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Abstract
Background: Eukaryotic cell cycle is a complex process and is precisely regulated at many levels.
Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before
they are needed. To understand the cell cycle process, it is important to identify the cell cycle
transcription factors (TFs) that regulate the expression of cell cycle-regulated genes.

Results: We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-
chip, mutant, transcription factor binding site (TFBS), and cell cycle gene expression data. We
identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1,
Rlm1, Ste12, Stp1, Tec1) are putative novel cell cycle TFs. For each cell cycle TF, we assigned
specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert
regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes,
among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated
genes. Most of our predictions are supported by previous experimental or computational studies.
Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method.
Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene
expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better
than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method
to different cell cycle gene expression datasets suggests that our method is robust.

Conclusion: Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated
genes. Many of our predictions are validated by the literature. Our study shows that integrating
multiple data sources is a powerful approach to studying complex biological systems.

Background
Eukaryotic cell cycle is a complex process and is precisely
regulated at many levels. One important aspect of this reg-
ulation is at the transcriptional level. That is, many genes
specific to the cell cycle are transcribed just before they are
needed [1]. To have a good understanding of the cell

cycle, it is essential to identify the cell cycle-regulated
genes and their transcriptional regulators. DNA microar-
ray analysis has revealed that the expression levels of ~800
genes vary in a periodic fashion during the yeast cell cycle,
but little is known about the transcriptional regulation of
most of these genes [2,3]. To fill this gap, we aim to iden-
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tify the cell cycle transcription factors (TFs) that regulate
the cell cycle-regulated genes inferred by DNA microarray
analysis [2].

Two major approaches have been proposed to identify
cell cycle TFs. First, clustering and motif-discovering algo-
rithms have been applied to cell cycle gene expression
data to find sets of co-expressed genes and plausible bind-
ing motifs of their TFs [2,4]. This approach has been
expanded to incorporate existing knowledge about the
genes, such as cellular functions [5] or promoter sequence
motifs [6]. However, this approach provides only indirect
evidence of genetic regulatory interactions and does not
directly identify the relevant cell cycle TFs. Second, the
ChIP-chip technique was developed to identify physical
interactions between TFs and promoters. Using ChIP-chip
data, Simon et al. [3] investigated how the yeast cell cycle
gene expression program is regulated by the nine known
major transcriptional activators. Later, Lee et al. [7] con-
structed a network of TF-promoter interactions and Harbi-
son et al. [8] constructed an initial map of yeast's
transcriptional regulatory code. However, ChIP-chip data
alone cannot tell whether a TF is an activator or a repressor
and, most importantly, ChIP-chip data are noisy and,
depending on the chosen p-value cutoff, may include
many false positive or false negative TF-promoter binding
relationships. For example, if the p-value cutoff is chosen
to be 0.001, a false negative rate of ~24% in determining
TF-promoter binding was estimated [8].

To overcome the weakness of the above two approaches,
we develop a method (details shown in Figure 1) to sys-
tematically identify cell cycle TFs by combining four data
sources: transcription factor binding site (TFBS), mutant,
ChIP-chip, and cell cycle gene expression data. In order to
reduce the high false negative rate of the ChIP-chip data,
we use current TFBS data [9,10] to avoid using a stringent
p-value threshold (≤ 0.001) to determine TF-promoter
binding. We assume that a TF binds to a specific promoter
if (1) the p-value for the TF to bind the promoter is ≤ 0.01
in ChIP-chip data and (2) the promoter contains one or
more binding sites of the TF. That is, we allow the p-value
cutoff to be relaxed to 0.01 but the TF-promoter binding
event must be supported by the TFBS data.

It is known that the ChIP-chip technique can only detect
those TF-promoter binding events that happen in the
same physiological condition in which the ChIP-chip
experiment is conducted, so it can potentially miss many
TF-promoter binding events. We use the mutant data [10]
and the TFBS data [9,10] to rescue some of these false neg-
ative TF-promoter binding events. We assume that a TF
binds to a specific promoter if (1) the disruption of the TF
results in a significant change of expression of the gene
that has the specific promoter and (2) the promoter con-

tains one or more binding sites of the TF. That is, the TF-
promoter binding event can be assumed without using
ChIP-chip data if it is supported by both the mutant and
the TFBS data. This step can rescue some plausible TF-pro-
moter binding events that are missing in the current ChIP-
chip data.

From the above procedure, we can derive a high-confi-
dence TF-promoter binding matrix (see Methods). How-
ever, binding of a TF to the promoter of a gene does not
necessarily imply regulation. A TF may bind to the pro-
moter of a gene but has no regulatory effect on that gene's
expression. Hence, additional information is required to
solve this ambiguity inherent in the TF-promoter binding
matrix. In this study, we use the additional information
provided by the yeast cell cycle gene expression data [2] to
solve this problem. We use a time-lagged dynamic system
model of gene regulation to describe how the target gene's
expression during cell cycle is controlled by the TFs that
bind to its promoter (inferred from the TF-promoter bind-
ing matrix). Among these bound TFs, those that have sig-
nificant regulatory effects on the target gene's expression
can be extracted (see Methods). From this procedure, we
can refine the TF-promoter binding matrix into a high-
confidence TF-gene regulatory matrix. Each TF-gene regu-
latory relationship in this matrix is supported by at least
three data sources: gene expression, TFBS, and ChIP-chip
or/and mutant data. From the high-confidence TF-gene
regulatory matrix, the regulatory targets of each of the 203
TFs in yeast can be inferred. Finally, a TF is said to be a cell
cycle TF if a statistically significant portion of its regula-
tory targets are cell cycle-regulated genes.

Results
Identification of 17 cell cycle TFs
By integrating current ChIP-chip, mutant, TFBS, and yeast
cell cycle gene expression data, our method identified 17
cell cycle TFs (Table 1). Among them, 12 are known cell
cycle TFs according to the MIPS database [11], including
the nine well-known major cell cycle TFs (Ace2, Fkh1,
Fkh2, Mbp1, Mcm1, Ndd1, Swi4, Swi5, and Swi6), and
Cin5, Cst6, and Stb1.

The remaining five predicted novel cell cycle TFs (Ash1,
Rlm1, Ste12, Stp1 and Tec1) are supported by three lines
of evidence. First, each novel cell cycle TF has physical or
genetic interactions with some known cell cycle TFs (see
Figure 2), suggesting that these five TFs may play a role in
the yeast cell cycle. Second, four (Ash1, Rlm1, Ste12 and
Tec1) of the five predicted novel cell cycle TFs have also
been predicted in previous computational studies [12-
14]. Third, Ash1, Rlm1, Stp1 and Tec1 were predicted to
be cell cycle-regulated by previous studies [1,15]. Being
cell cycle regulated themselves, these TFs may play a role
in the cell cycle process.
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Flowchart of the procedure of our methodFigure 1
Flowchart of the procedure of our method.
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The cell cycle phases in which a cell cycle TF functions
After identifying the cell cycle TFs, it is desirable to deter-
mine in which cell cycle phases a cell cycle TF functions.
We regard that a cell cycle TF functions in the X phase (X
= MG1, G1, S, SG2, G2M) if a statistically significant por-
tion of its regulatory targets belong to the X phase cell
cycle-regulated genes defined by Spellman et al. [2] (see
Methods). We found that a cell cycle TF may function in
more than one cell cycle phase (see Table 1). On average,
86% (31/36) of our predictions have literature support.
More specifically, 39% (14/36) of our predictions have
experimental evidence and 47% (17/36) of our predic-
tions are consistent with previous computational studies
(see Table 1).

The following predictions have experimental evidence.
Ace2 and Swi5 have been shown to control certain genes
expressed in MG1 [16], supporting our prediction that
Ace2 and Swi5 function in MG1. It is known that in the
absence of Ndd1 and Fkh2, Mcm1 participates in the reg-
ulation of genes essential for cellular functions specific to
late mitosis and early G1 [17,18], supporting our predic-
tion that Mcm1 functions in MG1. Previous molecular and
genetic analysis suggested that SBF (Swi4+Swi6) and MBF
(Mbp1+Swi6) are activators of genes essential for cellular
functions specific to late G1 [3,19], supporting our predic-
tion that Mbp1, Swi4, and Swi6 function in G1. Two
genomic studies [7,20] indicated the involvement of SBF
in regulating S phase genes, supporting our prediction

Table 1: The 17 identified cell cycle TFs

TF name Hypergeometric p-value MG1 G1 S SG2 G2M

Fkh2 < 10-11 C [12,13] E [3,7] E [21,22]

Mbp1 < 10-11 E [3,19] C [12,13]

Mcm1 < 10-11 E [17,18] C [12] E [21,22]

Swi4 < 10-11 C [2,12,13,26] E [3,19] E [7,20] C [12,13]

Swi6 < 10-11 E [3,19] E [3,7]

Tec1 1.8 × 10-11 C [2,12,13] C [13] C [12]

Ndd1 3.5 × 10-11 C [12,13] E [21,22]

Ash1 9.6 × 10-10 C [2] C [14]

Ste12 2.2 × 10-9 C [12,13,26] C [13,26] N

Swi5 6.2 × 10-9 E [16]

Fkh1 6.9 × 10-9 E [3,7] E [21,22]

Rlm1 2.1 × 10-7 C [13] C [13] N

Stb1 1.3 × 10-6 C [2,13,26]

Stp1 4.7 × 10-5 N

Ace2 1.2 × 10-4 E [16]

Cin5 1.8 × 10-4 C [13]

Cst6 3.5 × 10-4 N N

The twelve known cell cycle TFs (according to the MIPS database) are bold-faced and colored blue. The 17 identified TFs are ordered by the 
confidence of being cell cycle TFs (according to the hypergeometric p-value calculated using Equation (4)). For each identified cell cycle TF, the cell 
cycle phases in which the TF functions are shown. "E" means that the prediction is supported by experimental evidence, "C" means that the 
prediction is supported by previous computational studies, and "N" stands for our novel prediction.
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Interactions between a novel cell cycle TF and the other identified cell cycle TFsFigure 2
Interactions between a novel cell cycle TF and the other identified cell cycle TFs. The physical or genetic interac-
tions between a novel cell cycle TF ((a) Ash1, (b) Rlm1, (c) Tec1, (d) Stp1, and (e) Ste12) and the other identified cell cycle TFs 
are shown. Each oval indicates an identified cell cycle TF. A TF name is colored purple if it is a known cell cycle TF but black 
otherwise. Two ovals are connected by an undirected red line if these two TFs have physical interactions indicated by the cur-
rent protein-protein interaction data [48]. Two ovals are connected by a directed blue line if the two TFs have genetic interac-
tions indicated by ChIP-chip or/and mutant data [10]. For example, Ace2→Ash1 means that either TF Ace2 binds to the 
promoter of gene ASH1 or the disruption of TF Ace2 results in a significant change of the expression of gene ASH1.
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that Swi4 functions in S phase. Simon et al. [3] and Lee et
al. [7] indicated the involvement of SBF and Fkh1/Fkh2 in
regulating SG2 genes, supporting our predictions that
Swi6, Fkh1 and Fkh2 function in SG2. Previous studies
have demonstrated that Mcm1 interacts with Ndd1 and
Fkh1/Fkh2 to regulate genes necessary for both entry into
and exit from mitosis [21,22], supporting our prediction
that Fkh1, Fkh2, Mcm1 and Ndd1 function in G2M.

Identification of novel cell cycle-regulated genes
For each of the 17 identified cell cycle TFs, we look at their
regulatory targets to find novel cell cycle-regulated genes.
We regard a gene as a cell cycle-regulated gene if it is regu-
lated by at least two of the 17 identified cell cycle TFs. The
requirement for defining a cell cycle-regulated gene to be
regulated by at least two rather than one cell cycle TF is to
reduce the number of false positives. In total, we identi-
fied 178 novel cell cycle-regulated genes that are not in the
set of 800 cell cycle-regulated genes identified by Spell-
man et al. [2]. We found that 64% (114/178) of the novel
cell cycle-regulated genes have literature support. More
specifically, 25% (45/178) of our predictions have exper-
imental evidence and 39% (69/178) of our predictions
are consistent with previous computational studies (see
Additional file 1). Among the 178 identified novel cell
cycle-regulated genes, 59 genes have no known function
according to the Saccharomyces Genome Database [23].
We suggest that these 59 uncharacterized genes are
involved in the cell cycle process. Two lines of evidence
supported our predictions. First, 68% (40/59) of these
genes have literature support. More specifically, 26% (15/
59) of our predictions have experimental evidence and
42% (25/59) of our predictions are consistent with previ-
ous computational studies (see Additional file 1). Second,
each of these 59 genes is regulated by at least two cell cycle
TFs, and the TF-gene regulatory relationship is supported
by at least three data sources: gene expression, TFBS, and
ChIP-chip or/and mutant data. Let us consider three
examples. According to the Saccharomyces Genome Data-
base [23], YJL160C is a putative cell wall protein, BUD7
may be involved in the budding process, and YCG1 may
be involved in mitotic chromosome condensation. How-
ever, the exact functions of YJL160C, BUD7 and YCG1 are
still unknown [23]. Since cell wall synthesis, budding and
chromosome condensation are all important to the cell
cycle process [2], this suggests that YJL160C, BUD7, and
YCG1 play a role in the cell cycle process, supporting our
predictions.

Discussion
Advantages of our method
Our method has four features that make it more powerful
than existing approaches. First, it can reduce false nega-
tives in determining TF-promoter binding events from
current ChIP-chip data. Most previous methods [7,8,24-

27], except GRAM [25], used a stringent p-value threshold
(≤ 0.001) to determine TF-promoter binding events in
order to reduce the number of false positives, but it was at
the expense of false negatives (~24%) [8]. In comparison,
our method allows the p-value cutoff to be relaxed to 0.01
but requires that the promoter must have one or more
binding sites of the TF. Therefore, using additional infor-
mation provided by the TFBS data, our method can rescue
some false negatives without substantially increasing the
number of false positives. For example, we rescue 40 bind-
ing targets of Ace2. The promoter of each of these 40 genes
has one or more binding sites of Ace2. However, their p-
values of binding events in the ChIP-chip data are all
larger than 0.001, so they would not have been identified
using a stringent p-value of 0.001 (see Additional file 1 for
the other 16 examples).

Second, it is known that ChIP-chip data can only indicate
those TF-promoter binding events that happen in the
same physiological condition in which the ChIP-chip
experiments are conducted. Therefore, many plausible TF-
promoter binding events may be missing in the current
ChIP-chip data. In order to solve this problem, our
method considers that a TF binds to a specific promoter if
the disruption of the TF results in a significant change of
the expression of the gene that has the specific promoter
and if the promoter contains one or more binding sites of
the TF. That is, using the information provided by the
mutant and the TFBS data, our method can rescue many
TF-promoter binding events that are missing in the cur-
rent ChIP-chip data. For example, we rescue 16 binding
targets of Ace2. The promoter of each of these 16 genes
has one or more binding sites of Ace2 and the disruption
of Ace2 results in a significant change of the expressions of
all these 16 genes [10]. All these genes would not be iden-
tified as binding targets of Ace2 even when using a relaxed
p-value of 0.01 in the ChIP-chip data (see Additional file
1 for the other 16 examples).

Third, our method can extract plausible TF-gene regula-
tory relationships from TF-promoter binding relation-
ships. Most pervious methods [7,8,24-26] regard the TF-
promoter binding relationships provided by ChIP-chip
data as the TF-gene regulatory relationships. This may not
be true because the binding of a TF to the promoter of a
gene does not necessarily imply regulation. A TF may bind
to the promoter of a gene but has no regulatory effect on
that gene's expression. To solve this problem, our method
uses a time-lagged dynamic system model of gene regula-
tion to extract the TFs that have significant regulatory
effects on the target gene's expression from all TFs that
bind to the promoter of the target gene. Through this
process, our method can extract plausible TF-gene regula-
tory relationships from TF-promoter binding relation-
ships. Thus, in our method each TF-gene regulatory
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relationship is supported by at least three data sources:
gene expression, TFBS, and ChIP-chip or/and mutant
data. We found that, on average, 44% of the binding tar-
gets of the 17 identified cell cycle TFs are their regulatory
targets (see Additional file 1). This ratio is slightly lower
than Gao et al.'s estimation (58%) [27] and Wu et al.'s esti-
mation (55%) [28], possibly due to our stringent require-
ment for a TF-gene regulatory relationship to be
supported by at least three data sources, whereas in both
previous studies the TF-gene regulatory relationship is
only supported by two data sources: gene expression and
ChIP-chip data.

Fourth, our method can identify the time lag for a cell
cycle TF to exert regulatory effects on its target genes. It is
known that the regulatory effects of a TF on its target genes
may have a time lag [29-33]. By using a time-lagged
dynamical system model, our method takes the time lag
into consideration, making it more realistic than those
previous studies that did not allow a time lag [27,34-36].
As shown in Figure 3, the average time lag for each of the
17 cell cycle TFs to exert regulatory effects on its target
genes was estimated.

Performance comparison with existing methods
Four previous studies also tried to identify the yeast cell
cycle TFs. Tsai et al. [12] identified 30 cell cycle TFs by
applying a statistical method (ANOVA analysis) and
Cheng et al. [14] identified 40 cell cycle TFs by applying
another statistical method (Fisher's G test). Cokus et al.
[37] identified 12 cell cycle TFs by applying linear regres-
sion analysis. Andersson et al. [38] identified 15 cell cycle
TFs by applying rule-based modeling. Since these four
approaches are different from ours, a performance com-
parison should be done. As suggested by de Lichtenberg et
al. [15], we tested the ability of each of these five methods
to retrieve the known cell cycle TFs annotated in the MIPS
database [11]. Performance comparison was based on the
Jaccard similarity score [39,40], which scores the overlaps
between a method's output and the list of known cell
cycle TFs (i.e., the true answers). Therefore, the higher the
Jaccard similarity score, the better the ability of a method
to retrieve the known cell cycle TFs. As shown in Table 2,
our method has the highest Jaccard similarity score
among the five methods. Therefore, our method outper-
forms the four existing methods.

The average time lag for a cell cycle to exert regulatory effects on its target genesFigure 3
The average time lag for a cell cycle to exert regulatory effects on its target genes. The average and standard devi-
ation of the time lag for each of the 17 identified cell cycle TFs to exert regulatory effects on its target genes are shown. For 
example, on average, it takes 9.5 minutes for Stb1 to exert regulatory effects on its target genes.
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Robustness against different cell cycle gene expression 
datasets
We applied our method to two newer cell cycle gene
expression datasets (alpha26 and alpha38) published by
Pramila et al. in 2006 [41]. Both datasets are alpha-factor
synchronized microarray time series spanning two cell
cycles. The alpha26 dataset has a sampling interval of 10
minutes and a total of 13 data points, and the alpha38
dataset has a sampling interval of 5 minutes and a total of
25 data points. We found that among the 17 cell cycle TFs
identified using Spellman et al.'s dataset, 14 TFs are also
identified using the alpha38 dataset, and 12 TFs are also
identified using the alpha26 dataset (see Figure 4). This
suggests that our method is robust against different cell
cycle gene expression datasets.

Parameter settings of our method
The choices of both the relaxed p-value and time-lag
parameter have biological meanings. Two previous papers
[7,8] used a statistical error model to assign a p-value of
the binding relationship of a TF-promoter pair. They
found that if p = 0.001, the binding relationship of a TF-

Table 2: Performance comparison of five cell cycle TF 
identification methods to retrieve the known cell cycle TFs 
annotated in the MIPS database. 

TP FP FN Jaccard similarity score

Our method 12 5 24 0.293

Tsai et al.'s method 13 17 23 0.245

Anderson et al.'s method 10 5 26 0.244

Cokus et al.'s method 9 3 27 0.231

Cheng et al.'s method 13 29 23 0.200

Performance comparison was based on the Jaccard similarity score 
[39,40], which scores the overlaps between a method's output and 
the list of known cell cycle TFs. Specifically, the Jaccard similarity 
score is defined as TP/(TP+FP+FN), where TP stands for true 
positives, FP for false positives, and FN for false negatives. Note that 
the higher the Jaccard similarity score, the better the ability of a 
method to retrieve the known cell cycle TFs.

The results of using different cell cycle gene expression datasetsFigure 4
The results of using different cell cycle gene expression datasets. Our method identified 12, 14, and 17 cell cycle TFs 
using Pramila et al.'s alpha26 dataset, Pramila et al.'s alpha38 dataset, and Spellman et al.'s dataset, respectively. We found that 
among the 17 cell cycle TFs identified using Spellman et al.'s dataset, 14 TFs are also identified using Pramila et al.'s alpha38 data-
set, and 12 TFs are also identified using Pramila et al.'s alpha26 dataset. This suggests that our method is robust against different 
cell cycle gene expression datasets.
Page 8 of 13
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:522 http://www.biomedcentral.com/1471-2105/9/522
promoter pair is of high confidence and can usually be
confirmed by promoter-specific PCR. If p > 0.01, the bind-
ing relationship of a TF-promoter pair is of low confi-
dence and cannot be confirmed by promoter-specific PCR
most of the time. However, if 0.001 <p ≤ 0.01, the binding
relationship of a TF-promoter pair is ambiguous and can
be confirmed by promoter-specific PCR in some cases but
not in the other cases. Our aim is to solve this ambiguity,
so we choose 0.01 to be the relaxed p-value. We say that
an ambiguous binding relationship of a TF-promoter pair
is plausible if 0.001 <p < 0.01 and if the promoter con-
tains one or more binding sites of the TF. As to the time-
lag parameter, its value is chosen to make the maximal
time lag approximately equal to two consecutive cell cycle
phases because Simon et al. [3] found cases where a cell
cycle TF that expresses in one phase of the cell cycle can
regulate genes that function in the next phase.

We regard a gene as a cell cycle-regulated gene if it is regu-
lated by at least two of the 17 identified cell cycle TFs. The
requirement for defining a cell cycle-regulated gene to be
regulated by at least two rather than one cell cycle TF is to
reduce the number of false positves. When the stringent
criterion is used, 64% (25% with experimental evidence
and 39% with computational evidence) of the identified
novel cell cycle-regulated genes are supported by the liter-
ature, whereas when the loose criterion is used, only 50%
(8% with experimental evidence and 42% with computa-
tional evidence) of the identified novel cell cycle-regu-
lated genes are supported by the literature. In this study,
we want to be more conservative on calling a gene a
"novel" cell cycle-regulated gene, so we aim to eliminate
many false positives, though at the expense of some false
negatives.

Conclusion
We developed a method to identify cell cycle TFs in yeast
by integrating current ChIP-chip, mutant, TFBS, and cell
cycle gene expression data. We identified 17 cell cycle TFs,
12 of which are known cell cycle TFs. The remaining five
TFs (Ash1, Rlm1, Ste12, Stp1, Tec1) are putative novel cell
cycle TFs. Our predictions are supported by interactions
(physical or genetic) data and previous studies. In addi-
tion, our method can assign each cell cycle TF to specific
cell cycle phases in which the TF functions. We found that
a cell cycle TF may function in more than one cell cycle
phase. On average, 86% of our predictions have literature
support (39% with experimental evidence and 47% with
computational evidence). Besides, our method can iden-
tify the time lag for a cell cycle TF to exert regulatory effects
on its target genes. By using a time-lagged dynamical sys-
tem model, our method takes the time lag into considera-
tion, which makes it more biologically realistic than those
previous studies that did not allow a time lag. Moreover,
we identified 178 novel cell cycle-regulated genes, 64% of

which have literature support (25% with experimental
evidence and 39% with computational evidence). Among
the 178 novel cell cycle-regulated genes, 59 have no
known function (i.e., they are uncharacterized). These 59
uncharacterized genes may now be annotated as cell cycle
related genes, supported by the fact that 68% of our pre-
dictions have literature support (26% with experimental
evidence and 42% with computational evidence). Fur-
thermore, a high-confidence TF-gene regulatory matrix is
derived as a byproduct of our method. Each TF-gene regu-
latory relationship in this matrix is supported by at least
three data sources: gene expression, TFBS, and ChIP-chip
or/and mutant data. Moreover, we compared the perform-
ance of our method with four existing methods and
showed that our method has a better ability to retrieve the
known cell cycle TFs. Finally, applying our method to dif-
ferent cell cycle gene expression datasets, we identify sim-
ilar sets of TFs, suggesting that our method is robust.

Methods
Data sets and data preprocessing
We use four data sources in this study. First, the ChIP-chip
data are from Harbison et al. [8]. They used genome-wide
location analysis to determine the genomic occupancy of
203 TFs in rich media conditions. Second, the TFBS data
are from MacIsaac et al. [9] and the YEASTRACT database
[10]. MacIsaac et al. used evolutionarily conservative crite-
ria to computationally identify the binding sites of many
TFs in yeast. The YEASTRACT database includes a set of
computational tools that can be used to identify complex
motifs over-represented in the promoters of co-regulated
genes. Third, the mutant data are from the YEASTRACT
database [10]. The mutant data can tell us which gene's
expression was changed significantly owing to the dele-
tion (or mutation) of the gene that encodes a TF. The evi-
dence may come from detailed gene by gene analysis or
genome-wide expression analysis. Finally, the yeast cell
cycle gene expression data are from Spellman et al. [2].
The alpha factor data set is used because it was shown to
have a better data quality than the other data sets [15].
Samples for all genes in the yeast genome are collected at
18 time points (0, 7, 14, 21, ..., 119 minute), which cover
two cell cycles. That is, each gene has a 18-timepoint gene
expression profile. The cubic spline method [42] is then
used to reconstruct the missing values and interpolate
extra data points into the original time profile. Note that
genes that have more than one missing value in their gene
expression profiles are excluded in this study.

Construction of a high-confidence TF-gene regulatory 
matrix
Using three data sources (ChIP-chip, mutant and TFBS
data), we can construct a high-confidence TF-promoter
binding matrix B = [bi,j], where bi,j = 1 if (1) the p-value for
TF j to bind the promoter of gene i is ≤ 0.01 in the ChIP-
Page 9 of 13
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chip data and the promoter of gene i contains one or more
binding sites of TF j or (2) the disruption of TF j results in
a significant change of the expression of gene i and the
promoter of gene i contains one or more binding sites of
TF j. Otherwise, bi,j = 0.

However, binding of a TF to the promoter of a gene does
not necessarily imply regulation. Hence, additional infor-
mation is required to solve this ambiguity inherent in the
TF-promoter binding matrix. Using a time-lagged
dynamic model of gene regulation, we can refine the TF-
promoter binding matrix into a high-confidence TF-gene
regulatory matrix. We consider the transcriptional regula-
tory mechanism of a target gene as a system with the reg-
ulatory profiles of several TFs as the inputs and the gene
expression profile of the target gene as the output. The
transcriptional regulation of a target gene is described by
the following time-lagged dynamic system model [43-45]

where y[t] represents the target gene's expression profile at
time point t, k represents the target gene's basal expression
level induced by RNA polymerase II, N denotes the
number of TFs that bind to the promoter of the target gene
(inferred from the TF-promoter binding matrix B), di indi-

cates the regulatory ability of TF i, xi[t] represents the reg-

ulatory profile of TF i at time point t, τi indicates the time

lag for TF i to exert a regulatory effect on the target gene's

expression, λ indicates the degrading effect of the target
gene's expression value y [t - 1] at time point t - 1 on the

target gene's expression value y [t] at time point t and ε[t]
denotes the stochastic noise due to the modeling error
and the measuring error of the target gene's expression

profile. ε[t] is assumed to be a Gaussian noise with mean

zero and unknown standard deviation σ The biological
meaning of Equation (1) is that y [t] (the target gene's
expression value at time point t) is determined by

 (the production effect of RNA

polymerase II and TF i at time point t - τi, where i = 1,...,

N) and -λ·y[t - 1] (the degradation effect of the target gene
at time point t - 1).

It has been shown that TF binding usually affects gene
expression in a nonlinear fashion: below some level it has
no effect, while above a certain level the effect may
become saturated. This type of binding behavior can be
modeled using a sigmoid function. Therefore, xi[t] (the

regulatory profile of TF i at time point t) is defined as a sig-
moid function of zi[t] (the gene expression profile of TF i
at time point t) [13,28,44,45]:

where g denotes the transition rate of the sigmoid func-
tion and Ai denotes the mean of the gene expression pro-

file of TF i. It is also known that the regulatory effect of a
TF on its target genes may not be simultaneous but has a
time lag [28-33]. Therefore, we incorporate a time lag

term into our dynamic system model. The time lag τi

between TF i and the target gene y is determined by

, where r(q) is the correlation between

 (the expression profile of the target

gene y) and  (the regulatory profile

of TF i) with a lag of q time points [28,29]:

where

,

M is the number of time points of the target gene's expres-
sion profile and Q is the maximal time lag of the TF's reg-
ulatory profile considered. The time lag may be
interpreted as the time for a TF to exert a regulatory effect
on its target gene's expression. The value of Q is chosen to
make the maximal time lag approximately equal to two
consecutive cell cycle phases because Simon et al. [3]
found cases where a cell cycle TF that expresses in one
phase of the cell cycle can regulate genes that function in
the next phase.

After writing down the time-lagged dynamic system
model of gene regulation, the next step is to estimate the
unknown parameters in the model. We rewrite Equation
(1) into the following regression form:
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Using the yeast cell cycle gene expression data from Spell-
man et al. [2], we can to get the values of {xi [v], y [v]} for
i ∈ {1, 2, ..., N}, v ∈ {1, 2, ..., M}. Equation (2) at different
time points can be put together as follows

where . For simplicity, we define the

notations Y, Φ, θ and e to represent Equation (3) as fol-
lows

Y = Φ · θ + e

where Y = [y[w] ... y [M]]T, Φ is the system matrix, θ = [d1
... dN k λ]T is the unknown parameter vector, and e is the
error vector, The parameter vector θ can be estimated by
the maximum likelihood (ML) method as follows [43]

Since di stands for the regulatory ability of TF i, a large

absolute value of di means that TF i has a large effect on the

target gene's expression. We consider TF i to be a true reg-
ulator of the target gene if its regulatory ability di is statis-

tically significantly different from zero. The test statistic

 a t-distribution with the degree of freedom

equal to (M - w + 1) - (N + 2), is used to assign a p-value
for rejecting the null hypothesis H0: di = 0, where uii is the

i th diagonal element of the matrix (ΦTΦ)-1 and

 is an unbiased estimator of σ (the

standard deviation of the stochastic noise ε[t]) [46]. The p-
value computed by the t-distribution is then adjusted by
the Bonferroni correction to represent the true alpha level
in the multiple hypotheses testing [46]. Finally, TF i is said
to be a true regulator of the target gene if the adjusted p-

value padjusted ≤ 0.05.

From the above analysis, we can refine the TF-promoter
binding matrix B = [bi,j] into a TF-gene regulatory matrix C
= [ci,j]. In this matrix, ci,j = 1 if bi,j = 1 and if TF j is shown
by the time-lagged dynamic system model to exert a sig-
nificant regulatory effect on the expression of gene i. Oth-
erwise, ci,j = 0.

Identification of cell cycle TFs
From the high-confidence TF-gene regulatory matrix, the
regulatory targets of each of the 203 TFs in yeast can be
inferred. Then a TF is said to be a cell cycle TF if a statisti-
cally significant portion of its regulatory targets are in the
set of 800 cell cycle-regulated genes identified by Spell-
man et al. [2]. The hypergeometric distribution is used to
test the statistical significance [46,47]. The procedure for
checking whether TF j is a cell cycle TF is as follows. Let S
be the set of cell cycle-regulated genes identified by Spell-
man et al. [2], G be the set of genes that are regulated by
TF j (inferred from the TF-gene regulatory matrix), T = S ∩
G be the set of cell cycle-regulated genes that are also reg-
ulated by TF j, and F be the set of all genes in the yeast
genome. Then the p-value for rejecting the null hypothesis
(H0: TF j is not a cell cycle TF) is calculated as

where |G| means the number of genes in set G. This p-
value is then adjusted by the Bonferroni correction to rep-
resent the true alpha level in the multiple hypotheses test-
ing [46]. TF j is said to be a cell cycle TF if the adjusted p-
value padjusted ≤ 0.05. This procedure is applied to each of
the 203 TFs under study.

Identification of the cell cycle phases in which a cell cycle 
TF functions
For each of the 17 identified cell cycle TFs, we want to
determine in which cell cycle phases it functions. We
regard that a cell cycle TF functions in the X phase (X =
MG1, G1, S, SG2, G2M) if a statistically significant portion
of its regulatory targets belong to the X phase cell cycle-
regulated genes identified by Spellman et al. [2]. Equation
(4) is again used to test the statistical significance. While
G and F are defined as before, S now denotes the set of X
phase cell cycle-regulated genes identified by Spellman et
al. [2] and T = S ∩ G now denotes the set of X phase cell
cycle-regulated genes that are also regulated by the cell
cycle TF under study. The p-value computed by Equation
(4) is then adjusted by the Bonferroni correction to repre-
sent the true alpha level in the multiple hypotheses test-
ing. We say that a cell cycle TF functions in the X phase (X
= MG1, G1, S, SG2, G2M) if the adjusted p-value padjusted ≤
0.05.
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