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Abstract

Background: Similarity inference, one of the main bioinformatics tasks, has to face an exponential
growth of the biological data. A classical approach used to cope with this data flow involves
heuristics with large seed indexes. In order to speed up this technique, the index can be enhanced
by storing additional information to limit the number of random memory accesses. However, this
improvement leads to a larger index that may become a bottleneck. In the case of protein similarity
search, we propose to decrease the index size by reducing the amino acid alphabet.

Results: The paper presents two main contributions. First, we show that an optimal neighborhood
indexing combining an alphabet reduction and a longer neighborhood leads to a reduction of 35%
of memory involved into the process, without sacrificing the quality of results nor the
computational time. Second, our approach led us to develop a new kind of substitution score
matrices and their associated e-value parameters. In contrast to usual matrices, these matrices are
rectangular since they compare amino acid groups from different alphabets. We describe the
method used for computing those matrices and we provide some typical examples that can be used
in such comparisons. Supplementary data can be found on the website http://bioinfo.lifl.fr/reblosum.

Conclusion: We propose a practical index size reduction of the neighborhood data, that does not
negatively affect the performance of large-scale search in protein sequences. Such an index can be
used in any study involving large protein data. Moreover, rectangular substitution score matrices
and their associated statistical parameters can have applications in any study involving an alphabet
reduction.

Background similarities witness a putative common biological func-
One fundamental task in bioinformatics concerns large  tion and direct further studies.

scale comparisons between proteins or families of pro-

teins. It often constitutes the first step before furtherinves-  In this paper, we focus on massive protein sequence com-
tigations. A typical comparison, for example, is to querya  parisons: a large database is iteratively compared with rel-
database with a newly discovered sequence. Observed  atively short queries (such as newly sequenced data). A
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possible approach is to use the exact dynamic program-
ming method [1]. For a given similarity model, this
method provides optimal alignments within a quadratic
computation time. Some optimizations achieve a sub-
quadratic complexity [2], but the computation time
remains prohibitive for large scale comparisons. Thus, in
practice, the full dynamic programming approach is
applied to comparison of short sequences.

A successful family of similarity search methods is pro-
vided by seed-based heuristics, starting with Fasta [3] and
Blast [4] and including specific methods for protein simi-
larities such as Blastp [5]. Seed-based heuristics were
recently enhanced by advanced seeding tools like the
spaced seeds used in PatternHunter [6] or Yass [7] (see [8]
for a recent survey). Authors of this paper also worked on
the alliance between advanced seeds techniques and
reconfigurable architectures [9].

The main idea of seed-based heuristics is to anchor the
detection of similarities using matching short words or
short subsequences occurring in both compared
sequences. The form of these words or subsequences is
provided by a pattern called a seed. A word that respects
the seed is called a key. For instance, MVK is one of 203
possible keys for the seed of three consecutive characters
on the protein alphabet. Detection of similarities between
two strings is done in three stages, as presented in Figure 1:

e Stage 1: search for keys that occur in both strings,

e Stage 2: extension of these matching keys with an
ungapped alignment, keeping only the alignments with a
score greater than a given threshold 7~ ,
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Schematic view of a Blast-like 3-stage algorithm. Rep-
resentation of the three stages of comparison of a query
(vertical) against a database (horizontal): Stage |: identify
seeds, i.e. small patterns occurring in both the query and the
database (black diagonals). Stage 2: compute seed extensions
and keep only those for which the score verifies at threshold
7~ (brown diagonals). On the Figure, seeds (a) and (b) are
successfully extended. Stage 3: perform a full dynamic pro-
gramming computation (white squares) on remaining seeds.
In this example, only seed (b) leads to a significant alignment.
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e Stage 3: full dynamic programming algorithm, applied
only to successfully extended matching keys.

In this work, we consider comparisons between a set of pro-
tein queries against a large protein database of N amino
acids. A common usage of Blast is to index the queries, and
then to scan the full database at the runtime. If the size of
the query and the database allow it, a full indexation of
both leads to advantageous results [10]. In our work, we
applied approach used e.g. in Blat [11] where the database
is indexed once and each query is successively processed.

To be efficient, the database positions are indexed by seed
keys. The usual indexing scheme is shown Figure 2: for
each key, a list of all its occurrences is stored. At Stage 1,
each query position corresponds to a seed key (or, for the
Blastp approach, a set of seed keys that are similar to the
query seed key). An index access provides the list of key
occurrences in the database, enabling Stage 2. We call
such an approach the offset indexing approach. In this
case, for each seed position, an offset of rlog, N1 bits is
stored. The index size is thus equal to S = N x rlog, N
bits.

For each query position, each execution of Stage 2 needs
to access all the occurrences of the corresponding key. This
leads to numerous random memory accesses that are time
consuming: memory accesses at random positions are not
efficiently cached and require high latencies [12]. A way to

seed database pos.
size notstored N x ([log, N1)

HRT 80743
1403483
1565421

12131
1987432
6465455
7654321

HRW

Figure 2

Offset indexing. Fragment of an offset index. For each seed
key (here composed of three letters), the list of its occur-
rence positions is stored.
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reduce the computation time is thus to avoid as far as pos-
sible such random memory accesses. For that purpose, it
is possible to additionally store, for each key occurrence,
its left and right neighborhoods in the sequence, as illus-
trated in Figure 3. Thus, given a position in the query and
its corresponding key, all neighborhoods of this key
occurrences in the database are obtained through a single
random memory access. For each database position, two
neighborhoods are additionally stored. We call this index-
ing approach the neighborhood indexing approach. The
overall index size is then equal to S 1=N x (log,
Ny + 2 L) bits, where

neighborhoo

e is the number of bits for coding a character (amino
acid), and

e L is the length of each neighborhood.

As seen in Figure 4, the main advantage of the neighbor-
hood indexing is that it speeds up the execution time by a
factor ranging between 1.5 and 2 over the offset indexing.
The actual speed gain depends on the database length and
on many implementation and architecture parameters
(such as memory and cache sizes, cache strategies and
access times) that will not be discussed here. An obvious
drawback of the neighborhood indexing is the additional
memory it requires to store neighborhoods. Comparing
the two indexing schemes, the ratio r between the overall
index sizes of the neighborhood indexing and the offset
indexing is

- Sneighborhood _ 2oL
Soffset [loga N |

In common experiments, log, N1 is between 20 and 40, L
is between 20 and 200, hence r is between 2 and 21. It is
worth mentioning that the rlog, N1value is often raised to a

seed database pos. left neighbor right neigbor
size notstored N x ([log, N7) N .a-L N.o-L
HRT 80743 WGN..IGPG QERN. .ITM
1403483 DSG. .HYRW KHEL..ITI
1565421 ERS..LDLQ HWLD. . IAK
HRW 12131 IKS..GASS AKIE. .KLE
1987432 yVyK..FTGQ AWLE. .KIW
6465455 HYV..IGGD RNPH. . GMH
7654321 VTF..KDEV KARE. .QPL

Figure 3

Neighborhood indexing. Fragment of a neighborhood
index. For each seed key, the list of its occurrence positions
is stored. For each occurrence, its right and left neighbor-
hoods are additionally stored.
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Figure 4

Time saved by neighborhood indexing compared to
offset indexing. Execution time using the offset indexing
and the neighborhood indexing for comparing a growing set
of queries against a bank of 70-103 proteins.

more practical 32 or 64 bits, reducing the ratio r even more.
Storing neighborhoods becomes then relevant with the
reduction of memory prices. For instance, the modern tech-
nology brings the possibility to get gigabytes of Flash mem-
ory in a personal computer for some hundred dollars. It is
thus interesting to exploit this storage space as much as pos-
sible. It can be used for treating larger databases, but also,
as in this work, for speeding up widely used applications.

However, the index size still remains the main limitation.
In this paper, we study how the size of a large neighbor-
hood index can be reduced while preserving the result
quality. For this purpose, we worked on reducing as much
as possible the ratio . A way for doing this is to reduce the
factor L. We propose to simultaneously increase the
neighborhood length (L) and reduce the alphabet size
(2- ). We limit the alphabet size by partitioning amino
acids into groups. This reduces a by encoding neighbor-
hood characters in less than 5 bits required for coding 20
amino acids. Partitioning the amino acids into 16 groups
enables to encode each group using 4 bits, and partition-
ing into 8, 4 or 2 groups enables to encode each group by
3, 2, and 1 bits respectively. All these reduced alphabets
are tested in this paper.

Grouping amino acids was studied in several papers [13-
16]. Groups can rely on amino acid physical-chemical
properties or on a statistical analysis of alignments. For
example, the authors of [13] computed correlation coeffi-
cients between pairs of amino acids based on the
BLOSUM50 matrix and used a greedy algorithm to merge
them. A branch-and-bound algorithm for partitioning the
amino acids was proposed in [14]. Those papers mainly
deal with the construction of reduced alphabets, but none
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Table I: Stage two algorithm
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Algorithm | Stage 2

Ensure: reports if a matching key occurrence potentially belongs to an alignment

Require: query neighborhoods (left,,,
I get database neighborhoods lefty, and righty,
2: result,q, < 0; highest, ¢ < 0

and rightg,)

3: result,ig, < O; highest, gy, <— 0

4: for i from | to L do

5: resultys < resulti + subst_score (lefty, [i], leftye,, [1])

6: if result, > highest . then highest, < result,; endif

7: end for

8: for i from | to L do

9: result gy, < result gy, + subst_score(righty, [i], righty,er, [i1)
10: if result,g, > highest,,, then highest, .. < result,,,. endif
I'l: end for

12: if highestis, + highest iy, > threshold 7~ then return true endif
13: return false

of them studies how the alphabet reduction affects the
sensitivity of similarity search, or undertakes a quantita-
tive analysis of the trade-off between search sensitivity
and index size for those alphabets. This raises the follow-
ing problem that is solved in this paper: Can reduced alpha-
bets allow one to decrease the factor L while preserving the
quality of similarity search results?

Results and discussion

The main result of our work is an effective reduction of the
index size without deteriorating the quality of the results
of similarity search. Moreover, we provide substitution
score matrices and e-value parameters to be used with
reduced alphabets. Our results are based on the alphabets
defined by the amino acids groups proposed by Li and al.
(Table 2 of [15]). This choice was motivated by empirical
tests showing their relevancy with seeds matching. How-
ever, our method can be applied to any other amino acids
partitions. The website [17] provides data for all the
alphabets reported in [16].

In the rest of the paper, the original alphabet of 20 amino
acids is denoted by X,,, where each character is encoded
by 5 bits. Reduced alphabets X, Z5, X, and Z,, respec-
tively of size 16, 8, 4 and 2, have each character encoded
by 4, 3, 2 and 1 bits respectively. Those alphabets, taken
from Table 2 of [15], are defined by

Zis = {ICLIFY]LIWLIMLL[IV][GL[P] [A]
[T1.[S].IN],[H], [QEL [D] [R], [K]},

Ys = {[CFYW],[MLIV],|G],|P],|ATS],
[NH],[QED],[RK]},

2, = {[CFYW],[MLIV],[GPATS],
[NHQEDRK]}, and

¥, = {|[CFYWMLIV],
[GPATSNHQEDRK]}.

The main idea is to represent the neighborhoods of keys
stored in the index (see Figure 3) over a reduced alphabet.
Consequently, at Stage 2 of the similarity search, amino
acid sequences are compared with sequences over the
reduced alphabet. By an alignment over £ x X', we under-
stand an alignment between a sequence over ¥ and a
sequence over X'. Thus, in this paper we will consider
alignments over X, x 2,4, Z, x 214, Zpg X Zg/ Zpg X 24 and
2o X 2Zy.

In the next sections, we describe how to evaluate the qual-
ity of Stage 2 and how a substantial index size reduction
can be obtained by using longer neighborhoods on
reduced alphabets. As presented in Figure 5, using a
reduced alphabet involves several parameters that we
study in the following sections. In section Rectangular sub-
stitution score matrices, we present substitution score matri-
ces used for alignments over %,, x g and X,, x Z;,. We
then present the computation of e-value to estimate the
significance of alignments over reduced alphabets. The
last section, Experimental validation, describes a practical
application of reduced alphabets to real biological data.

Stage 2 algorithm and quality

A detailed description of Stage 2 is given in Algorithm 1
(Table 1). Query and database neighborhoods of a match-
ing key (detected during Stage 1) are compared character
by character over L positions. During this comparison that
uses substitution score matrices (lines 1 and 1), the high-
est scores for the left and right neighborhoods are kept
(lines 1 and 1). If the sum of the highest scores exceeds a
threshold 7, the alignment is kept for Stage 3 (line 1),
otherwise it is rejected (line 1). Note that in the offset
indexing case, a random memory access is performed in
order to retrieve neighborhoods left;, and right, (line 1).
This is not the case for the neighborhood indexing, as the
neighborhoods are stored directly in the index.
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Table 2: Memory for neighborhood storage for different alphabets with adapted neighborhood lengths

indexed neighborhood bits per character ()

neighborhoods length (L)

total per index line (2 L)  relative gain compared to

alphabet oy (1 =2L/110)
a0 5 I 110 0% Memory
DI 4 12 96 13%
g 3 14 84 24%
4 2 19 76 31%
z, I 32 64 42%

for neighborhood storage is computed with respect to sensitivity/selectivity trade-offs shown on Figure 7.

The quality of Stage 2 is measured by a trade-off between
its sensitivity (ability to extend true alignments) and selec-
tivity (ability to filter out spurious seed hits). Computa-
tion of those values is described page 10.

Increasing the threshold 7~ or decreasing the neighbor-
hood length L makes Stage 2 more selective but less sensi-
tive (faster execution at the price of worse quality results)
while decreasing 7~ or increasing L increases the sensitiv-
ity and decreases the selectivity (better quality results at
the price of a slower execution).

Reducing the index size by 35% without loss of quality
As shown in Figure 6, the sensitivity/selectivity trade-off
follows a convex curve. We propose here to achieve an
equivalent trade-off with a reduction of the index size.

Clearly, for a fixed neighborhood length L (in Figure 6, 16
amino acids), the sensitivity/selectivity trade-off is always
better when using the full amino acid alphabets than a
reduced alphabet. This is easily explained by the fact that
reducing the alphabet size decreases the alignment accu-
racy. In order to keep up with the sensitivity/selectivity
ratio, the neighborhood length L should be increased. In
Figure 7, all reduced alphabets, used with increased neigh-
borhood lengths, now perform equivalently (or slightly
better) than the full alphabet.

Sensitivity/Selectivity

Alph. hoi
[FELAEE Gl ratio choice

Substitution score

Forground and background matrix

probabilities

Neighborhood

lambda and K size
parameters Threshold

Figure 5

Parameters involved in alphabet reduction. Once an
alphabet and a sensitivity/selectivity ratio are chosen, several
parameters are computed. Substitution score matrix and e-
value parameters depend only on the alphabet and the model
probabilities, whereas the optimal neighborhood size and the
threshold depends also on the sensitivity/selectivity level.

Figure 8 shows the dependency, for different reduced
alphabets, between the number of bits needed to store
both neighborhoods (X axis) and the selectivity (Y axis),
for an equivalent quality (fixed sensitivity). Those results
are obtained with the use of special substitution score
matrices, adapted to reduced alphabets, that are presented
in the next section. Our main result is that for any given
selectivity, using any of the reduced alphabets for storing
neighborhoods leads to a smaller L factor than for the X,
alphabet. Therefore, for a fixed memory usage, the sensi-
tivity/selectivity trade-off is always better with a reduced
alphabet than with the full £, alphabet.

In practice, this result enables a reduction of the index size
without any sacrifice in running time or in result quality.
Table 2 shows the memory requirements for different
alphabets. We obtain a practical reduction of 42% of the
factor L using the reduced alphabet X, instead of £,,. The
ratio r on the overall index size is then reduced by 35%.

sensibility
o
©
&
T

Alph. size (neighb. length)
-+ 20x20 (11
- 16x20 (11)
% 8x20 (11) ]
8 4x20 (11)
= 2x20 (11)

selectivity

Figure 6

Sensitivity/selectivity trade-off using different alpha-
bets with a constant neighborhood length. Sensitivity/
selectivity trade-off for two neighborhoods of length |1
(other lengths give similar results). When the length is fixed,
reduced alphabets provide worse results than the X, X Z,,
alphabet. The curves for alphabets %,, X £,and Z,, X Z,, not
shown, are even worse.
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&
T

0.94 Alph. size (neighb. length) -
-~ 20x20 (11)
< 16x20 (12)
0.93 - 095 | * 8x20 (14) q
o 4x20 (19)
= 2x20 (32)
0.92 ! E
0.945 -
0.008 0.01 0.012
091 —
0.9 L L L
0 0.01 0.02 0.03 0.04 0.05

selectivity

Figure 7

Sensitivity/selectivity trade-off using different alpha-
bets with adapted neighborhood lengths. Sensitivity/
selectivity trade-off for two neighborhoods with the adapted
lengths of Table 2. Now all reduced alphabets are equivalent
(or slightly better, due to integer rounding of the neighbor-
hood lengths) than the original alphabet 2,4 X Z,,.

Rectangular substitution score matrices

We designed a method for computing substitution score
matrices for any pair of possibly reduced amino acid
alphabets. As this method is based on the original pro-

2 T T :
B
B
L8 x Alphabet size
“u SN ~ 20x20
01 | w w R % 16x20 1
. . * 8x20
u o 4x20
w m = 2x20
LN
L}
u
w
2z
=
5
8
k] . 2x11
,,,,,,,,,,,,,,,,,, W g s R
001 F 232w 2x197.
L | - N
3 x
. .
=] . X
x
B, .
better N "‘ X\
=] ) N
% X,
.
-
0.001 L . . S — -
40 60 80 100 120
bits
.
Figure 8

Memory for neighborhood storage for different
alphabets at a fixed sensitivity. Memory space needed to
achieve a sensitivity close to 0.95. The same quality can be
achieved with 64 bits (2 neighborhoods of 32 amino acids
encoded in | bit, sensitivity of 0.9499, selectivity of 0.0112)
instead of 110 bits (2 neighborhoods of || amino acids
encoded in 5 bits, sensitivity of 0.9500, selectivity of 0.0111).
All reduced rectangular alphabets lead to smaller index sizes
than the regular %,, x Z,, alphabet.

http://www.biomedcentral.com/1471-2105/9/534

grams of [ 18], we call such matrices REBLOSUM for Rectan-
gular BLOSUM matrices. The REBLOSUM matrices for
alphabets X,, x X,, are the original BLOSUM matrices.
Tables 3, 4, 5 and 6 present REBLOSUM matrices for align-
ments over alphabets X,, x 2, Z,0x Zg, £,9 x Z,and X,
x X, respectively.

Such matrices can be applied in any method reducing the
amino acid alphabets by residue grouping. As one may be
interested in using any other pair of alphabets, we addi-
tionally propose a web interface [17]. This web interface
computes REBLOSUM matrices for other alphabets listed
in [16] and for any custom alphabets provided by the
user.

Parameters for e-value computation

The e-value, or expected value, provides the expected
number of alignments with a given score, when compar-
ing a text T and a query Q of length |T | and |Q| respec-
tively. Local alignment methods like Blast sort results by
increasing e-value, thus reflecting their decreasing signifi-
cance. In the Blast algorithm, the e-value of an alignment
is obtained by

e-value=K-|Q| - |T| - e,

where s is the score of the alignment obtained with substi-
tution matrices. Parameters and K are two constants that
fit the Gumbel law, computed using methods described in
[19]. Table 7 provides those parameters for several REBLO-
SUM substitution matrices.

Experimental validation

In a model where the Stage 2 alignments are ungapped,
using reduced alphabets and alignments on longer neigh-
borhoods can however affect the result quality. Indeed,
the longer the neighborhoods are, the bigger is the chance
to meet a gap in the sequences. More generally, the prob-
abilities distributions used in theoretical sensitivity and
selectivity computations do not truly reflect the nature of
the biological sequences.

We thus validated our approach with large-scale tests on
biological sequences. We set a database to be the hard-
masked human chromosome 21 (UCSC Release hgl8)
translated according to the six possible reading frames.
The query set was a set of seven archea and bacteria pro-
teomes derived from a study of mitochondrial diseases.
This set was selected for is interest toward the detection of
potential insertions of mitochondrial genes in the human
genome. Moreover, testing out our approach comparing
such distant species represents one of the hardest applica-
tion case. Indeed more typical homology searches on
closer sequences is easier. Tests on such homology
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Table 3: REBLOSUM 62 matrix for alphabet X, % X,
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c F Y W WM L I V G P A T S N H Q E D R K
[q 9 2 2 2 - < 4 < 3 3 0 - 4 3 3 3 4 3 3 3
[FY] 2 5 5 [ o 0 - - 3 3 2 2 2 3 0 2 3 3 2 3
W] 2 01 2 1 4 2 3 3 2 4 3 2 3 4 2 2 3 4 3 3
ML] 40 - 2 3 4 I3 3 < 4 2 3 2 2 3 3 2 2
v 40 a3 [ /I 3 3 3 3 1 0 2 3 3 2 3 3 3 2
[G] 3 3 3 2 3 4 4 3 6 2 0 2 0 0 2 2 2 4 2 2
] 3 4 3 4 2 3 3 2 2 71T < < -2 2 < - -2
[A] 0 2 2 3 - - < 0 0 -1 4 0 1 2 2 < - 2 - -
[mn 4002 2 2 - a0 2 < 0 5 1 0 2 < - - -
[s] 4002 2 3 a2 2 2 0 - I 4 1 -1 0 0 0 - 0
[N] 3 3 2 4 2 3 3 3 0 2 2 0 1 6 1 0 o0 I 0 o0
[H] 3 < 2 2 2 3 3 3 2 2 2 2 44 1 8 0 0 - 0 -l
[QE] 3 3 2 2 4 3 3 2 2 < <« < 0o o0 o0 4 4 1 0 |
[D] 3 3 3 4 3 4 3 3 < < 2 <4 0 1 < 0 2 6 2 -
[R] 3 3 2 3 4 2 3 3 2 2 <44 <4 <4 0 0o I 0 2 5 2
IK] 303 02 3 4 2 3 2 2 < - a0 0 - I -1 2 5

REBLOSUM62 matrix for alphabet X, X X,,. Scores located on the "diagonal" are shown in bold.

searches could have hidden potential issue on our
approach.

The database contained 12 700 507 amino acids whereas
the query was composed by 5 321 439 amino acids. Using
the ssearch method [20], 650 alignments were obtained
between the database and the query (maximal e-value: 10-
3). This set of exhaustive optimum alignments was suffi-
cient to validate our method in comparison with results
obtained using different alphabets. The seed used in Stage
1 was a subset seed (see [21]), as in [9]. For the neighbor-
hood indexing, we indexed the database using each of the
alphabets Z,,, Z,., Zg Z, and X,. We selected the neigh-
borhood length to have a theoretical sensitivity close to
0.95 and a theoretical selectivity close to 0.01. Theoretical
sensitivity and selectivity are defined according distribu-
tions presented on page 10.

This leads to indexing 2 x 11 characters for X,, 2 x 12
characters for X, 2 x 14 characters on X, 2 x 19 charac-
ters for ¥,, and 2 x 32 characters for X%, (Figure 7). The
database index sizes are reported in Table 9. Using alpha-

Table 4: REBLOSUM 62 matrix for alphabet X,, x Zg

bet X, instead of X,, reduces the overall index size: the
ratio r goes from r,,=5.58 to only r, = 3.67, that is a 35%
reduction. The initial assumption of ungapped align-
ments in the Stage 2 can be wrong with a neighborhood
length of 2 x 32. Thus one could prefer to use the alphabet
¥, with 2 x 19 characters, giving a 25% reduction of the
overall index size (r, = 4.17).

As shown in Table 8, each of the reduced alphabets yields
a practical full sensitivity, as all the 650 alignments are
found in each test. Moreover, the practical selectivity,
close to 103, is here better than the theoretical one (0.01).

Conclusion

We proposed a method for reducing the index size when
storing neighborhoods of seed keys in protein databases.
This approach is based on reducing the alphabet of
indexed data while using a longer neighborhood. We save
35% of the index size without any modification on the
result quality assuming an ungapped alignment model.
We provided optimal lengths for selected alphabets.

C F Y w M L ) 1 G P A T S N H Q E D R K
[CFYW] 4 4 4 5 -1 0 -1 -1 3003 02 2 2 -3 0 2 -3 3 3 03
[MLV] -1 0 -1 -2 2 3 3 2 -3 -3 -1 -1 -2 -3 -3 -2 -3 -3 -2 -2
[G] 303 3 2 3 4 4 03 6 2 0 -2 0 0 2 2 2 -l 2 2
[P] 3 4 3 4 2 3 -3 2 2 7 -1 -1 -1 2 2 -l -1 -1 2 -l
[AT S] -1 2 2 3 - 2 - -1 0 -1 2 2 2 0 -1 -1 -1 -1 -1 -1
[N H] 302 0 302 3 -3 3 - 2 2 -l 0 5 5 0 0 I 0 0
[QED] 303 02 3 02 3 3 -3 -2 - -1 -1 0 0 0 3 3 4 0 0
[RK] 3003 2 -3 - 2 3 2 2 - -1 -1 0 0 0 I 0 -1 4 4
REBLOSUM62 matrix for alphabet X,, X Xg. Scores located on the "diagonal" are shown in bold.
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Table 5: REBLOSUM62 matrix for alphabet 2,, % X,

http://www.biomedcentral.com/1471-2105/9/534

c F Y W M L | V G P A T S N H Q E D R K
[CFYW] 6 6 6 7 - 4 - 2 4 5 2 3 3 4 0 4 4 5 4 4
MLV] 2 0 2 3 3 4 4 4 5 4 4 1 3 5 4 3 4 5 4 3
[GP AT §] 2 4 3 4 2 3 3 2 4 4 3 2 2 - 2 < - 2 2 -
[N HQEDRK] 5 4 2 4 3 4 5 4 2 2 2 - 0 3 3 3 3 3 3 3

REBLOSUM62 matrix for alphabet Z,, X Z,. Scores located on the "diagonal" are shown in bold.

Furthermore, the proposed method requires unusual sub-
stitutions score matrices that are called REBLOSUM, for rec-
tangular BLOSUM matrices. These matrices provide
substitution scores between letters from different alpha-
bets. We extended the computation of traditional BLOSUM
matrices in order to compute REBLOSUM matrices, and
adapted the computation of and K parameters for e-value
estimation to reduced alphabets. We provided REBLOSUM
matrices and their corresponding and K values for
selected alphabets. Other matrices and parameters can be
obtained from the website [17].

Methods

In this section, we describe the methods we used to com-
pute the sensitivity and selectivity of similarity search on
reduced alphabets as well as the neighborhood length. We
further describe the computation of REBLOSUM substitu-
tion score matrices and of the e-value parameter. Moreo-
ver, we explain how the threshold 7~ is computed at Stage
2 depending on the e-value specified by the user. Finally,
we describe how we estimated the time gain of the the
neighborhood indexing over the offset indexing.

Selectivity and sensitivity computation

The sensitivity of Stage 2 is defined by the ratio of retained
"true alignments" (a "true alignment" is an alignment
known to be relevant, according to a model or to a refer-
ence set like the BLOCKS database):

# successfully extended true alignments
# true alignments

sensitivity = /
The selectivity is defined as the ratio of retained "random
alignments" (a "random alignment" means an alignment
of randomly chosen amino acid pairs drawn according to
an appropriate probability distribution):

Table 6: REBLOSUM62 matrix for alphabet X,, % X,

# successfully extended random alignments

selectivity =
v # random alignments

Note that here we focus on the behavior of Stage 2 and do
not take into consideration the sensitivity/selectivity of
Stage 1. In particular, in the above fractions we consider
only alignments that extend a hit presumably reported at
Stage 1.

The sensitivity and the selectivity of Stage 2 rely on three
parameters: the alphabet choice, the neighborhood
length, and the score threshold 7 . Given these three
parameters, we applied a dynamic programming algo-
rithm to compute the probability for the filter to retain an
alignment drawn according to a given amino acid pair dis-
tribution. Applied to distributions of "true" and "random"
alignments (foreground and background distributions,
respectively), the algorithm gives a theoretical estimation
of the sensitivity and the selectivity of the filter. The two
distributions were the Bernoulli models (namely the
expected and the observed probabilities, see below),
obtained with the BLOSUM programs on the BLOCKS pro-
tein database when processing the BLOSUM-62 matrix.

In our Algorithm 1, two neighborhoods (left and right)
are processed. We thus consider the sum of two maximal
scores, reached in the left and right neighborhoods. The
probability that this sum reaches a given threshold 7~ at
least once is computed as follows. First, we compute the
probability for each neighborhood independently to
reach any given maximal score s (s > 0) within the neigh-
borhood length. Then, these two independent discrete
distributions are combined to compute the 7~ threshold
requirement.

c F Y W M L I V G P A T S N H Q E D R K
[CFEYWMLV] 4 4 3 4 3 4 4 3 6 6 2 2 4 6 4 4 6 T 5 5
[GP AT SN HQEDRK] 4 5 4 6 3 5 5 4 2 2 1 1 2 2 1 2 2 2 2 2

REBLOSUM62 matrix for alphabet X,, X X,. Scores located on the "diagonal" are shown in bold.
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Table 7: Gumbel law parameters and K for different alphabets,
obtained with the corresponding REBLOSUM score matrices.

alphabets K

Y90 % Zyg 0.320 0.139
Y0 X Ze 0.333 0.143
Y0 X Zg 0.223 0.142
o0 X Z4 0.212 0.128
Y0 %X Z, 0.161 0.101

REBLOSUM62 matrix for alphabet X,, % X,. Scores located on the
"diagonal" are shown in bold.

For our experiments, we calibrated the neighborhoods
lengths to have a sensibility close to 0.95 and a selectivity
close to 0.01, and computed related thresholds values
(available of the REBLOSUM website).

Computing REBLOSUM matrices

There are several substitution score matrices for the regu-
lar 2, x %,,alphabet, and the most common of them are
matrices from the BLosuM family [22] (BLOcks SUbstitu-
tion Matrix). They are built from the BLOCKS database of
ungapped multiple alignments [23]. For a given identity
level X and two amino acids i and j, the BLOSUMX score B;

jare log-likelihoods of amino acid pair frequencies:

where p;- p;is the expected probability of aligning i against
j, and q; ; is the observed probability of the same event in a
subset of alignments of the BLOCKS database that have at
least x percent of identity. (Note that the computation of
q;, ; takes into account different contributions provided by
alignments with different identity levels.)

In our case, sequences over diferent alphabets are com-
pared and we then have to adapt the matrix computation
to compute appropriate rectangular matrices. For this pur-
pose, the original data file (BLOCKS database version 5)
was downloaded and the original programs of [18]

http://www.biomedcentral.com/1471-2105/9/534

(downloaded from [24]) were modified in order to take
into account the reduced alphabet on "one side" of the
matrix and compute new log-likelihood scores. Given two
alphabets ¥ and X', we compute such matrices for several
identity levels X, using the log-likelihood of groups of
amino acid pair frequencies:

B;; =log L) ,
p1P)

where p; - p; is the expected frequency of aligning any amino
acids from group I < ¥ against any other amino acid from
group J X', and g, ; is the observed frequency of the same
event in a subset of alignments of the BLOCKS database
that have at least x percent of identity. The recent paper
[25] discovered flaws in the original BLOSUM implementa-
tion, but shows that a corrected program does not
improve (and even in some cases decreases) the results
quality. Therefore, we did not take the proposed modifi-
cations into account.

The website [17] proposes a selection of REBLOSUM matri-
ces for several alphabets, as well as an interface to com-
pute REBLOSUM matrices for any alphabet and identity
level specified by the user.

Prototype for estimating the time gain of offset indexing
over neighborhood indexing

For comparing the execution time between offset indexing
and neighborhood indexing, a C prototype was created.
In the case of the offset indexing, the index stores posi-
tions of all seeds in an unique integer array. For each seed
key, a pointer provides the first occurrence in this array. In
the case of the neighborhood indexing, the index uses a
(unique) structure array instead of an integer array. For
each key occurrence, the structure contains the key posi-
tion together with two neighborhoods.

Tests reported in Figure 4 were run on a 2 GHz PC with an
AMD Opteron processor. The database size was selected
so that the index fits into the main memory (4 GB) but

Table 8: Practical results for different alphabets — Quality estimations

alphabets number of positions validating Stage | and Stage 2 practical selectivity = number of detected alignments practical sensitivity
200 % 2o 2.14 * 108 1.35* 103 650 (all) |
20X T 1.39 * 106 0.88 * 103 650 (all) |
20X Z 0.98 * 106 0.62 * 103 650 (all) [
DINEIIN 0.62 * 108 0.39 * 103 650 (all) |
o0 X Z4 3.14%* 106 1.98 * 10-3 650 (all) |
20 %I, 2.93 *% 106 1.85 * 10-3 650 (all) [

Similarity search results obtained on reduced alphabets. The number of positions tested (validating Stage | only and independent from the chosen
alphabet) is 1.59 * 10°. The practical selectivity is computed dividing the number of positions validating both Stage | and Stage 2 by the number of

positions tested.
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Table 9: Practical results for different alphabets — Memory
requirements

alphabet o L Sneighborhood r
a0 511 1.70 * 10 bits = 212 MBytes 5.58
DI 4 12 1.52 * 10 bits = 190 MBytes 5.00
Xg 3 14 1.37 * 10? bits = 171 MBytes 4.50
24 2 19 1.27 * 107 bits = 159 MBytes 4.17
>, I 32 1.12 * 10 bits = 140 MBytes 3.67

Database index size for neighborhood indexing on different alphabets.
The first three columns are the same as in Table 2, the other two
columns refer to the experience described in section "Practical
results”. The index size is equal to N x (log, N1+ 2 L), as explained in
the beginning of the paper. Here N = 12 700 507 and rlog, N1 = 24.
The ratio r is against the size of the index for offset indexing, which is
here § = N x rlog, N1=0.30 * 109 bits = 38 MBytes.

offset

not into the L1/L2 cache (1 MB). In those tests, the neigh-
borhood indexing performs almost twice as fast as the off-
set indexing.
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