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Abstract
Background: Proteomic profiling using mass spectrometry (MS) is one of the most promising
methods for the analysis of complex biological samples such as urine, serum and tissue for
biomarker discovery. Such experiments are often conducted using MALDI-TOF (matrix-assisted
laser desorption/ionisation time-of-flight) and SELDI-TOF (surface-enhanced laser desorption/
ionisation time-of-flight) MS. Using such profiling methods it is possible to identify changes in
protein expression that differentiate disease states and individual proteins or patterns that may be
useful as potential biomarkers. However, the incorporation of quality control (QC) processes that
allow the identification of low quality spectra reliably and hence allow the removal of such data
before further analysis is often overlooked. In this paper we describe rigorous methods for the
assessment of quality of spectral data. These procedures are presented in a user-friendly, web-
based program. The data obtained post-QC is then examined using variance components analysis
to quantify the amount of variance due to some of the factors in the experimental design.

Results: Using data from a SELDI profiling study of serum from patients with different levels of
renal function, we show how the algorithms described in this paper may be used to detect
systematic variability within and between sample replicates, pooled samples and SELDI chips and
spots. Manual inspection of those spectral data that were identified as being of poor quality
confirmed the efficacy of the algorithms. Variance components analysis demonstrated the relatively
small amount of technical variance attributable to day of profile generation and experimental array.

Conclusion: Using the techniques described in this paper it is possible to reliably detect poor
quality data within proteomic profiling experiments undertaken by MS. The removal of these
spectra at the initial stages of the analysis substantially improves the confidence of putative
biomarker identification and allows inter-experimental comparisons to be carried out with greater
confidence.
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Background
Clinical proteomic profiling experiments using high
throughput mass spectrometry (MS) technologies such as
matrix assisted laser/desorption ionisation time-of-flight
mass spectrometry (MALDI-TOF-MS) and the derivative
surface enhanced laser desorption/ionisation time-of-
flight mass spectrometry (SELDI-TOF-MS) have provided
encouraging and exciting results over the past few years [1-
4]. However, many studies have been the subject of
debate, both in terms of the reproducibility of results and
regarding issues of technical and experimental design [5-
7]. A common criticism has been the difficulty in identify-
ing the protein or peptide signified by the specific inform-
ative peak(s) in the mass spectrum, and indeed if it has
been possible, then the identified protein has often been
of relatively high abundance and not disease-specific [8].

There is now an expanding literature which describes
good practice in undertaking such experiments. Reanaly-
sis of published data has raised a number of important
issues relating to experimental design and dry-lab (statis-
tical and bioinformatic) analysis of experimental results
[9-12]. Sample size calculations have been developed to
allow the undertaking of statistically powerful experi-
ments [13] and a number of sample handling issues in
sample collection [14] and pre-fractionation [15] have
been investigated. Spectral pre-processing methods such
as calibration [16,17], spectral alignment [17-19], base-
line subtraction [16,20,21], normalisation [22,23] and
peak detection [24-26] have been critically evaluated and
developed broadly in line with published recommenda-
tions for proteomic analysis [7,27]. Other studies have
highlighted the problems of limited reproducibility and
transferability of discoveries to larger multi-site validation
studies [28,29]. However, a somewhat neglected step is
the quality control (QC) of proteomic profiling experi-
ments using MS. The importance of experimental moni-
toring and QC has been appreciated in other procedures,
e.g. in sequence interpretation [30] as well as to some
extent in the setting of mass spectrometric proteomic pro-
filing experiments [10,25,31,32]. Additionally, some eval-
uation of the sources of variation in the experimental
procedure has been undertaken [33]. However, the QC
tools available in the literature, e.g. [34,35] do not fulfil
all of the requirements of a QC strategy that is integrated
to the laboratory and will perform both continuous mon-
itoring of the experiment over time [36] and also allow
similarity analysis of technical replicates. In common
with many analytical procedures, technical replicates in
addition to biological replicates are standardly included
in such studies due to the inherent variability in the exper-
imental technique. QC of such replicates allows reproduc-
ibility to be assessed while their inclusion implicitly
reduces the impact of technical variation.

The objective here is to present a web-based tool for QC
of proteomic profiling experiments undertaken using MS.
Such a tool should be easily integrated into the data man-
agement tools which are included with an instrument.
Factors that can affect an MS profile include, time (since
first determination), temperature, humidity, the instru-
ment used and the laboratory [10], residual potentials on
the deflection plates after the deflection pulse, plate plan-
etary imperfections, pipetting errors, matrix crystallisation
[17], laser/detector deterioration, and in the case of SELDI
– variability in chip surface [25]. Experiments should be
undertaken to assess the magnitude of each of these fac-
tors so the system is well understood. Such a list clearly
demonstrates the need for a QC tool to be multi-facetted,
i.e. it should be able to monitor the performance of the
experiment throughout an experimental run for unusual
variation which could be caused by machine, chromato-
graphic separation or operator malfunction to provide an
early alert. Additionally, analysis of replicates to identify
poor reproducibility and hence the need for further tech-
nical replicate determinations of a particular sample
should be integral. Our system fulfils each of these
requirements and we demonstrate its use using data from
a proteomic profiling study of patients with different lev-
els of renal function undertaken using SELDI-TOF-MS.
Although the system described here is using SELDI-TOF,
the method is designed so that it can be easily extended to
MALDI-TOF instruments generally and indeed to similar
data from other current and future technological plat-
forms, i.e. two-dimensional spectral data. As a secondary
theme we investigate the variation attributable to different
factors in the experiment (biological variance and techni-
cal variance due to day/chip/spot/other) using data from
a profiling study of renal function, together with specific
examples from other studies.

Methods
Biological samples and profile generation
The main study set used was data generated from a com-
parison of serum samples collected from patients with
renal failure prior to dialysis (n = 30), two groups of
patients post-renal transplantation with stable (n = 30)
and unstable (n = 20) renal function and normal healthy
controls (n = 30) with similar age and gender distribu-
tions to the clinical groups [37]. All samples were proc-
essed within 1 hour of venepuncture according to a
standardised operating procedure and stored at -80°C.
Details of the preparation of CM10 (weak cation
exchange) and IMAC-Cu (immobilized metal ion affinity
chromatography) sample chips and the application of sat-
urated sinapinic acid solution (Fluka) using the Biomek
robot are as described previously [14]. Low mass acquisi-
tion was between 2–10 kDa, focussed at 6 kDa, with laser
intensity set at 1800 nJ and medium mass acquisition was
10–20 kDa, focussed at 15 kDa, with laser intensity of
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2200 nJ. Samples were spotted in duplicate on Protein-
Chips following complete randomisation throughout all
replicates. A QC sample was formed by pooling serum
from all individuals in the study. The QC sample was aliq-
uotted to avoid freeze-thaw cycles and all aliquots stored
at -80°C until used in the QC protocol is described in Sec-
tion 2.2. The initial part of the study took three days for
each chip type with chips 1–13 being processed on day 1,
chips 14–24 on day 2 and chips 25–33 on day 3. Any sub-
sequent repeated technical replicates were undertaken one
week later in singlicate.

For calibration purposes, an H50 chip spot was loaded
with 2 l of matrix containing 400 fmol of each of bovine
insulin (Mr 5733.58), bovine ubiquitin (Mr 8564.8),
bovine Cytochrome C (Mr 12230.92), equine cardiac
myoglobin (Mr 16951.51) and bovine  lactaglobulin A
(Mr 18363.3) calibrants. After air-drying, the calibrant
mixture was analyzed on the SELDI PCS4000 Enterprise
system (Ciphergen, Fremont, CA) using standard acquisi-
tion parameters for the low and medium mass ranges.
Calibration was performed using single and double
charged peaks where appropriate and a quadratic calibra-
tion equation generated for use in the study using Cipher-
gen Express 3.0 (Ciphergen, Fremont, CA). A stock
calibration solution was prepared at the start of the study
to calibrate the machine. Subsequently, a fresh calibrant
spot was prepared and analysed each day to check for any
calibration drift by viewing plots of calibration spectra
[24]. If any gross changes were observed a new calibration
equation was generated and applied to subsequent sam-
ples, but generally recalibration was not required day-to-
day.

QC protocol
The QC sample was central to both facets of QC – the
monitoring of performance throughout the study and also
the analysis of technical replicates. The QC sample was
formed by pooling serum from all individuals in the
study. This is good practice as creating a QC sample from
just a few samples can allow peaks in a few dominant
samples to make the QC sample unrepresentative of the
majority of samples in an experiment (data not shown).
The QC sample was spotted onto three ProteinChip arrays
(24 spots) at the beginning of the run on the first day of
the analysis to define a "reference set" which was used to
characterise normal within-run technical variability in the
profiling technique and then allowed the assessment of
future experiments using this reproducible profile. To
assess between-chip and between-day technical variation,
the QC sample was also included on a single spot on each
ProteinChip used in the analysis, ensuring equal use of
spots A to H for this purpose. This protocol is shown dia-
grammatically in Figure S1 [see Additional file 1] for this
experiment which consists of 35 chips in total. All of the

QC samples were used in defining limits of variability in
replicate analysis. In following sections the 3 Protein-
Chips which contained only the QC samples and define
the reference set are referred to as QC chips for brevity.
Similarly, sample chips refer to the other ProteinChips in
the study which contain only one spot of the QC sample
and the remaining spots samples from the full study.

Data storage, extraction and pre-processing
The spectral data produced by the SELDI-TOF-MS are
standardly stored in a MySQL relational database sup-
plied by Ciphergen. Raw intensity values produced by the
detector are stored as a simple binary blob consisting of
integer values which are multiplied by a constant (also
stored within the database) to produce actual intensity
values whereas mass values are calculated using the quad-
ratic calibration equation. All this data is retrieved from
the SQL database by query functions utilising the MySQL
C application programming interface (API) with no fur-
ther use being made of the Ciphergen software.

Each SELDI experiment has associated with it a list that
identifies the appropriate spectra along with information
defining the nature of each sample (i.e. sample replicate
or pooled QC sample). This list is uploaded via a web
browser and is used to identify the data that should be
extracted from the SQL database as described above. This
data then undergoes pre-processing steps (baseline sub-
traction, internal normalisation for QC and peak detec-
tion [see Additional file 2]) before being passed to the
statistical routines described in the next section. However,
it should be noted that we do not use this (or any other
form of) normalisation in analysis of the baseline sub-
tracted and peak detected profile in any post-QC analysis.

Statistical methods
The QC procedure described here provides two functions.
The first of these is to monitor the profiles being generated
in a study over time by comparing the QC profile from
sample chips with those defined by the QC chips, i.e. the
reference set. The second is to evaluate the similarity of
replicates and make decisions on whether further techni-
cal replicates are required. This was undertaken by com-
paring various parameters from the spectra on the sample
chips with the corresponding parameters in QC spectra. In
the following two sub-sections brief details are given of
the methodology that underlies these procedures.

Chip-to-chip QC
Chip-to-chip QC was undertaken by using a transforma-
tion of data from the reference set and then comparing
new QC spectra from sample chips (transformed suitably)
with this reference set. The transformation chosen is prin-
cipal components analysis (PCA) [38], a vector space
transform which is often used to reduce multidimen-
Page 3 of 19
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:519 http://www.biomedcentral.com/1471-2105/9/519
sional data sets to lower dimensions for exploratory data
analysis. Hence, the peak detected profile of the samples
in the reference set were transformed into a set of compos-
ite variables which have the property that the first princi-
pal component (PC) has largest variance, the second PC
has second largest variance and so on to the last PC which
has the smallest variance. Plots of the first few PCs (gener-
ally all pair-wise combinations of PC1, PC2 and PC3) and
dendrograms displaying hierarchical clustering using
Ward's agglomeration method and the Euclidean distance
metric were then examined for any observable clustering
according to ProteinChip, spot or order of profile genera-
tion and also for obvious poor quality spectra (outliers in
PC plots) which should be excluded from the reference
set.

QC spectra from subsequent sample chips were then pro-
jected into the space defined by the PCs calculated on the
reference set using the loadings from the PCA and the
intensities from the peak detected profiles of these new
QC spectra. Note that the QC spectra from the reference
set and the QC spectra from the sample chips are peak
detected together each time a new spectra is brought to
QC. This allows new peaks that appear in subsequent
spectra, but were not present in the reference set to be
included in the procedure. These projected versions of the
QC spectra from sample chips are then viewed in plots
alongside the reference set to check for systematic bias due
to chip, spot or order of sample generation.

In addition to the visual examination of the QC spectra
from sample chips, a significance test based on the Maha-
lanobis distance (MD) of the transformed QC spectra
from the centre of the PC space defined by the reference
set is also constructed. This test calculates the MD,

MD =  (x-)T -1(x-),

where x is the projection of the QC spectra,  is the mean
vector (in this case the zero vector, 0) and  is the covari-
ance matrix for the PC space. A significance test is then
performed under the null hypothesis that the MD from
the origin of the PC space to the new QC spectrum is zero
against the alternative hypothesis that it is not. This signif-
icance test is possible as it is known that the null distribu-
tion is a 2 distribution with p degrees of freedom under
multivariate normality [39]. The value of p in this case is
equal to the dimensionality of the PC space used in the
test. This is determined as the number of PCs that are
needed to explain at least 90% of the variance which is
present in the full reference set. As these QC samples were
all the same, we would expect that the first few PCs would
explain the vast majority of the variation.

The first few PCs are sensitive to outliers that inflate vari-
ances or covariances (or correlations, if the PCA has been
conducted in terms of the sample correlation matrix,
rather than the sample covariance matrix) [40]. So by
viewing plots of the PCs and testing whether the MD from
the origin of the PC space is significantly different from
zero, a QC spectrum can be assessed in the sense of
whether it is similar to those obtained in the QC reference
set.

The calculations in this analysis were undertaken using
matrix algebra, prcomp() and plotting functions in the R
software environment for statistical computing (R Devel-
opment Core Team, Vienna, Austria).

Replicate analysis
A critical part of QC is identifying differences between
technical replicates of individual samples in a study which
are not similar enough to be carried forward to subse-
quent analysis. The analysis of technical replicates was
undertaken by comparing various parameters which sum-
marize the duplicates with the parameter values obtained
from all possible pairs of duplicates in the reference set.
The parameters considered were:

• the total ion current – the sum of all the ion signals in a
mass spectrum over time [41] and hence equivalent to the
area under the spectrum,

• the normalised total ion current – equivalent to above,
but internally normalised to the values (0,1) within each
spectrum,

• the total intensity of peaks – the sum of intensity of all
peaks identified in a smoothed spectrum (stage 2 of the
peak detection process described above) and

• the total number of detected peaks – the total number of
peaks in a spectrum (not to be confused with the number
of common peaks that make up peak clusters).

Additionally, as a further summarizing variable the differ-
ence between the intensities of each common peak in the
pair of technical replicates was also calculated. This anal-
ysis was undertaken in segments of the total mass range
being considered as this was found to make the QC more
sensitive. Experience from a number of studies of different
diseases using various sample types has shown that four
equally sized mass segments provided an adequate bal-
ance of QC sensitivity as compared with computing time
(data not shown).

In order to decide which technical replicates required fur-
ther examination, the coefficient of variation (CV) was
calculated between each of the parameters for the dupli-
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cate samples and then this was compared to the distribu-
tion of CVs for all possible pairs of spectra from the
reference set containing all QC spectra (which had passed
chip-to-chip QC). A parameter was flagged if the CV of the
sample pair was greater than the 95% quantile of the dis-
tribution of CVs from the reference spectra, indicating that
the pair of spectra should be examined, but not necessar-
ily rejected. A greater number of flags indicated more dif-
ferences between technical replicates and a greater
likelihood of rejection of spectra upon examination.

The difference between intensities of common peaks in
the technical replicates was compared with the reference
set in a similar manner. Firstly, all the data (QC samples
and study samples) were peak-detected together to define
common peak clusters for all spectra. All possible pairs of
the QC spectra were then considered and the absolute dif-
ference in intensity calculated at each peak cluster. The
95% quantile of these differences was then calculated for
each peak cluster and this was used as a critical value to
indicate whether the difference between replicates at that
peak cluster is larger than it ought to be with reference to
the QC samples. The percentage of peaks where the differ-
ence was larger than this critical value in each pair of tech-
nical replicates was then reported.

Variance components analysis
The lmer() function in the lme4 package [42] in R and
OpenBUGS [43] were used to estimate nested variance
components from the profiles in the full study which had
passed QC, i.e. this is based on the study samples (sub-
jects on dialysis, subjects post renal transplantation and
healthy controls in duplicate) and not the QC samples,
and includes replicates that were re-run post-QC. The var-
iance components are nested because of hierarchical
structure in the data arising from the fact that each chip
(and hence each spot) is run on only one day. This is anal-
ogous to the nesting of technical replicates within biolog-
ical replicates in other studies [44]. Of course the technical
replicates of the biological replicates are not necessarily
nested within the day and chip in this case. However,
another level of nesting which is present is the nesting of
duplicate technical replicates within the class of subjects.

Both formulations of the variance components model
assumed normally distributed data and hence a normal
likelihood. The Bayesian formulation of the variance
components specified vague prior distributions for all
terms using normal distributions with large variance. The
classical estimation procedure used maximum likelihood
estimation whereas the Bayesian method used Markov
chain Monte Carlo [45], specifically Gibbs sampling [46],
to sample from the posterior distribution. For each peak 3
chains of 25000 samples were drawn from the posterior
distribution with the first 5000 samples discarded as

burn-in. Convergence of the sampling scheme was evalu-
ated using the scale reduction factor [47]. The marginal
medians from the posterior distribution were then used as
parameter estimates in the construction of tables and fig-
ures.

Data presentation
The results of the QC analysis are presented to the user in
the form of a web page with both graphical and tabulated
data as described in the following sections. Links are also
provided to a web based spectra viewing tool which
allows multiple spectra to be plotted together facilitating
manual scrutiny of any significant differences identified.

Results and discussion
The experimental run was managed over three consecutive
days and resulted in 110 samples of serum from subjects
being realised as 220 proteomic profile spectra (i.e. dupli-
cate technical replicates) and 56 spectra of the pooled QC
serum sample (24 in the reference set from the first three
chips and 32 on subsequent sample chips). The 24 results
in the reference set were visually examined and decided to
be grossly consistent prior to the commencement of the
profiling of the rest of the samples. In the low mass range
267 common peaks were detected over the full mass range
with (109, 70, 54, 34) found in the equally spaced quar-
ters or mass segments of the region (2–4 kDa, 4–6 kDa, 6–
8 kDa, 8–10 kDa). Similarly in the medium mass range
there were 151 peaks with (45, 36, 34, 36) in the mass seg-
ments spanning (10–12.5 kDa, 12.5–15 kDa, 15–17.5
kDa, 17.5–20 kDa). In the following sections the results
of QC undertaken at the end of the third day is demon-
strated, but it should be noted that similar analysis was
undertaken after each of days 1 and 2 also. These can be
split into QC concerning chip-to-chip integrity as com-
pared to the reference set and similarity analysis of techni-
cal replicates. For brevity we describe only the low mass
range, but results for the medium mass range were similar.

Chip-to-chip QC
The QC web tool was run selecting no baseline subtrac-
tion and default parameters for peak detection and the
results page generated. This consists of a table showing the
results of the significance test for each QC spot (Table S1
[see Additional file 3]). Figure 1 gives a comprehensive
range of displays for assessing spectral quality. The first
part of the results page showing pair-wise plots of the first
three PCs and the fourth panel a dendrogram showing
hierarchical clustering of the peak detected proteomic
profiles.

Figure 1(A) shows the chip from which the sample was
generated with each colour representing a different chip
and results from all QC samples shown with Figure 1(B)
showing the analogous results but on a spot basis. By
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QC tool output for section of study of patients with different levels of renal function using IMAC-Cu ProteinChipsFigure 1
QC tool output for section of study of patients with different levels of renal function using IMAC-Cu Protein-
Chips. Pair-wise plots of the first two principal components (PCs) and a dendrogram showing results of hierarchical clustering 
using Ward's agglomeration method and the Euclidean distance metric are shown in each panel. Panel (A) shows the plots with 
the chip ID number indicated by plotting character. The reference set chips are indicated with red, black and green plotting 
characters and subsequent projections described in the legend. Panel (B) shows the plots with the spot indicated. Panel (C) 
shows the plots with the reference set indicated by solid plotting characters (red, green and black as in panel (A)) and numbers 
plotted representing order of QC spectra on sample chips. Panel (D) shows the mean spectra obtained from samples in the 
reference set and also individual spectra which appear to be on the edge of the PC space in the PC plots in panel (C). The inset 
plot in panel (D) shows an expanded region of the spectra where the differences from the reference spectra can be observed.
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examining these plots any systematic differences in chips
and spots can be visualised, indicating the need for closer
analysis – in this case there are no obvious patterns and
hence no evidence of systematic bias due to either of these
variables. The dendrograms in Figures 1(A), (B) and 1(C)
are not very enlightening, but they have proved useful in
other experiments as the higher level branches often split
the samples by day of profile generation. Thus checking
the labels and not seeing any relationship with day indi-
cates an experiment where the day effect is small, as in this
case. This finding is verified to some extent by the variance
components analysis in Section 3.5.

Figure 1(C) shows spectra from the first three chips (i.e.
the reference set) indicated by square plotting characters
with colours indicating each chip. The projection into the
PC space of the subsequent QC spectra from sample chips
are indicated by numeric plotting characters (correspond-
ing to the first column of the table which accompany it:
Table S1 [see Additional file 3]). By examining this plot
and the spectra which are unusual compared to the refer-
ence set, i.e. those which are far from the origin (indicated
by the intersection of the dotted lines) the progress of the
sample run can be monitored. The plot indicates that QC
spots 28, 22, 27, 29, 21 and 7 and therefore the spectra
which are generated on the same chip should be exam-
ined further, but not necessarily rejected immediately.
These spectra can be seen plotted on the same axis as the
mean spectrum from the reference set in Figure 1(D). It is
clear that there are minor aberrant regions, for instance in
the regions between 2 and 4 kDa which are shown in the
exploded version of the plot where QC spectra from sam-
ple chips are generally of lesser intensity than the mean
spectra from the reference set. Here the differences are
only slight and warrant only a cursory check of the spectra
on those chips.

Table S1 provides an additional quantitative method of
evaluating QC spectra in comparison to the reference set.
It was calculated that 8 PCs make up 90% of the variance
in the original data and the significance test was under-
taken to see if the MD of these projections of QC spectra
from the origin of the PC space was significantly different
from zero. As a rule of thumb a cross is placed in the final
column of the table if the p-value is less than 0.1. This
indicates that this spectrum and those on the chip it was
generated from should be subjected to further examina-
tion. In the web-tool, clicking on the chip ID in the table
results in the specific spectrum being plotted in a new
window overlaying a realisation of the mean spectra from
the reference set. This allows instant visualisation of the
spectra and quick investigation of the reason for QC fail-
ure.

QC replicate analysis
The final part of integrated QC analysis is the analysis of
replicates. In this case the mass region was split into four
equally sized segments for examination of the derived QC
parameters. The output of the analysis takes the form of a
table, 5 columns of which are devoted to each mass seg-
ment. A few selected rows of this output are shown in
Table 1 (the full table is shown in Table S2 [see Additional
file 4]). A cross or a value greater than zero indicates a dis-
crepancy in this mass segment and this parameter for this
pair of spectra as compared to what would be expected
from the reference set of spectra. The meaning of the
crosses in the first four columns is enhanced by examining
Figure 2. These histograms show the null distribution (in
black) and the calculated statistics (in red) for each varia-
ble, with any calculated statistic greater than the red dot-
ted vertical line being marked with a cross in Table 1 and
Table S2.

The figures in the 5th column for each mass segment in
Table 1 show the percentage of common peaks in that
region for which the absolute difference between the
duplicate pair is significantly different from zero. This is
also based on empirical significance tests derived from the
reference set of QC spectra. Figure 3 shows histograms
similar to Figure 2 for 16 conveniently chosen peaks from
the 2–4 kDa region. As for the other QC variables, a value
greater than the critical value means declaring a significant
absolute difference between duplicate technical replicates
for a particular peak. To summarize these results, the per-
centage of peaks declared significantly different out of the
total number of peaks in that mass segment is shown in
each fifth column in Table 1.

Upon observing a cross or a high percentage the appropri-
ate spectra should be examined and a decision made as to
whether a further technical replicate should be produced.
A few examples corresponding to Table 1 are shown in
Figure 4. Here 5 duplicate spectra are shown both overlaid
(on the same pair of axes) and adjacent to each other hor-
izontally on separate axes. This is an example of the func-
tionality afforded by the web tool which allows visual
examination of duplicate spectra in a number of ways.
This allows any spectra to be carefully and thoroughly
examined.

The five example duplicate pairs of technical replicates in
Figure 4 show a full range of situations identified by the
QC tool. Sample 3965 is an example of a biological repli-
cate with two very good technical replicates. In this case
no parameters were flagged in any of the mass segments
and also none of the peaks in any of the mass segments
are declared as being significantly different. The final row
of Figure 4 shows the other extreme with the first technical
replicate of sample 4344 having no high intensity peaks
Page 7 of 19
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The black solid bars indicate histograms of coefficient of variations expressed as percentages (CVs) for all possible pairs of QC spectra for the variables of interest in the 2–4 kDa mass region (clockwise from top left, TIC, normalised TIC, total intensity of peaks and total number of peaks)Figure 2
The black solid bars indicate histograms of coefficient of variations expressed as percentages (CVs) for all pos-
sible pairs of QC spectra for the variables of interest in the 2–4 kDa mass region (clockwise from top left, TIC, 
normalised TIC, total intensity of peaks and total number of peaks). The dotted line perpendicular to the abscissa 
indicates the critical value for these empirical significance tests based on the 95% quantile of these measures. The red hatched 
histograms shows the distribution of CVs calculated for the duplicate technical replicates. CVs which are greater than the crit-
ical value will be rejected at the 5% level. These QC fails will be indicated by crosses in Table 1.
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Table 1: Abridged results of replicate analysis presented in web QC tool.

2–4 kDa 4–6 kDa 6–8 kDa 8–10 kDa

Sampl
e ID

TIC Nm 
TIC

# pk sum 
pk ints

% pk
dif

TIC Nm 
TIC

# pk sum 
pk ints

% pk
dif

TIC Nm 
TIC

# pk sum 
pk ints

% pk
dif

TIC Nm 
TIC

# pk sum 
pk ints

% pk
dif

3965 ✓ ✓ ✓ ✓ 0 ✓ ✓ ✓ ✓ 0 ✓ ✓ ✓ ✓ 0 ✓ ✓ ✓ ✓ 0

4000 ✓ ✓ ✓ ✓ 39 ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ 13 ✓ ✓ ✓ ✓ 33

4008 ✗ ✓ ✗ ✗ 16 ✗ ✓ ✗ ✓ 22 ✓ ✓ ✗ ✗ 19 ✗ ✓ ✗ ✓ 9

4021 ✓ ✓ ✓ ✓ 21 ✓ ✓ ✓ ✓ 0 ✓ ✓ ✓ ✓ 0 ✓ ✓ ✓ ✓ 0

4344 ✓ ✓ ✓ ✗ 6 ✗ ✗ ✗ ✗ 0 ✗ ✗ ✗ ✗ 0 ✗ ✗ ✗ ✓ 0

For each biological replicate (labelled by sample ID) the technical replicates are compared for various parameters in mass segments of the low mass range (2–4, 4–6, 6–8, 8–10 kDa out of full 2–10 kDa 
range). The first four of these parameters are the total ion current, the normalised total ion current, the total number of peaks (common and non-common peaks) and the total intensity of peaks. A tick in 
the columns for each of these parameters indicates that the coefficient of variation (CV) for that variable for these technical replicates is less than the 95% quantile of CVs calculated from all possible pairs of 
the QC samples. Conversely a cross indicates that they are greater than this empirical limit. The fifth parameter is presented numerically and is the percentage of peaks significantly different in the technical 
replicates based on an empirical significance test (derived similarly from QC samples). Results for all biological replicates are given in Table S2 [see Additional file 4].
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Demonstration of absolute difference in technical replicate peaks empirical significance methods for 16 conveniently chosen peaks in the 2–4 kDa mass segmentFigure 3
Demonstration of absolute difference in technical replicate peaks empirical significance methods for 16 con-
veniently chosen peaks in the 2–4 kDa mass segment. Solid black histograms show the reference distribution in black 
with the actual differences indicated by the red hatched histogram bars. Values greater than the critical value (indicated by red 
dotted line from the abscissa) result in a significant difference in a pair of technical replicates being declared. The percentage of 
peaks declared significantly different out of the total number of peaks in that mass segment is shown in the fifth column of each 
mass segment in Table 1.
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Duplicate proteomic profiles (technical replicates) of 5 biological samples in the studyFigure 4
Duplicate proteomic profiles (technical replicates) of 5 biological samples in the study. In the left hand panel the 
first technical replicate is shown with the black solid line and the second technical replicate with the red dotted line and in the 
right hand panel the second technical replicate is shown with the black solid line and the first technical replicate with the red 
dotted line. The axes are equivalent in each plot and the mass axes apply to all plots.
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Selected QC tool output for section of study of patients with different levels of renal function using CM10 ProteinChipsFigure 5
Selected QC tool output for section of study of patients with different levels of renal function using CM10 Pro-
teinChips. Panel (A) is similar to Figure 1 panel (C). Panel (B) shows the mean spectra obtained from samples in the reference 
set and also individual spectra which appear to be on the edge of the PC space in the PC plots in panel (A).
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and only some sinusoidal noise in the region 2–4 kDa
whereas the second technical replicate produced a full
spectrum. The row of Table 1 representing sample 4344
directly shows what can be seen in the plot of the spectra.
In the mass segment between 2 and 4 kDa where there are
few peaks, the TIC, normalised TIC and total number of
peaks are not flagged as being different, but a problem is
identified by the cross in the column indicating the total
intensity of peaks and the 6% of peaks which are signifi-
cantly different between the two spectra. The other three
mass segments showed the problem more immediately
with red crosses indicating problems in all of these seg-
ments which can be clearly seen in the final row of Figure
1. The malfunction in the replicate showing no spectrum

was attributed to chip surface malfunction. The second
and fourth rows of Figure 4, representing technical repli-
cates for samples 4000 and 4021, show more subtle differ-
ences identified by the QC tool. Sample 4000 is not
flagged by any of the QC parameters in any of the four
mass segments. Instead it is the percentage of peaks which
are significantly different that are flagged in 3 out of 4
mass segments. This is quite a common phenomenon
which we believe is due to the difference in technical rep-
licates being localised in very sharp peaks in the mass
spectra which have a very minor area (in an integral sense)
and hence not a large effect on the TIC or other derived
QC variables. It is in this situation that the variable meas-
uring the percentage of different peaks is most valuable.

Variance components, mean and CV spectra for proteomic profiling study of renal function using IMAC-Cu chips)Figure 6
Variance components, mean and CV spectra for proteomic profiling study of renal function using IMAC-Cu 
chips). Each bar in the top panel represents the proportion of variance that can be attributed to biological (within and 
between classes) and technical (within and between days) components of variation for each peak. The peak corresponding to 
each bar is denoted by a gray line from the mean/CV spectra in the lower panel.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pr
op

or
tio

n 
of

 v
ar

ia
nc

e 
ex

pl
ai

ne
d

between
classes

biological

technical

day

chip

spot

2000 4000 6000 8000 10000

0
50

10
0

15
0

20
0

25
0

30
0

m/z

In
te

ns
ity

0
10

0
20

0
30

0
40

0
50

0
60

0
C

V
 (

%
)

Page 13 of 19
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:519 http://www.biomedcentral.com/1471-2105/9/519
Sample 4021 shows a similar phenomenon, but localised
only in the first mass segment. Sample 4008 shows a com-
bination of these effects and is hence identified by both
failure in the 4 main derived parameters and also in the
percentage of peaks which are significantly different
between the duplicate samples.

Final results
After full consideration of QC results 23 samples were
selected as requiring a further technical replicate which
were generated on 4 IMAC-Cu chips with a QC spot on
each chip, as per standard protocol. The new samples were
then compared with the identified poor pair of technical
replicates and the best pair of these three technical repli-
cates selected for use in subsequent analysis.

A further example
Figure 5 shows results for the CM10 ProteinChip part of
the study of renal function. These plots are similar to
those in Figure 1 which were described in Section 3.1 in
that they are the results of the chip-to-chip QC. The equiv-
alents figures for these results as Figure 1(A) and Figure
1(B) fail to show any systematic bias according to chip
and spot. However, Figure 4(A) is different to the previ-
ously described experiment (c.f. Figure 1(C)) in that there
are a number of projections of spectra which can be found
on the edge of the three dimensional PCs space denoted
by this panel of plots. In particular the QC spectra from
chips 3, 5, 8, 9, 19 and 27 appear to be on the extremes of
the space in all three plots. Additionally, these plots were
shown to have Mahalanobis distances significantly differ-
ent from zero in 6 dimensional PC space (p < 0.05, data
not shown). In Figure 5(B) each of these spectra is shown
along with the mean spectra formed by taking the mean
over all data points from the spectra which make up the
reference set (referred to in the legend as the reference
spectrum). Spectra 3 and 5 quite clearly show a decrease
in intensity to that observed in the reference spectrum in
some of the larger peaks in conjunction with an increase
in sinusoidal noise in the region between 2 and 4 kDa,
making it apparent why these have been flagged by QC.

Spectra 8, 9 and 19 are interesting in that they show a pos-
sibility of a drift in the calibration of the machine, evident
in the larger peaks between 8 and 10 kDa. In spectra 9 and
19 this is exacerbated by a drop in the intensity in the 6–
7 kDa region. Spectrum 27 similarly has a decreased
intensity in some peaks, but not in the same manner as
those in the other examples shown here. This demon-
strates the flexibility of the PCA approach to QC identify-
ing many different kinds of aberrant behaviour in the
spectra through one device.

Variation attributable to measured factors
With high quality data, it is possible to estimate the mag-
nitude of the components of variation which can be
attributed to different factors in the design of this experi-
ment. The classical estimation method was used to esti-
mate simple variation components attributing variation
to technical and biological components and these results
compared with a similar model estimated in OpenBUGS
and found to produce similar results. The more complex
model with terms for day, chip and spot within the tech-
nical variation was fitted and convergence assessed for
each parameter for each peak using the scale reduction
factor. Figure 6 shows graphically the magnitude of vari-
ance components as a proportion of the total variation.
This is presented in conjunction with a representation of
the mean and CV spectra for intensity allowing the attri-
bution of portions of the variation to each of these factors.
Further details regarding the mean and CV spectra are pro-
vided by the summary statistics shown in Table S3 [see
Additional file 5]. Figure 6 in conjunction with Table 2
show summaries of the results of the variance compo-
nents analysis in the case where we attribute variance to
biological variation (both between groups and within
groups) and technical variation (attributed to day, chip,
spot and within day). Figure 6 shows that in most cases
around half of the variation can be attributed to technical
variation (black, white, blue and red bars) and half of the
variation to biological variation (green and yellow bars).
When summarizing variance components as percentages
of the total variance, the median variance in peak intensity

Table 2: Summary statistics for variance components of peaks in renal transplant study estimated using crossed analysis of variance.

between class biological other technical day chip spot

Minimum <0.01 0.99 2.53 0.07 0.02 0.17
1st Quartile 0.02 26.16 30.93 2.22 0.24 4.16
Median 0.06 50.96 34.19 3.57 0.72 6.88
Mean 3.02 41.22 39.72 4.32 1.92 9.80
3rd Quartile 1.09 56.61 39.36 5.51 2.35 11.52
Maximum 61.20 71.30 91.03 30.98 18.11 69.57

Variance components are summarised as percentages of the total variance. Therefore the median peak can be characterised as consisting of 
approximately 49% technical variance (approximately 3.5% day of profile generation, 1% chip the replicate was generated from, 7% spot the 
replicate was generated from and 55% other sources) and 51% biological variance (approximately 50.95% within biological classes and 0.05% 
differences between them).
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can be characterised as consisting of approximately 49%
technical variance and 51% biological variance. The
median biological component of variance is made up of
0.06% of variation between classes (although it is clear
that this is much higher in some cases). Similarly, the
technical variation can be split into 4% between day, 1%
attributable to chip and 7% attributable to spot with the
remaining 37% attributable to within-day variation which
cannot be characterised by this analysis. Of the factors in
technical variation that could be decomposed it can be
seen that the variance due to day of profile determination
and the variances due to chip and spot for the mean peak
are very small when compared to the unexplained factors
in technical variation (Table 2) which could be due to
robot performance, laser or detector stability or other fac-
tors in the experimental process.

Comparing these results with those found in other studies
provides insights into the comparability of our laboratory
with others reported in the literature. For instance, Oberg
and colleagues [48] have shown the effectiveness of such
techniques in better understanding sources of variation in
MS using the iTRAQ relative labelling protocol, de Noo
and colleagues [33] have investigated various sample han-
dling steps (storage temperature prior to centrifugation,
freeze-thawing and circadian rhythm) and Coombes and
colleagues [34] have estimated the proportion of variation
due to day and chip (and other technical variation which
they refer to as spot-to-spot). They suggest 26% of varia-
tion in the profile in due to day-to-day effect and 5% to
chip-to-chip effect, while de Noo and colleagues calculate
a CV of around 20–30% for day-to-day. The results in
terms of percentages for Coombes study are larger than
those for the third quartile of all peaks for day and chip in
our study (from Table 2 – approximately 7.6% and 3.5%).
Furthermore, if three quarters of the peaks found had less
than 7.6% of the variation attributable to day and we take
this 7.6% and apply it to the third quartile of the CV dis-
tribution (from Table S3 [see Additional file 5]) then that
indicates approximately a CV of 18% for day, with a
number of CVs smaller than this. So at least three-quarters
of peaks have a day-to-day CV less than the values
obtained in de Noo's investigation.

To our knowledge there has not as yet been an investiga-
tion which could demonstrate the proportion of variation
due to chip and spot and the fact that the combined effect
is smaller than that for day is encouraging. This type of
analysis where we investigate experimental bias due to
explainable factors is very useful in directly defining
potential confounding factors [49]. Hopefully such new
knowledge will be useful in experimental design and will
result in generally more robust study designs and subse-
quently better interpretation of study results. In the data
analysed here the unexplained technical variation is

undoubtedly too large. However, this is a well controlled
experiment with rigorous QC. Hence what is actually
being demonstrated is the small amount of variation in
the proteome which is being examined in studies of un-
fractionated serum using the SELDI instrument.

Conclusion
In this article a novel system for undertaking QC in pro-
teomic profiling studies using MS is presented. This sys-
tem is multi-facetted and integrated with the database
which stores data from the MS instrument and is easily
run using a web interface. The multi-facetted nature refers
to the functionality of the QC system to monitor the
experiment as it progresses and also to evaluate the simi-
larity of duplicates for inclusion/exclusion in subsequent
analysis. This is achieved through a convenient web inter-
face available on any networked computer in our labora-
tory. Additionally, a stand alone GUI is under
development which will allow the import of data from
other MS instruments.

Rigorous QC has been shown to be an important require-
ment in proteomic profiling experiments [50]. Although a
number of investigations have alluded to some level of
QC in their investigation, this often only takes the form of
analysis of some larger peaks in terms of CVs of intensities
[25,29,35,51-53]. Some investigations have used the cali-
bration sample to perform QC on the intensity axis as well
as the mass axis [17]. Again, this is not really adequate
because it does not reflect well the true situation in a pro-
teomic profiling experiment where a large number of mol-
ecules in a complex mixture are being examined
simultaneously rather than only a few pure proteins. The
method described here is a step forward in that it is a far
more holistic approach to QC which simultaneously takes
into account intensities throughout the proteomic profile.
This is the advantage of using PCA to perform QC as has
been demonstrated in Section 3.1 – a number of different
types of aberrant behaviour can be summarized through a
small number of composite variables. It can be seen in
Figures 1 and 4 that the first PC has a larger spread than
the second. This is not uncommon as it is a common
occurrence that the first PC is often related to the scale of
an object [39] (in this case the sum of intensities) even
when working with scale-free transformed data and is
apparent here. This could be considered to be a limitation
to this method if only the first few PCs are used for QC.
However, this is not a concern here as we combine the vis-
ual method of plotting the first 3 PCs with a significance
test based on the MD. This test allows evaluation over
more than just a few PCs so what might not be seen in
plots will be taken into account in the significance test.

The chip-to-chip QC procedure was inspired by the excel-
lent work described by Coombes and colleagues [34], but
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with some important modifications. Their basic strategy
was to define the "base profile" (another term for the ref-
erence set) derived from QC samples (pooled samples of
the sample type under consideration) on four Protein-
Chips run over a number of days. This base profile is then
examined and peak clusters are identified using a simple
peak finding algorithm. PCA was then used and the first 7
PCs chosen as the composite variables which define this
base profile. The QC sample was spotted onto 2 random
spots on each sample ProteinChip and then the profiles
matched to the peaks detected in the base profile, and
these matched peaks projected into the PC space. The MD
between these two QC profiles and the origin of the QC
space for each sample chip is then calculated and this
value compared with zero using a statistical significance
test. If there is evidence that the distance between QC pro-
files and the origin from both chips is significantly differ-
ent from zero then the chip is rejected by their QC, i.e.
with one failure QC is passed. Our modifications to this
strategy are simple and justifiable, but make the method
preferable in a number of ways. Firstly, the QC samples
are not matched to peak clusters obtained from the base
profile. Instead the data is peak detected simultaneously
each time there is new data to compare with the reference
set. This is preferable as it allows the inclusion of features
later found in the QC samples that were not present in the
reference set, for example, contamination of the chip sur-
face. The second modification is the use of a study-specific
number of PCs in the significance test (the number that
contain greater than 90% of the variance), rather than the
less flexible 7 PCs advocated by Coombes and colleagues.
Also, it could be suggested that using a reference set based
on profiles from only one day could be making the QC
method more stringent as it does not include day-to-day
variation. We feel these adjustments make our chip-to-
chip QC procedure more flexible and applicable to a
wider number of situations (different disease and chip
types and samples).

Another important modification in our experiments is
that the QC samples are distributed equally on all spots
across the chips, whereas in the Coombes study the QC
samples were applied to the same spot on all chips. This
could introduce some bias into the procedure if there are
systematic problems with the spots chosen for the QC
sample. Additionally, it has already been noted that the
method of Coombes and colleagues is expensive in terms
of experimental units with 25% of sample chips devoted
to the use of QC [32] (c.f. 12.5% in this study).

Although consistency of the reference set is checked visu-
ally at the beginning of a study, it is also possible to
update it later by trimming the extremes of the data if
more stringent cut-offs are required using an option in the
web-tool. If changes in the experiment are thought to be

more extreme, then the QC spectra which define the refer-
ence set can be changed. The necessity of changes in the
reference set can be due to a change in intersession laser
performance (as measured through TIC) or changes in
laboratory temperature (data not shown). In these situa-
tions a leave-k-out approach to defining the reference set
can be useful, e.g. defining the reference set with QC pro-
files from other days in the study and not the first three
chips. This requires minor manipulation of the sample list
and has proved invaluable on some occasions.

In the variance components analysis described previously
it has been shown that there is a relatively large amount of
technical variation, but a reassuringly small amount of it
is due to the day of profile generation, the ProteinChip or
the spot on the ProteinChip. Other authors have shown
the effect of reasonable reproducibility over sessions [54]
and the small, but detrimental, effect it has on classifica-
tion algorithms and no doubt also class comparisons.
This is what would be expected based on this analysis and
also that of de Noo and colleagues [33], who recommend
performing all experiments on one day or standardly cor-
recting for day-to-day variation.

The requirement of rigorous QC for proteomic profiling
by MS are not unique and occur in a number of expression
analyses techniques [32], depletion techniques [55], more
complex designed experiments [56] and filtering of poor
quality spectra in peptide identification sequencing using
support vector machines [57]. These are techniques where
this QC strategy of PCA and empirical significance testing
could also prove effective. In addition to the intra-experi-
ment QC described in this manuscript it is also important
to perform inter-experiment QC. This type of QC will
monitor the performance of the MS instrument over time
and is particularly important prior to the commencement
of any proteomic profiling study. Variables similar to
those described here such as TIC can be useful in this type
of analysis as a coarse indicator of instrument perform-
ance using quality control chart techniques based on
means of previous inter-experiment QC measures and
confidence interval limits.

Good clinical practice (EU directive 2001/20/EC) and
good clinical laboratory practice [58] are a requirement of
clinical trials which should be adopted in clinical pro-
teomic profiling studies [7] and one of the facets which
should be included is QC protocols. Similarly the meth-
ods described in this manuscript are suggested to be part
of the essential reporting of the clinical proteomic profil-
ing study in a recent review [7]. It is hoped that the com-
bination of standard operating procedures and rigorous
QC will allow production of high quality proteomic pro-
files; such techniques can only improve the quality of MS-
based proteomic profiling studies.
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Additional file 1
Supplementary Figure S1. This file contains a figure describing the ran-
domisation and quality control scheme layout diagrammatically.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-519-S1.ppt]

Additional file 2
Pre-processing methods details. This file contains details of the pre-
processing scheme for the mass spectrometry data not included in the main 
text for brevity.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-519-S2.doc]

Additional file 3
Table S1. This file contains the results of QC spot analysis in a supple-
mentary table.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-519-S3.doc]

Additional file 4
Table S2. This file contains the full results from the QC replicate analysis, 
i.e. the unabridged version of Table 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-519-S4.doc]

Additional file 5
Table S3. This file contains a table of summary statistics concerning the 
mean spectra and CV spectra displayed in Figure 6.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-519-S5.doc]
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