means of the absolute values of the relative
angle changes of all the sampled gene pairs across ten
sampled sets were 0.01600 = + 0.00002 =. So, -0.0073 T,
the mean relative angle change difference between gene
pairs sharing and not sharing GO terms (relative angle
change difference) in the range of "angle before" < 0.3 x,
represents -46% of the mean of the absolute values of the
relative angle change (% angle change), a substantial
change in correlation.

The relative angle change differences and the % angle
change differences, separately for the ranges of "angle
before" < 0.3 m and "angle before" > 0.7 &, were also deter-
mined with the results from PCA. The relative variance
explained by each PC did not provide a clear idea for a
possible optimum number of top PCs to keep (Fig. 7).
Therefore, the relative angle change differences and in the
% angle change differences were measured for numbers of
top PCs kept ranging from 2 to 59 in ten 80,000 gene pair
sets, and the distributions of the difference values are
shown in box plots for each number of top PCs kept (Fig.

http://www.biomedcentral.com/1471-2105/9/508

8). For comparison, the distributions of the difference val-
ues in ten 80,000 gene pair sets resulting from RSPR-NR
are also shown on the right of each panel. Figures 8A and
8B show the distributions of the mean relative change dif-
ferences between the gene pairs sharing and not sharing
GO terms, in the ranges of "angle before" < 0.3 © and
"angle before" > 0.7 w, respectively, for each number of
top PCs kept in PCA. In the range of "angle before" < 0.3
7, when PCs1-5 were kept, the median of the relative
angle change difference was minimum at -0.0060 T,
which means that on average the gene pairs sharing GO
terms had the correlation improved by the amount corre-
sponding to 0.0060 7w, compared to the gene pairs not
sharing GO terms (Fig. 8A). In the range of "angle before"
> 0.7 m, in which the correlations between the gene pairs
were negative before PCA, when PCs1-5 were kept, the
median of the relative angle change difference was maxi-
mum at 0.0074 = (Fig. 8B). This means that on average the
gene pairs sharing GO terms had the correlation improved
(i.e., more negative correlation) by the amount corre-
sponding to 0.0074 =, compared to the gene pairs not
sharing GO terms. Since the medians of the relative angle
change differences resulting from RSPR-NR were -0.0072
nand 0.0070 7, in the ranges of "angle before" < 0.3 7w and
"angle before" > 0.7 1, respectively (right panels in Figs.
8A and 8B), the improvements of the correlations
between gene pairs were better than or comparable to the
best cases of PCA.

When the % angle change differences were determined
with the results from PCA, the optimum numbers of top
PCs kept were very different from those with the relative
angle change differences. In the range of "angle before" <
0.3 m (Fig. 8C), when PCs1-34 were kept, the median of
the % angle change differences was minimum at -47%. In
the range of "angle before" > 0.7 &, when PCs1-39 were
kept, the median of the % angle change differences was
maximum at 40% (Fig. 8D). The corresponding difference
median values with RSPR-NR were -45% and 44%, respec-
tively. Therefore, the performance of RSPR-NR in the %
angle change difference was comparable to that of the best
cases of PCA.

Table I: Mean relative angle changes of the gene pairs sharing and not sharing GO terms!)

GO terms?) Angle before Mean relative angle change (mean + SEM) p-value3) % angle change®
Shared 0-03n -0.00400 = + 0.00028 = 82 x 108 -25.0%
07-1n 0.00435 & + 0.00032 &t 1.5 % 107 27.2%
Not shared 0-03~n 0.00328 &t + 0.00022 &t 49 x 108 20.5%
07-1n -0.00257 = £ 0.00015 = 1.7 x 10-8 -16.0%

1) A summary of the results from 10 sets of 80,000 randomly selected gene pairs. 2 GO biological process and cellular compartment terms; see Fig.
5 for the exact rules for shared and not shared. 3 The probability of the mean relative angle change being zero or having the opposite sign by one-
sample, one-sided t-test. 4 The ratio in percents of the mean of the mean relative angle changes of the selected gene pairs to the mean of the

absolute values of the relative angle changes of all the sampled gene pairs.
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Variance associated with each PC in PCA with the Arabidopsis expression profile data set. (A) The variance asso-
ciated with each PC (PCI to PC60) is plotted. (B) A close up view of (A) in the range starting with PC4.
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Relative angle change difference and % angle change difference with PCA. The distributions of the relative angle
change differences (A and B) and of the % angle change differences (C and D) in ten randomly sampled sets of 80,000 gene
pairs are plotted for each number of top PCs kept (2 to 59) in PCA. A positive correlation range in the angle before (< 0.3 =,
A and C) and a negative correlation range in the angle before (> 0.7 &, B and D) are shown separately. In (A) and (C), the
smaller the difference values are, the selectivity in preferential correlation increase with the gene pairs sharing GO terms is
higher. In (B) and (D), the larger the difference values are, the selectivity is higher. In comparison, the distribution of the differ-
ence values obtained by RSPR-NR in ten randomly-sampled gene pairs is shown on the right of each panel.
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When PCs1-5 were kept, resulting in the best relative
angle change differences, the improvements in the %
angle change differences were small (-12% and 15% in
the ranges of "angle before" < 0.3 = and "angle before" >
0.7 m, respectively). This indicates that when a small
number of top PCs are kept, such as PCs1-5, on average
the correlations between gene pairs increase substantially
due to severe dimensionality reduction, regardless of
whether or not GO terms are shared. Therefore, the selec-
tivity in favoring the gene pairs sharing GO terms for cor-
relation increase is low. Thus, with PCA it is impossible to
optimize both the relative angle change difference and the
% angle change difference at the same time. In contrast,
RSPR-NR can achieve performance comparable to the best
cases of PCA in both the relative angle change difference
and the % angle change difference.

Discussion

Using simulated data sets, we demonstrated that the noise
reduction performance of RSPR-NR is robust over wide
ranges of signal complexity and noise level in data sets,
and the FDR used in the procedure (Fig. 5). This robust-
ness is important for applying RSPR-NR to real data sets.
Using real data, it is usually impossible to know the exact
signal complexity, especially concerning small signal fea-
tures, and levels of random noise. Therefore, it is impossi-
ble to select parameters for the best results. RSPR-NR can
produce nearly optimal results over wide ranges of signal
complexity and noise variance ratio, without adjusting the
FDR parameter. In contrast, PCA could easily result in
poor performance with real data because there is no defin-
itive way to optimize the number of PCs kept for noise
reduction performance using particular real data sets. To
obtain an idea about noise reduction performance with a
real data set, we used selective improvements of the corre-
lation between gene pairs sharing GO terms over gene
pairs not sharing GO terms. Based on this test, it became
clear that in PCA, it is impossible to simultaneously opti-
mize the number of top PCs kept for both the relative
angle change difference and the % angle change differ-
ence. In contrast, RSPR-NR can achieve relative angle
change difference and % angle change difference values
that are comparable to or better than the values optimized
separately in PCA, without parameter adjustment. So for
real data sets RSPR-NR is superior to PCA for reduction of
random noise.

How does RSPR-NR achieve the robust noise reduction?
One mechanism is that the statistical test used in the core
RSPR-NR procedure (Fig. 1) automatically adjusts the
threshold level for significant signals. If the random noise
level is higher, the deviation of the squared, sorted, and
scaled PC-coordinates from the 50 percentile value in
each rank of the noise distribution smaller because it gets
a smaller scaling factor (step 3 of the core procedure; Figs.

http://www.biomedcentral.com/1471-2105/9/508

1B, 5C, and 5D). Consequently, a smaller number of PC-
coordinates will be selected as significant. If signals are
more complex, the statistical test results in the opposite
effect: a larger deviation of sorted squared PC-coordinates
from the 50 percentile value in each rank of the noise dis-
tribution due to a larger scaling factor and a larger number
of significant PC-coordinates (Figs 5A and 5B). A second
mechanism is application of the core procedure to one
subset at a time with each subset having a relatively small
row number (Fig. 4A). This increases the probability that
a small number of PCs adequately capture small features
and allows RSPR-NR to accommodate complex data sets.
The third mechanism is sampling of each row in multiple
different subsets, and averaging of the results of the core
procedure for each subset (Fig. 4B). This procedure
reduces the likelihood that large peaks of noise remain in
the final output data set and improves performance under
a high noise condition.

It is worth emphasizing that all these mechanisms could
be implemented because RSPR-NR makes a decision
about a significant signal in each element of the PC-coor-
dinated data matrix. This clearly differentiates RSPR-NR
from PCA as a statistical noise reduction method. For the
element-by-element decision making, the scaling factor to
compare with the noise distribution is determined for
each row of the PC-coordinated data matrix. This row-by-
row scaling design of RSPR-NR could provide another
advantage. Although we applied random noise with the
same variance to the entire data matrix in the simulation,
it is conceivable that the noise variance may vary in differ-
ent rows, that is, there may be gene-specific variation in
the random noise level in expression profile data. With
this row-by-row scaling design, RSPR-NR is capable of
handling such row-specific noise levels.

We applied RSPR-NR to Arabidopsis expression profile
data, and the results were evaluated using an assumption
of a correlation between GO term conservation and
expression profile similarity among gene pairs. We dem-
onstrated that statistically, the gene pairs that share GO
process and component terms have their correlations
increased while the gene pairs that do not share GO terms
have their correlations decreased by both RSPR-NR and
PCA (Figs. 6 and 8). This strongly suggests that RSPR-NR
and PCA reduced noise from the actual expression profile
data set and that this test may be generally applicable to
examine the performance of a noise reduction method in
expression profile data sets. However, this test method is
not perfect. It is possible that the fundamental assump-
tion of a correlation between the GO term conservation
and expression profile similarity may not always apply
well, and it could depend on data sets. The expression pro-
files used in this study were collected from experiments
related to Arabidopsis responses to pathogen attack. If
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expression profile data collected under more diverse
experimental conditions were used, the correlation
between gene pairs sharing GO terms might be higher. In
addition, not all GO terms used appear to be useful for
this purpose. For example, the GO process terms include
"developmental processes". It is easy to imagine that
genes with this term have diverse expression patterns
according to the specific developmental process(es) these
genes are involved in. More intensive studies with various
expression profile data sets are needed to better evaluate
performance of RSPR-NR with real data sets.

Conclusion

RSPR-NR is a truly unsupervised method for reduction of
random noise in a large data matrix and is highly robust
against variation in the signal complexity and the noise
level in data. In this work, we have applied the following
concepts for noise reduction: interpretation of the PCs as
a mere signal-rich coordinate system; sorting the PC coor-
dinates in the order of contribution; applying a statistical
test using the noise distribution to each element of the
PC-coordinated data matrix; applying the above core pro-
cedure to subsets with relatively small row numbers; aver-
aging the results from multiple subsets for each row. All
these contribute to robust performance of RSPR-NR. With
more and more large and complex data sets becoming
available in biology, RSPR-NR, an unsupervised statistical
noise reduction method, will be a useful tool for improv-
ing data quality.

Methods

Expression Profile Data Set

The expression profile data used are from the set of 11
experiments we previously used [12]. They were generated
using the Affymetrix ATH1 Arabidopsis genome Gene-
Chip® (22,746 probe sets) [13] and obtained from NAS-
CArrays http://affymetrix.arabidopsis.info/narrays/
experimentbrowse.pl. After preprocessing and removal of
the probe sets that are always expressed at very low levels
as previously described [12], log,-transformed expression
level ratios were calculated using the values from the
appropriate control samples. The resulting log,-trans-
formed expression level ratio data matrix of 15,863 probe
sets (rows) and 60 biological samples (columns) was used
in the work described here.

Evaluation of Noise Reduction Performance Using
Simulated Data Sets

Simulated data sets were used to evaluate the performance
of RSPR-NR and to optimize parameters. The data matrix
size used was 2,000 rows x 60 columns. The data matrix
had a closed structure, as the top end of the matrix was
connected to the bottom end and the left end of the
matrix was connected to the right end. Two types of signal
block patterns, large and small, were simulated. For the

http://www.biomedcentral.com/1471-2105/9/508

row size of a large block, a random number was sampled
from a normal population with a mean of 8 and standard
deviation of 3.5 (N(8,3.52)), squared, and rounded. Sim-
ilarly, for the column size of a large block, a random
number was sampled from N(2.5,22), squared, and
rounded. For the row and column sizes of a small block,
random numbers were sampled from N(3,42) and
N(2,32), respectively, their absolute values were taken,
and rounded. For any of the row and column numbers, if
the value was larger than the data matrix size, more ran-
dom numbers were sampled. The averages of the row and
column sizes for large blocks were approximately 80 and
12, respectively, and those for small blocks were approxi-
mately 4 and 3, respectively. The numbers of large and
small block patterns were predetermined. The value
assigned for each block was randomly sampled from a
bimodal discrete population symmetric with respect to
zero with a probability of zero at zero (Figure 9), which
was generated as follows: A Poisson population with a
mean of 8, added to 1 (to make all the values positive),
was scaled to a variance of 1, and duplicated to create a set
with the same absolute values but a negative sign. Each
signal block was placed at a random location in the data
matrix. If an overlap between blocks occurred, the value
for the overlapping area was the sum of the values from
the overlapping blocks. A data matrix with simulated sig-
nal block patterns was designated as a signal matrix. Nor-
mally-distributed random noise of the predetermined
variance relative to the signal variance in the blocks was
added to each element of the signal matrix to obtain a
simulated data matrix, which was subjected to PCA, RSPR-
NR, or no treatment.

Evaluation of Noise Reduction Performance Using an
Actual Data Set

The Arabidopsis expression profile data set described
above was subjected to RSPR-NR and PCA. The cosine cor-
relations (also known as the uncentered Pearson correla-
tions) between pairs of genes before and after RSPR-NR or
PCA were compared. For better visualization, the angle
value corresponding to the cosine correlation value was
used. We randomly sampled 8 x 104 gene pairs out of
more than 1.2 x 108 possible gene pairs and performed
analysis with the sampled gene pairs. The angle change
was defined as the angle after RSPR-NR or PCA treatment
minus the angle before the treatment. The angle change
was plotted against the angle before the treatment (Fig.
6A). To allow comparison of angle changes among gene
pairs with similar before-treatment angle values, the loess
fit [11] with the span value of 0.3 was calculated and sub-
tracted from the angle change, resulting in the normalized
plot of relative angle changes vs. before-treatment angles
(Fig. 6B). Gene Ontology (GO) terms [6] were used to
select groups of gene pairs that are likely to have smaller
or larger angle changes. For each gene pair, the Jaccard
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similarity and the number of the union of their GO terms
in the categories of biological process and cellular com-
partment were calculated. The Arabidopsis GO annota-
tion, "ATH_GO_GOSLIM_20080301.txt", was
downloaded from The Arabidopsis Information Resource
(TAIR, http://www.arabidopsis.org) [14]. For each group
of gene pairs selected based on GO term characteristics,
the mean relative angle change in the normalized plot was
determined (relative angle change). The gene pair sam-
pling and the analysis were repeated ten times, and the
mean or median relative angle changes from the ten trials
were determined.
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pal component; PCA: principal component analysis; RMS:
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