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Abstract

Background: Amino acids responsible for structure, core function or specificity may be inferred
from multiple protein sequence alignments where a limited set of residue types are tolerated. The
rise in available protein sequences continues to increase the power of techniques based on this
principle.

Results: A new algorithm, SMERFS, for predicting protein functional sites from multiple sequences
alignments was compared to 14 conservation measures and to the MINER algorithm. Validation
was performed on an automatically generated dataset of 1457 families derived from the protein
interactions database SNAPPI-DB, and a smaller manually curated set of 148 families. The best
performing measure overall was Williamson property entropy, with ROC, | scores of 0.0087 and
0.0114 for domain and small molecule contact prediction, respectively. The Lancet method
performed worse than random on protein-protein interaction site prediction (ROC,, score of
0.0008). The SMERFS algorithm gave similar accuracy to the phylogenetic tree-based MINER
algorithm but was superior to Williamson in prediction of non-catalytic transient complex
interfaces. SMERFS predicts sites that are significantly more solvent accessible compared to
Williamson.

Conclusion: Williamson property entropy is the the best performing of 14 conservation measures
examined. The difference in performance of SMERFS relative to Williamson in manually defined
complexes was dependent on complex type. The best choice of analysis method is therefore
dependent on the system of interest. Additional computation employed by Miner in calculation of
phylogenetic trees did not produce improved results over SMERFS. SMERFS performance was
improved by use of windows over alignment columns, illustrating the necessity of considering the
local environment of positions when assessing their functional significance.

Background

A major focus of research in molecular biology is to deter-
mine the function of the gene products encoded in an
organism's genome. Genes that code for protein are heav-
ily studied by experimental methods, but these

approaches may take years to provide a detailed under-
standing of a single gene's function within the context of
the organism and its life-cycle. As a consequence, even
though the complete genome sequences of more than 52
eukaryotes, 47 archaea, and 517 bacteria are currently
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known [1], and the location of protein-coding genes can
be determined with reasonable accuracy [2], only a few
thousand proteins have been functionally characterised
with a high degree of confidence. Accordingly, computa-
tional methods to predict the function of a protein given
its amino acid sequence play a major role in guiding the
experimental characterisation of a newly sequenced
genome. The majority of methods aim to classify protein
sequences by function, and apply a range of techniques
from pair-wise sequence searching to profile-profile
HMMs [3] to identify similarities to well-characterised
proteins annotated by the Gene Ontology [4]. Although
assigning a protein to a broad functional class (e.g. hydro-
lase or synthase) may be achieved with a reasonable
degree of confidence by these methods, reliably predicting
which residues are involved in conferring specificity for a
particular substrate remains a major challenge. The
present work is concerned with identifying "functional
residues" that might be associated either with core func-
tion (CF) or specificity (SD [5]).

The most common approach for predicting functional res-
idues from the amino acid sequence has been to exploit
the evolutionary information present in an accurate mul-
tiple protein sequence alignment. Providing the
sequences are sufficiently diverse, the location of posi-
tions in the alignment with invariant, or highly "con-
served" amino acids may suggest structural or functional
importance. A number of different scoring functions have
been developed to quantify conservation of protein
sequence alignment positions as reviewed in [6]. In recent
work by Capra and Singh [7], important positions in a
sequence alignment are located by differentiating amino
acid distributions at positions under evolutionary pres-
sure from those of positions that are not. All these tech-
niques will identify columns 1-4 of the multiple
alignment fragment shown in Figure 1 as conserved, but
will not discriminate between columns 3 and 4. Since in a
multiple sequence alignment the sequences are grouped
by overall similarity, column 4 suggests that the position
is important to all sequences, but conservation of Lys in
one subfamily and Glu in the other indicates that the posi-
tion may have a role in defining the structural or func-
tional specificity within the protein family. A number of
algorithms seek explicitly to identify such Specificity
Defining (SD) positions and so discriminate between col-
umns 3 and 4. For example, the AMAS algorithm [8] iden-
tifies SD positions that have conserved physicochemical
properties within pre-defined sub-families of proteins
(e.g. +ve charge), yet exhibit different properties between
the sub-families (e.g. +ve charge compared to -ve). In the
'Evolutionary Trace' (ET) technique [9] alignments are
first sub-grouped by the use of partitions on a phyloge-
netic tree, and predictions are interpreted by mapping
onto protein structures. ET originally required the tree
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Fragment of an Example Alignment. lllustration of the
difference between highly conserved positions likely to be
responsible for core structure and/or function and specifi-
city-defining (SD) positions of a multiple sequence alignment.
Columns | and 2 illustrate positions crucial in all family mem-
bers. Column 3 shows a similar, though less stringent global
pattern of conservation. Column 4 in contrast represents an
SD position, where only a single amino acid is tolerated by
each subfamily. Column 5 represents a non-conserved posi-
tion for comparison.

partition to be chosen manually, but subsequent develop-
ments have attempted to address this issue [10,11]. In
contrast to AMAS, and ET, the 'Sequence Space' algorithm
[12] which represents sequences of an alignment as vec-
tors in high dimensional space, does not require pre-
grouping of the sequences. In Sequence Space, principal
components analysis is employed to derive both the prin-
cipal sequence subgroupings, and the SD positions char-
acteristic of each group. More recently, Marttinen [13]
applied a Bayesian statistical approach in an analogous
manner, again deriving both the optimal subgrouping
and functionally relevant positions of an alignment.

The SD methods discussed thus far assume a single under-
lying subgrouping. In contrast, the ConSurf method [14-
16] infers a phylogenetic tree to normalise an entropy
score over all columns in an alignment. The method
incorporates a model of substitution rates along branches
of the tree and in the most recent version this is performed
within a Bayesian framework [17]. Alignment positions
are classified based on the normalised entropy score, and
colour-coded classes mapped to the surface of an example
structure. A different approach was taken in the MINER
algorithm, where a phylogentic tree is derived for win-
dows of a given size at each position in the alignment. The
degree to which these trees correlate with the tree derived
from the whole alignment is determined by counting top-
ological differences. The highest correlating regions,
referred to as 'phylogenetic motifs', are proposed as func-
tionally significant [18]. The MINER and ConSurf
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approaches are attractive since no artificial divisions of the
alignment are necessary. However, while multiple valid
phylogenetic trees are possible given a single alignment-
derived distance matrix, both these techniques derive only
one. If phylogeny estimation is not the objective of the
investigation, assuming a single phylogenetic tree unnec-
essarily removes information. This problem is not intrac-
table, and probabilistic models [19] can facilitate
representation of multiple possible trees. However this
level of complexity may not be necessary, since the phylo-
gentic structure of alignment columns may be compared
to that of the whole by use of distance matrices without
first inferring a tree.

Pazos and Valencia [20] demonstrated that distance
matrices derived from single columns of protein family
alignments can be effective in the prediction of protein-
protein interactions. A 'mutational behavior' method was
also demonstrated, showing that distance matrices gener-
ated at single alignment positions that correlate with a
matrix from the whole alignment can be indicative of
functional sites [21]. However, the mutational behaviour
method is limited to single alignment columns which
may render it susceptible to noise. The alternative
explored in the SMERFS algorithm [22] introduced in this
paper is to work directly from distance matrices and to
consider the local neighbourhood of each position in the
alignment. The output of SMERFS is somewhat similar to
the similarity deviation score produced by the three-
dimensional cluster analysis method of Landgraf and
coworkers [23]. However unlike the method of Landgraf,
SMEREFS considers neighbours in sequence, not structure,
and therefore functions in the absence of an available
structure. In this paper the SMEREFS algorithm is systemat-
ically evaluated alongside other methods on a new large
collection of protein-protein and protein-small molecule
interface examples derived from the SNAPPI-DB database
[24].

http://www.biomedcentral.com/1471-2105/9/51

Results and Discussion

Comparison of SMERFS with MINER

SMERFS was compared to the tree-based method, MINER
[25] for prediction on the SNAPPI-DB set. Table 1 shows
the ROC, , scores for predictions of domain-small mole-
cule, domain-domain and the combined interacting resi-
due sets. Both methods were applied with their respective
optimal parameter sets as determined by ROC, ; score
over 9 training sets.

SMERFS performed better than MINER in the prediction
of domain-domain interactions, with the methods scor-
ing 0.0071 and 0.0060, respectively, the converse was true
in prediction of small molecule contacts. However, none
of the differences were significant at the 0.05 confidence
level. This result suggests that the additional complexity in
construction of phylogenetic trees in MINER does not
help improve accuracy.

Conservation Measures

Optimal parameters were determined for each method on
the SNAPPI-DB training set as described in Methods.
Table 2 shows results for 14 conservation measures on the
SNAPPI-DB blind test set. Results are shown both for nor-
malised single-column scores (standard) and for optimal
combinations of multi-position smoothing and gapped
position removal (optimised). The SMERFS results from
Table 1 are included for comparison, and in these rows
the 'standard' result was derived from the matrices of sin-
gle alignment positions, while 'optimised' indicates
multi-column matrices.

Performance results for optimised measures in Table 2 do
not always match or exceed those of the standard form.
This is because optimised parameters for all measures
were derived on the SNAPPI-DB training set, which is dis-
tinct from the blind test set. For prediction of domain con-
tacts, all methods are improved on parameter

Table I: Comparison of Results for SMERFS and MINER. ROC, | scores for optimised parameters of SMERFS and MINER (window size,
W, gap threshold, C,and scoring scheme), as tested in the blind data subset, separate from the training data. In the ‘Combined' site
type, protein and small molecule binding residues are pooled to form a single standard set. In the central scoring scheme, scores
produced by SMERFS or MINER are applied to the central position of the window only, in 'max’, all alignment positions take the score
of the window covering them with the maximum score. For the 0-0.1 false positive rate range here, a random prediction would on

average produce an area of 0.005.

Interaction Type Scoring Method Optimum Parameters ROC,, score Significance of difference
w G Scoring Scheme

Small Molecule SMERFS 9 1.00 max 0.0079 0.947

MINER | 0.85 central 0.0096
Domain SMERFS 9 1.00 max 0.0071 0.824

MINER 3 0.75 central 0.0060
Combined SMERFS 9 1.00 max 0.0077 0.160

MINER 3 0.65 max 0.0070
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Table 2: Results Comparison of 14 Conservation Measures and SMERFS. ROC, | scores for 14 conservation measures taken from [6],
SMERFS ,and a random control. Results shown are for a blind testing set of Pfam families, employing optimised parameters derived
from prior cross-validation. Each score was normalised to a 0-1 range for an alighment, and inverted when necessary so that | = max
conserved. This score is shown in the table as 'Standard’. Results of an additional, 'optimised' form are also shown, smoothed over a
window of W positions, and processed to remove column results with gap content above C,. The score difference column contains
optimised - standard ROC, , scores.

Interaction Type  Conservation Measure  Reference  ROC(, score (standard) Parameters ROC, score (optimised)  Score Difference

w C,

Domain Williamson [28] 0.0087 3 | 0.0098 0.0011
Kabat [29] 0.0079 5 | 0.0088 0.0009
Karlin [31] 0.0074 7 | 0.0086 0.0012
Sander [36] 0.0078 3 | 0.0083 0.0005
Valdar [32] 0.0075 7 | 0.0081 0.0006
Taylor [33] 0.0070 9 | 0.0080 0.0010
Zvelebil [52] 0.0070 9 | 0.0079 0.0009
SMERFS 0.0056 9 | 0.0071 0.0015
Armon [14] 0.0063 9 0.8 0.0067 0.0004
Jores [30] 0.0050 9 0.9 0.0064 0.0014
Schneider [36] 0.0049 5 0.6 0.0062 0.0013
Gerstein [35] 0.0049 5 0.6 0.0062 0.0013
Thompson [26] 0.0060 7 | 0.0062 0.0002
Mirny [34] 0.0059 9 0.7 0.0057 -0.0002
Randomscore 0.0048 7 | 0.0052 0.0004
Lancet [27] 0.0008 | 0.3 0.0051 0.0043

Small Molecule Williamson [28] 0.0114 5 | 0.0122 0.0008
Kabat [29] 0.0128 3 | 0.0120 -0.0008
Valdar [32] 0.0120 | | 0.0120 0.0000
Taylor [33] 0.0113 | | 0.0113 0.0000
Karlin 31 0.0121 9 | 0.0110 -0.001 |
Thompson [26] 0.0073 | 0.9 0.0108 0.0035
Zvelebil [52] 0.0110 9 I 0.0108 -0.0002
Armon [14] 0.0107 | | 0.0107 0.0000
Schneider [36] 0.0091 | 0.8 0.0102 0.0011
Gerstein [35] 0.0091 | 0.8 0.0102 0.001 |
Lancet [27] 0.0014 | 0.2 0.0097 0.0083
Sander [36] 0.0091 3 | 0.0093 0.0002
Jores [30] 0.0090 9 0.8 0.0090 0.0000
SMERFS 0.0057 9 | 0.0079 0.0022
Mirny [34] 0.0089 9 0.6 0.0078 -0.001 |
Randomscore 0.0049 7 | 0.0053 0.0004

Combined Williamson [28] 0.0107 5 | 0.0112 0.0005
Kabat [29] 0.0106 3 | 0.0108 0.0002
Karlin 31 0.0099 7 | 0.0108 0.0009
Valdar [32] 0.0100 7 | 0.0102 0.0002
Taylor [33] 0.0093 9 | 0.0098 0.0005
Zvelebil [52] 0.0091 9 | 0.0097 0.0006
Sander [36] 0.0091 3 | 0.0096 0.0005
Schneider [36] 0.0064 5 0.5 0.0078 0.0014
Gerstein [35] 0.0064 5 0.5 0.0078 0.0014
SMERFS 0.0057 9 I 0.0077 0.0020
Armon [14] 0.0083 9 0.8 0.0076 -0.0007
Jores [30] 0.0066 9 0.9 0.0074 0.0008
Lancet [27] 0.0009 | 0.2 0.0073 0.0064
Thompson [26] 0.0065 9 | 0.0068 0.0003
Mirny [34] 0.0074 9 0.7 0.0067 -0.0007
Randomscore 0.0049 7 | 0.0053 0.0004
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optimisation with the exception of Mirny. In the case of
small molecule contacts however, only 7 of 14 conserva-
tion measures perform better in optimised than the stand-
ard form. For example, Kabat scored 0.0128 in its standard
form compared to 0.0120 optimised. Thompson [26] and
Lancet in contrast were improved by optimisation- Thomp-
son was improved from 0.0073 to 0.0108 by removal of
the most highly gapped positions, though the optimised
'window' size was 1 as in the standard form. The lack of
universal improvement in results from parameter optimi-
sation in the small molecule validation set may reflect a
reduced level of dependency of small-molecule binding
positions with their neighbours, compared to protein-
binding positions.

All methods predicted small molecule contacts better than
inter-domain contacts, as judged by ROC,) , score, reflect-
ing the increased difficulty in prediction of domain-
domain contacts. Ranking of the different measures was
largely conserved between domain-domain and domain-
small molecule standard sets, with only minor re-order-
ing.

All measures achieved better scores than random, with the
exception of Lancet [27] in domain-domain contact pre-
diction, which scores 0.0051, compared to a random
score of 0.0052.

The best performing measure for both domain-domain
(ROC, ; = 0.0098) and domain-small molecule (ROC, ; =
0.0122) contact prediction was Williamson [28], a relative
entropy measure incorporating physicochemical property
scores as shown in Equation 1:

K
Williamson = 2 p;1n ( % J (1)

1

Where K =9, for 9 physicochemical residue sets used, and
p; is f;/ N where f; is the frequency of residue set i in a col-

umn and N is the number of sequences. p; is the mean
value of p; over all alignment columns. Interestingly, the
next best score, in both domain-domain and domain-

small molecule contact prediction tasks was given by the
simple Kabat measure [29] illustrated in Equation 2:

Kabat = L XN (2)
n

Where k is the number of amino acid types present in the
alignment column, n; is the the number of times the most
commonly occurring amino acid occurs in the column,
and N is the number of sequences in the alignment. The
difference in score between Williamson and Kabat was not
significant at the p = 0.05 confidence level. The measure

http://www.biomedcentral.com/1471-2105/9/51

Jores [30] is only slightly more complex than Kabat,
employing a consideration of residue pairs present at a
given position. However, the results in Table 2 shows that
this addition has not improved performance, and Kabat
consistently outperformed Jores with p-values from McNe-
mar's test of 1.9 x 1028, 1.9 x 10-1and 4.1 x 10-31in pre-
diction of domain, small-molecule and combined
interacting positions, respectively. It may be that the
extreme simplicity of Kabat is it's strength, rendering it
robust to noise compared to other measures, and this fea-
ture is lost in Jores. Alternatively the alignments in the data
set may contain too few sequences for the relative benefits
of more complex measures to be fully demonstrated.

Other measures which gave consistently high scores in
prediction of both types of interface were the mutation
data score Karlin [31], the weighted sum-of-pairs score
Valdar [32], and the stereochemical property score, Taylor
[33], all of which incorporate amino acid properties into
their function.

Table 2 also highlights the worst performing measures,
Mirny [34] and Lancet [27]. This is interesting since Mirny
is closely related to Williamson, as shown in Equation 3:

K
Mirny = Zpi Inp; (3)

Notation is as Equation 1, except K = 6. Unlike Williamson,
Equation 3 does not normalise scores according to the fre-
quencies of residue types in the alignment.

The worst performing measure in the domain-domain
interaction prediction task, Lancet [27] is defined by Equa-
tion 4:

K K
PaPb
Lancet = — (4)
2.2 ot

Where p,, is the fractional frequency of amino acid a in the
aligned column, K represents the alphabet of amino acids,
and M(a, b) is a substitution matrix such as BLOSUMG62.
Lancet was noted in [6] to suffer from idiosyncrasies
related to placement of M(a, b) as a denominator, it may
be that this is at the root of its poor performance here.

The equivalent Gerstein [35] and Schneider [36] measures
also performed badly. Similarly to Williamson they are
based on entropy in a column of the alignment, but
unlike Williamson and Valdar, they do not incorporate any
consideration of physicochemical properties.

In summary, the best performing conservation measures
tend to incorporate terms to normalise for the character of
the alignment in question, as well as the relationships
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between residues according to their physicochemical
properties. In Williamson [28] normalisation is in terms of
the characteristic residue type frequencies of an align-
ment, in Valdar [32] it is the degree of sequence redun-
dancy present. Poorly performing measures lack one or
more of these features. Kabat is an anomaly in these
results, lacking most of the features present in other suc-
cessful measures. This may be a consequence of simplic-
ity, endowing the measure with a strong resistance to
noise that outweighs some of its shortcomings, but may
also be an artefact of the dataset.

Since Williamson gave the best performance, it is used in
the remainder of this paper as representative of conserva-
tion measures in comparison with other techniques.

Recently, Capra and Singh have published a related study
[7] of conservation as a method of predicting functional
residues. The authors employed a set of active site residues
as standards; since such residues are not employed in the
current study, direct comparisons cannot be made. How-
ever two other categories are used by the authors: 'ligand
distance' and 'homolog protein interface’, which are
roughly equivalent to the 'small molecule' and 'domain’
interacting residues of the current study.

Two measures are shared by the present study and that of
Capra and Singh: the Mirny property entropy score and
the Karlin sum-of-pairs score. Comparison based on these
measures shows that ROC,, scores for un-optimised
measures are higher in the current study, as shown in
Table 2. In Capra and Singh's work, Karlin scores 0.0086
and 0.0069 for small molecule and domain interactions,
respectively, while Mirny scores 0.0049 and 0.0037. This
is likely to reflect differences in the origins of the valida-
tion data used; the validation sets here may be more com-
plete in annotation, being derived from SNAPPI-DB.
Capra and Singh did not examine the Williamson entropy
of properties score [28], which this study has shown to be
superior to Mirny. Had they done so, the indications from
this study are that a performance closer to their best-per-
forming 'Jensen-Shannon divergence' may have been pro-
duced.

Comparison of Conservation Measures and SMERFS

Table 2 also shows results for SMERFS, including those
from single alignment columns rather than the optimum
over different window sizes. The optimised form shows a
large improvement over the single column 'standard’
form. The top conservation measure, Williamson, out-per-
formed SMERFS in both domain-domain (SMERFS score
= 0.0071) and domain-small molecule (SMERFS score =
0.0079) contact prediction. The significance of difference
by McNemar's test are 1.1 x 10-15and 3.1 x 1012, respec-
tively. Since the increased complexity of SMERFS did not

http://www.biomedcentral.com/1471-2105/9/51

appear to have produced a corresponding increase in per-
formance on our benchmark, the cause of the superior
performance of simple measures such as Williamson [28]
was examined.

Characterisation of the Difference Between SMERFS and
Williamson Conservation

As outlined in the introduction and in Figure 1, conserva-
tion and phylogeny based techniques such as SMERFS
aim to identify different types of functional residues.
Accordingly, the predictions by Williamson and SMERFS
were examined by considering the number of predictions
in common between the methods, by breaking down
results by complex type on the BWO5 set and by classify-
ing the predictions into accessibility classes. Finally, a
qualitative comparison of the methods was performed for
the amino transferases.

Comparison of True Positive Sets

The overlap of true positive sets from SMERFS and the best
performing conservation measure was assessed on the
SNAPPI-DB data set. True positive sets were created by
applying a threshold to the 0-1 position scores generated
by each method chosen to coincide with a false positive
rate of 0.1.

Table 3 illustrates the difference and overlap in the predic-
tions of the true positive sets from SMERFS and William-
son in predictions on the three subsets of the SNAPPI-DB
data: small molecule, domain-domain, and combined.
The overlap of true positive sets between methods was
small in comparison to the true positive set of either
method. For example in small molecule contact predic-
tion, the overlap was by 921 positions, compared to 4771
true positives from Williamson, and 4436 for SMERFS.
This illustrates the fundamentally different types of posi-
tion predicted by each method.

Despite the superior results produced by Williamson when
considering ROC areas in the SNAPPI-DB dataset, choos-
ing the threshold for both methods via fixed false positive
rate cost produced similar performance in terms of abso-
lute true positives (TP). Higher ROC areas indicate a
higher mean true positive rate, defined as TP/(TP+FN).

Table 3: Overlap between true positive (TP) sets produced by
Williamson and SMERFS. True positive sets were created by
applying a threshold corresponding to a false positive rate of 0.1
in both measures, as detailed in Methods.

Site Type SMERFS only  Overlap  Williamson only
Domain-Small Molecule 3515 921 3850
Domain-domain 6989 1995 8204
Combined 9945 2183 8990
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Given a similar number of true positives, this indicates an
elevated number of false negatives for SMERFS compared
to conservation. This was presumably due to SMERFS fail-
ing to detect the most highly conserved regions since they
lack any pair-wise similarity pattern.

Construction of a Hybrid Classifier

Since predictions from SMERFS and Williamson appear
complementary, a predictor was developed that com-
bined the two approaches within a Bayesian framework.
Classifiers were trained in a cross-validation scheme,
recording the probability of an interacting position condi-
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tional on combinations of scores from SMERFS and Wil-
liamson. However, validation of these classifiers did not
give a consistent improvement on the best-performing of
either SMERFS or Williamson.

Results in the BWO5 data set: Different types of interface require
different approaches

The SNAPPI-DB set is an extensive set of interacting posi-
tions that were produced automatically from structural
data. The BWO5 data set [37] contains complexes of man-
ually verified biological significance, separated into 4 sub-
sets of different character. Figure 2 illustrates the

Homo-obligates (n=84)

0.4

o SMERFS
A Williamson
x MINER

0.3

0.1

0.0

Non-Enzyme-Inibitor Transient (n=23)
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A Williamson ol
x  MINER 8
Pl A
o o 28
o A

0.1

0.0

0.10 0.15 0.20

FP Rate

Partial ROC Plots from the BW05 Data. Partial ROC plots illustrating the difference in method performance in each of
the four categories of interface that comprise the Bradford data set. The straight line shown represents the ratio of TP rate to

FP rate expected from a randomly generated measure.
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performance of SMERFS relative to other measures in the
most stringent portion of the ROC curve to a false positive
rate of 0.2. The significance of the difference was assessed
at a false positive rate of 0.1 by McNemar's test and dis-
played in Table 4. Comparison with Table 2 reveals an
improved performance for both SMERFS and Williamson
on the BWO05 dataset. For example, the lowest SMERFS
score is found in the hetero-obligate subset in Table 4 with
a ROC,, of 0.0084; the comparable domain-domain
value in Table 2 is 0.0071. As a more refined dataset than
SNAPPI-DB, this set posseses a lower proportion of inter-
acting positions, but those that are present are reliable.
This may mean that a greater proportion of negatives
assigned by good prediction measures are likely to be
assigned as true negatives (TN), reducing false positive
rates (FP/FP+TN), and thereby increasing ROC,, , scores.

Table 4 also highlights the performance differences
between methods, and between different data subsets.
SMERFS performed particularly well in the NEIT (non-
enzyme inhibitor transient with a score of 0.0152, outper-
forming Williamson's score of 0.0107 with a significance
of 0.025. Structures in this category include murine
gamma herpesvirus cyclin complexed to human cdk2
(PDB code 1F5Q) and a guanine nucleotide exchange fac-
tor for Ras-like GTPases (PDB code 1bkd). Williamson out-
performed SMERFS in enzyme-inhibitor (e.g. porcine
pancreatic trypsin, PDB code 1AVW) and hetero-obligate
complexes (e.g. Calcineurin-like phosphoesterase PDB
1TCO), while the difference in performance was negligi-
ble for the homo-obligate complexes. The performance
differences highlight the necessity of choosing a predic-
tion method appropriate to the system of interest. The
more successful prediction by Williamson for enzyme-
inhibitor and hetero-obligate contacts suggests a high
level of conservation in the positions that mediate them.
Conservation methods should therefore be the primary
choice in prediction of this type of interface. Conversely,
transient complexes seem to involve alignment positions
with weaker conservation that inhibit the predictive abil-
ity of Williamson, but enhance that of SMERFS.

Table 4: Results of ROC analysis of SMERFS and Williamson
methods applied to the BWO05 data.

Complex Type ROGy, Significance
SMERFS Williamson

Hetero-obligate 0.0084 0.0118 0.0059

Homo-obligate 0.0089 0.0095 0.83

Enzyme-inhibitor 0.01044 0.0142 0.011

NEIT 0.0152 0.0107 0.025

http://www.biomedcentral.com/1471-2105/9/51

Surface Accessibility of Predicted Positions

Since the definition of 'functional residue' employed here
is a residue that mediates contact with other molecules,
the most successful measures may be expected to predict
accessible positions preferentially. Surface accessibility
was compared between the predicted residue sets of differ-
ent methods in the BWOS5 set. Relative surface accessibili-
ties for residues were calculated with the program NAccess
(unpublished, S. Hubbard and J. Thornton 1992-6), and
their distributions compared between methods. All other
structural entities except the domain of interest were
removed from the PDB file prior to this analysis, so that
otherwise accessible positions were not obscured by inter-
acting entities.

Figure 3 illustrates the surface accessibility of the predicted
residue sets from SMERFS and Williamson, relative to that
of the residues in the Bradford standard set, and in the
domain as a whole. Accessibility is shown in 3 categories
of percent relative solvent accessibility, RSA: buried (B, 0
< RSA < 5), partially buried (PB, 5 < RSA < 25), and acces-
sible (A, 25 < RSA = 100). Accessibility of BWO05 interact-
ing positions is shown in the left panels. As might be
expected from known interacting positions, a greater pro-
portion of these positions are accessible, compared to the
total set of domain residues shown in the centre panels
(labelled 'All Domain Positions'). The far right panels
show distributions of accessibility for the predicted sets,
with lighter colored sections representing the portion of
predictions corresponding to interacting positions of the
BWO05 data. Compared with the 'All Domain Positions'
plots, predicted residue sets have a high buried (B) con-
tent. This may in part be due to prediction of positions of
core structural importance, and in part due to buried posi-
tions associated with interfaces. The distributions pro-
duced by the two methods are, however, different, with
SMEREFS consistently producing the more accessible pre-
dictions. The difference is significant (as assessed by the
Mann-whitney rank-sum test for unpaired data) in all sets
at better than p = 0.01. This suggests SMERFS predicted
fewer core structural positions in this analysis set, and
more surface residues more likely to form interactions
with other molecules. To guage the impact this accessibil-
ity might have on comparative accuracy between meth-
ods, the analyses described in section was repeated,
limited to positions of > 25% accessibility. However this
did not provide an improvement in results (data not
shown), possibly due to the sparse (albeit high-confi-
dence) nature of the BWO05 dataset.

Case Study: Aminotransferases

The relative strengths and weaknesses of conservation vs
phylogeny based approaches is illustrated for Pfam family
PF00155, 'amino transferase class I and II', taken from the
homo-obligate subset of the BWO5 data. This family was
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Figure 3

Surface Accessibility of Domain Residues. lllustration of surface accessibility of positions associated with functional resi-
due prediction in the four different interface subtypes of the BWO5 validation data [37]. Distributions of relative solvent acces-
sibility (RSA) are shown in divided into 3 bins: buried (B, 0 < RSA < 5), partly buried (PB, 5 < RSA < 25), and accessible (A, 25 <
RSA < 100). Of the three columns of panels, the far left (labeled 'Interacting Positions' represents all positions found interacting
in the BWO5 dataset. Centre panels illustrate positions over the domain as a whole, while right-hand panels are derived from
SMERFS or Williamson predictions. The lighter 'caps' on bars in the 'Predictions' column represent the portion that corre-
sponds to interactions in the BWO05 set. Rows describe the sub-types of hetero-obligates, homo-obligates, enzyme-inhibitors
and non-enzyme inhibitor transient (NEIT).
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selected as an example due to its single domain structure,
and the presence of a large amount of information on
both protein-protein and protein-small molecule interac-
tions. Family members function as dimers and bind a
pyridoxal phosphate cofactor, as shown in an example
structure from Trypanosoma Cruzi (Figure 4[38]).

Figure 5 shows part of the seed alignment for Pfam family
PF00155, with red-highlighted regions showing columns
predicted as functionally important by SMERFS. Figure 6
shows the locations of putative functional positions as
predicted by SMERFS and Williamson within one chain of
the complex. Figure 6 also shows, in stick representation,
some of the important cofactor and substrate-binding res-
idues described in Blankenfeldt et al [38]. There are a
number of conserved positions, which were detected by
Williamson and not SMERFS, as expected due to the lack of
family structure in these regions. These include Lys253
and Asp216 which serve to orientate the phosphate-bind-
ing residue Arg261, and Asn188 that hydrogen bonds to
PLP's phenolic oxygen. Interestingly, Arg261 itself, which
forms a salt bridge with the phosphate group of PLP, was
not predicted as functional by either method due to a gap
present in sequences of one subfamily of the alignment.
Examination of the literature for these sequences (for
example KBL ECOLI, [39]), reveals structural evidence
that these enzymes are still capable of binding pyridoxal
phosphate, but must do so by means not requiring a pos-
itive charge in this region.

Other important positions around the cofactor binding
site were predicted by SMERFS and not Williamson. Tyr141
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Figure 4

Complex Structure of PDB Structure 1BWO, Repre-
senting Pfam Family PF00155. lllustration of the dimer
structure for Pfam family PFO0 155 (amino transferase class |
and Il) in the Trypanosoma Cruzi structure (PDB code 1BMO,
[38]). The complex comprises 2 chains, chain A is shown in
dark gray, chain B in lighter grey. The two PLP cofactor mol-
ecules are shown in orange, and each has contacts with both
chains.

and Thr184 are known to stabilise Asp216 by hydrogen
bonding, and Tyrosine 71 hydrogen bonds to the cofactor.
However these positions vary across the family as a whole,
since hydrogen bonds can be supplied by a large variety of
residues. As a consequence, these positions do not display
sufficient conservation to be ranked highly by conserva-
tion.
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Figure 6
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TYR-141
THR-184

ASP-216

TYR-71

ARG-261

ILE-218

TYR-219

Ligand-binding Positions of Tyrosine Aminotransferase of Trypanosoma Cruzi. One chain of the crystal structure
of tyrosine aminotransferase from Trypanosoma Cruzi (PDB code 1BWO0). Results of a conservation-based measure (William-
son, in blue) are shown compared to the phylogeny-based SMERFS (in red). Positions predicted by both techniques are shown
in green, the PLP cofactor in orange. Protein regions in stick representation and labelled are those important for cofactor bind-

ing, as described in the text.

The main advantage of SMERFS over Williamson evident
in this example is the ability to predict a larger number of
the protein-protein contacts. This can be seen by compar-
ing the predicted positions shown in Figure 6 with the
chain-chain contacts highlighted for comparison in Figure
7. Of 87 protein-protein contacting positions annotated
to the PF00155 alignment from the BWO05 data set,
SMEREFS predicts 32, compared to just 10 from William-
son. These positions, while exhibiting patterns in the pair-
wise sequence relationships that are detectable by
SMERES, are not detected as easily by conservation.

A number of positions were predicted successfully by both
methods. Tyr 219 binds with Asn188 to PLP's phenolic
oxygen. Tyr345 is known to stabilise Asn188 and Tyr219.
A stacking interaction provided by Phe138 and a contact
with 1le218 form other important PLP interactions, and
were predicted by both methods. These positions are not
invariant in the alignment, but conserve properties, for
example of aromaticity or aliphaticity; this supplies both

Figure 7
Structure as Figure 6, highlighting the domain-domain inter-
face in pink.
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subfamily structure detectable by SMERFS and property
conservation detectable by Williamson. Interestingly,
Arg389, a crucial and absolutely conserved position in the
substrate-binding region is also predicted by SMERFS.
Despite the lack of family structure displayed at this posi-
tion, SMERFS assigns it as positive due to patterns present
in the surrounding positions. The successful and exclusive
prediction by SMERFS of many of the positions compris-
ing the hydrogen bonding network at a ligand binding site
illustrates its utility. Performance in protein-protein inter-
action prediction is also much better for SMERFS than
Williamson, and while not generalisable beyond this
example, this shows that algorithms such as SMERFS that
detect specificity defining positions can sometimes suc-
ceed where conservation cannot.

The aminotransferase class I and II sequence family has
features that make it particularly amenable to analyses of
this type. The sequences are single-domain, without the
more complex evolutionary history present in multi-
domain proteins. The sequences are sufficiently divergent
for a subfamily structure to develop, without being so
diverse as to introduce a large number of gaps. Addition-
ally, the associated 3D structures for the family are well
annotated, with large numbers of both domain-domain
and domain-small molecule interacting positions known.
This reduces the number of times a correctly predicted
position is not recognised as such, a problem in larger,
less well annotated sequence families.

Conclusion

The work presented here has shown that SMERFS pro-
duces sets of putative functional positions in multiple
sequence alignments fundamentally different from those
of conservation measures. For this reason conservation
measures and phylogeny-aware methods such as SMERFS
should be considered as complementary tools. The data
suggest that if alignment positions involved in the core
function of a protein, for example catalysis, are the target
of a study, relatively simple conservations measures
remain the most useful tool. If less critical positions, per-
haps responsible for defining sequence subfamiliy specif-
icity, are the target, then methods such as SMERFS may be
of use. Finally, SMERFS has been shown to predict many
more surface positions than conservation, reducing the
possibility of confusing signals from positions of core
structural rather than functional significance.

The complementary nature of conservation measures and
those that seek specificity-defining positions are strongly
suggestive of a combined approach. However, attempts
made as part of this study to produce a hybrid classifier
based on a rigorous probabilistic approach have failed.
This may be because the relative importance of specificity-
defining positions is different for differing complex types.

http://www.biomedcentral.com/1471-2105/9/51

For this reason a potentially useful approach would be to
construct different combined classifiers for complexes of
different types. The BWO5 set contains too little data to
produce accurate probabilities of sites for given score pairs
based on observations, but a larger set of this type availa-
ble in future might produce improved results. If method
combination is not feasible, a simpler approach would be
to determine those characteristics that make an alignment
more amenable to one type of analysis or another, and
select measures accordingly. Despite the work described
here and elsewhere in prediction of functional residues, it
remains true that the accuracy of functional residue pre-
diction techniques falls short of that necessary for true
utility in the laboratory. There are multiple likely causes of
this, and therefore multiple potential solutions.

The first is the definition of 'functional residue' employed
by studies such as this. Protein residues may be closely
implicated in the hydrogen bonding networks that stabi-
lise an interacting site without being directly involved in
the interaction. This was demonstrated in the aminotrans-
ferase case study above, but only direct interactions
formed part of the validation data sets. Perceived perform-
ance of prediction methods might improve if residues
peripheral to interacting sites are included in analyses,
though such information is harder to derive automatically
from structural data alone.

From a pure sequence-based perspective, difficulties result
from the variable level of divergence present in protein
sequence families. Families with either insufficient
sequences, or too little divergence between homologues
confound analysis since too little evolutionary history is
evident to discern true conservation. Too many sequences
or too much divergence, and patterns may be lost in noise
or obscured by gaps. It may be possible to tackle this issue
by careful choice of sequences for analysis, and estimation
of likely accuracy given the sequence data available.

Another key factor in an analysis like this is the fact that
the meaning of 'functional position' is dependent on the
protein family in question. This study has shown that the
performance of methods is variable depending on the
type of interaction under consideration. A study that sub-
divided interactions into a larger number of classes would
be likely to reveal further differences between methods.

Methods

Validation Data

Two structurally derived sets of standards were employed
in the development and validation of the methods
described here: a large automatically generated set of sites
(the SNAPPI-DB set), and a smaller, hand curated dataset
derived from the work of Bradford and Westhead [37]
(the BWOS5 set).
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The SNAPPI-DB Set

1652 seed alignments were extracted from Pfam [40,41],
chosen for the availability of associated data on domain-
domain and domain-small molecule contacts in SNAPPI-
DB [24]. SNAPPI-DB is a high-performance object-ori-
ented database derived from the European Bioinformatics
Institute's MSD database [42]. The MSD is a data ware-
house that includes all data in the PDB [43], but with sub-
stantial additional derived data, including 'likely
biological units'. SNAPPI-DB contains atom-level infor-
mation on interactions between protein domains from
SCOP [44], CATH [45] and Pfam [40]. The presence of
contacts due to crystal packing artefacts is limited by the
use of PQS [46].

Interacting residues were defined as all those with 1 or
more atoms within 0.5 A plus the Van der Waals radius of
the small molecule or protein domain binding partner.
An additional requirement for the definition of a domain-
domain interface was that at least 10 residues were
involved in the interaction. Interface residues from all
associated structures were then annotated to the parent
Pfam family. A further standard set was constructed that
combined both domain-domain and domain-small mol-
ecule interacting residues (the 'combined set') as a test of
real-world accuracy when all types of sites would be pre-
dicted simultaneously.

Four alignments of > 1000 sequences were excluded, since
processing these by some methods was too time-consum-
ing. 191 alignments with fewer than 5 sequences were
removed due a requirement of MINER [25]. This reduced
the set to 1,457 families. In this final set, 32,339 columns
over 1,229 families (8%) were annotated as small-mole-
cule contacts, while 68,323 columns in 1,300 families
(25%) were annotated as involved in contacts with other
protein domains.

The test alignments ranged from 20 to 792 sequences
(mean 81), and from 27 to 1,812 columns in length
(mean 235). Average pair-wise percentage identity varied
from 14-85% (mean 34). Pair-wise percentage identity is
the number of identical positions divided by the length of
the shortest sequence, multiplied by 100.

http://www.biomedcentral.com/1471-2105/9/51

The BWO05 Set

The SNAPPI-DB set provides a large set of domain-
domain and domain-small molecule interfaces; however
it does not provide finer-grained classification of the inter-
faces. For this reason methods were also assessed on the
smaller manually curated set of 180 PDB chains derived
by Bradford and Westhead [37]. This set defines four types
of interaction: hetero-obligates, homo-obligates, enzyme
inhibitors and non-enzyme-inhibitor transient (NEIT).
Obligate interfaces were defined as those within a stable
rather than transient quaternary structure. The annotated
regions of 144 of these chains could be mapped to 163
PFAM seed alignments. Of these, 13 were rejected since
they had less than 5 sequences and 2 for sizes in excess of
1000 sequences. This resulted in a final analysis set of 148
Pfam seed alignments referred to as the BWO5 set (Table
5).

SMERFS Algorithm

The SMEREFS algorithm is intermediate in philosophy to
those of TreeDet [21] and MINER [18] and compares local
to global similarity matrices over windows on an align-
ment. Figure 8 summarises the SMERFS algorithm which
proceeds in the following steps:

1. Construct a global similarity matrix, G, over all N
sequences in an alignment A, of length L. The matrix G
contains N(N - 1)/2 similarity values (S,,) for all unique
sequence pairs.

The similarity between each pair of sequences is estimated
by summing pair-wise inter-residue BLOSUM 62 scores
over all aligned positions between all pairs of sequences.
ProtDist is often employed for this purpose [47], but is
too slow to be used for high-throughput investigations of
large numbers of sequences required here. Fortunately,
there is a close correlation between pair-wise distances
generated by ProtDist and those derived by BLOSUM
matrices (data not shown).

2. Take a window of width W columns and move along
the alignment in steps of k, where 1 <k <M and M is the
length of the alignment. For each central window posi-
tion, i

Table 5: Description of the BWO05 data set. The data comprising and derived from the BWO05 dataset [37]. Total is the total number of
unique Pfam [40] domains or chains involved. Since there are Pfam domains that occur in more than one subset, this is not the sum

over all subsets. NEIT = 'non-enzyme-inhibitor transient'.

Data Type Homo-obligate Hetero-obligate Enzyme-inhibitor NEIT  Total
PDB Chains 87 27 36 30 180
Chain with Pfam domains 78 24 31 27 160
Total Pfam domains covering annotated regions 89 21 29 27 163
Pfam domains with seed alignments in 5-1000 sequence range 84 18 25 23 148
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lllustration of the SMERFS Algorithm. lllustration of the SMERFS algorithm, showing Pfam family PFO3120 with a trace
resulting from SMERFS run with a window size of 7. Red highlighting on the alignment shows the known locations of interac-

tions with other domains. See text for details.

(a) Generate a pair-wise similarity matrix, L; over all sub-

sequences present in the window.

(b) Calculate the Pearson correlation coefficient, 1;

between L;and G.

3. Optionally process scores so that that an individual
position is assigned the score of the highest-scoring win-
dow of which it is a part. This is the 'maximum scoring
scheme'.

4. Reject positions with a gap content above C, %

5. Adjust for the diversity of the current alignment by nor-
malising the correlation coefficients to vary between 0 and
1 over the alignment. The result of this process is a graph
that can be viewed with an alignment as shown in Figure
8.

6. Positions with rnormi; above a given threshold T are pre-
dicted as functionally significant.

SMERFS is implemented as a set of Perl objects and
exploits the PDL library of C-linked modules [438].

Conservation Measures

For comparison of SMERFS with measures that consider
conservation without consideration of pair-wise relation-
ships, 14 of the conservation measures reviewed by Valdar
[6] were implemented. In addition, a measure was used as
a control where each position was assigned a random
value in the range 0-1. For each measure both a single-
column, ‘'standard' form without further modification
and an 'optimised' form was generated. To calculate the
optimised form:

1. Sum the scores over an odd number of positions, W, in
the range 1-9. Apply the mean to the central position.

2. Reject positions with a gap content above C, %

ROC Analysis

Positive sets were derived from the results of each method
by selection of the top-ranked positions, and assigned as
'true' (TP) if they were present in the validation data, false
otherwise. ROC curves were created by plotting the true
positive (TP) rate (fraction of correctly classified positives,
or TP/(TP + FN))against the false positive (FP) rate (frac-
tion of incorrectly classified negatives, or FP/(FP + TN)) at
each of a progressively larger section of the top ranked
positions.
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This assessment was stringent, since only residues in direct
contact with other entities were assigned as TP. The results
reported should therefore be considered a lower bound
on accuracy.

ROC area

The area under a ROC-curve provides a measure of accu-
racy over a range of coverage. This allows comparison
without the need to choose a point on the curve corre-
sponding to a single threshold placed on range of score
produced by a method. In this work the ROC curve up to
a false positive rate of 0.1 was considered in order to
favour methods that produce high TP rate results at low FP
rates. This area is referred to as the ROC,, , score. A perfect
prediction will produce a ROC, , score of (0.1 x 1) = 0.1,
while a random prediction will result in a ROC,) ; score of
(0.12/2) = 0.005.

Assessment of Significance

Standard, non-parametric methods are available to assign
significance to the difference between ROC areas [49,50];
however these are only applicable to full ROC curves. Esti-
mates of significance of the difference between ROC
curves were thus obtained by use of McNemar's test [51].
Differences between the number of true positives pro-
duced in all methods at a fixed false positive rate of 0.1
were assessed. If TP, and TP, are the number of true posi-
tives specific to sets A and B respectively, then McNemar's
test produces a chi-squared statistic as shown in Equation
5:

ol = (TPg—TPp)? (5)
TP,+TP,

The p value associated with this statistic was derived from
standard tables.

Parameter Optimisation

Family alignments from the SNAPPI-DB data set were
divided into 10 subsets (7 of 146 sequences, 3 of 145).
One subset was put aside as a final blind test, and optimal
method parameters determined by 9-way cross-validation
on the remaining sets. SMERFS, MINER, and conservation
measures were optimised to select an odd numbered win-
dow length in the range 1-9, and a gap threshold C,in the
range 0.05-1 (increments of 0.05). SMERFS and MINER
were additionally optimised to determine if the 'maxi-
mum' scoring scheme should be applied. Final measures
of performance for each method were then determined by
the ROC, , score for the blind set.
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Note in proof

During the proofing of this manuscript, we were con-
tacted by Capra and Singh [7], who had compared their
JSD method to the Williamson conservation measure on
their data set. They reported un-windowed ROC_0.1 val-
ues of 0.033 and 0.008 for enzyme-ligand and protein-
protein interfaces respectively for their method, compared
t0 0.025 and 0.008 for Williamson. We have carried out a
preliminary analysis of our SNAPPI-DB dataset using code
supplied by Capra and Singh. In our hands, the only
improvement over Williamson was for small molecule
interactions, but this was insignificant.
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