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Abstract
Background: Protein structural alignment provides a fundamental basis for deriving principles of
functional and evolutionary relationships. It is routinely used for structural classification and
functional characterization of proteins and for the construction of sequence alignment benchmarks.
However, the available techniques do not fully consider the implications of protein structural
diversity and typically generate a single alignment between sequences.

Results: We have taken alternative protein crystal structures and generated simulation snapshots
to explicitly investigate the impact of structural changes on the alignments. We show that structural
diversity has a significant effect on structural alignment. Moreover, we observe alignment
inconsistencies even for modest spatial divergence, implying that the biological interpretation of
alignments is less straightforward than commonly assumed. A salient example is the GroES 'mobile
loop' where sub-Ångstrom variations give rise to contradictory sequence alignments.

Conclusion: A comprehensive treatment of ambiguous alignment regions is crucial for further
development of structural alignment applications and for the representation of alignments in
general. For this purpose we have developed an on-line database containing our data and new ways
of visualizing alignment inconsistencies, which can be found at http://www.ibi.vu.nl/databases/
stralivari.

Background
Sequence comparison has become a major tool for bio-
logical research in the post-genomic era, forming the basis
for functional annotation, classification, and analysis of
evolutionary relationships. At the residue level, however,
the relation between sequence, structure and function can
often be obscure, and examples abound of proteins with
a clear functional and homologous relationship but shar-
ing negligible similarity at the sequence level.

Structural alignment therefore is the method of choice for
reliable homology assessment and derived features like
functional classification and phylogeny. This importance

is reflected in the number of tools available for structural
alignment, such as DALI [1], SSAP [2], STRUCTAL [3],
MAMMOTH [4], CE [5] and COMPARER [6] (for recent
reviews on the topic, see Kolodny et al. [7] and Mayr et al.
[8]). Databases for functional classification such as CATH
[9], FSSP [10] and PASS2 [11] each derive directly from
the use of one or more of these methods, whereas for
SCOP expert input in the structural classification is
deemed critical [12]. Structural alignments are also rou-
tinely used for benchmarking sequence alignment meth-
ods. A number of databases have been developed for this
purpose, among which BAliBASE [13], HOMSTRAD [14]
and SABmark [15] are widely used. These databases often
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rely on expert knowledge and include a notion of 'core
blocks', i.e. where alignment ambiguity does not occur
and hence can be trusted. The general problem of uncer-
tainty in sequence alignment has recently been discussed
by Wong et al. [16]. Due to the complexity of interpreting
non-trivial alignment regions, these are often omitted in
large-scale evolutionary analyses, even though there is
ample evidence for their fundamental importance
[16,17]. An approach to pinpointing alignment ambigu-
ity is the generation of ensembles of suboptimal align-
ments [18], but computational demands remain
prohibitive for genome wide studies.

Recent structural alignment methods have started to place
emphasis on dealing with structural flexibility, such as
FATCAT [19], MultiProt [20], MATT [21] and RAPIDO
[22]. This may increase the consistency of alignments pro-
duced by each of these methods, but does not address the
intrinsic ambiguity arising from structural divergence. The
fundamental issue is whether a one-to-one equivalence
exists between residues from different proteins that could
be expressed as one definite alignment between sequences
[18]. This is illustrated in Figure 1, where we show that a
single insertion can lead to ambiguity in the functional
correspondence between most residues in the loop.

To further elucidate the effect of structural diversity on
structural alignment, we prepared two distinct compre-
hensive sets of alternative structures for proteins from the
HOMSTRAD database of homologous protein families.
The first set comprises proteins for which alternative crys-
tal structures are available. The other set is derived from

molecular dynamics simulations to explore a more exten-
sive spectrum of possible structures. An overview of our
analysis procedure is outlined in Figure 2.

Our main results show that in many cases structural vari-
ation strongly affects structural alignments, even for
highly similar sequences. Moreover, the derived align-
ment appears to be highly sensitive to even small confor-
mational changes of the proteins. The uncertainty in
pairing up structural equivalent residues makes it difficult
to determine which alignment alternative would describe
most closely the functional relationship between the pro-
teins. To address this issue, we show how alternative
alignment visualizations may be used to exploit the infor-
mation contained within variable alignment regions.

Results and discussion
Structural diversity and alignment stability
The relation between the variation of the alternative struc-
tures (RMSD) and the corresponding alignment similarity
(SP score) is shown in Figure 3 (bottom panel). It is clear
that the structural variation between crystal structures (in
orange) is much smaller (up to 3–4 Å RMSD) than that of
the simulation snapshots (in blue; up to 10 Å RMSD). A
crucial aspect is that even for small (<1 Å RMSD) and
modest (1–3 Å RMSD) structural differences, alignments
can easily vary up to 20% and sometimes as much as 40%
or more in their SP score. On the other hand, a consider-
able number of alignments appear robust to larger (up to
6 Å RMSD) and even extreme (up to 10 Å RMSD) struc-
tural variations. Additionally, for the crystal structures, the
sequence similarity has no effect on the variation in struc-

Dealing with structural flexibility: a single insertion (5', left) can lead to ambiguity in the pairwise residue alignment between the loops (right)Figure 1
Dealing with structural flexibility: a single insertion (5', left) can lead to ambiguity in the pairwise residue align-
ment between the loops (right). Therefore, a simple one-to-one functional equivalence between residues from different 
proteins may not exist.
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tural alignments (Figure 3, top panel). For the simulation
snapshots, however, there seems to be a slight but distinct
tendency for more similar sequences to have less variation
in structural alignments, but this can be mainly attributed
to the larger variations (>3 Å RMSD) in structure that arise
from the simulations (see additional file 1). As an alterna-
tive for RMSD measurements we also tested the rho-score
[23], a protein size-independent measure, which resulted
in the same trend (data not shown).

A quite interesting example of the impact that small struc-
tural variations can have on the structural alignment is
found in the GroES so-called 'mobile loop', which is the
main region for interaction with GroEL and therefore is a
crucial component of the GroEL/ES chaperonin machin-
ery [24]. The structural variations for this loop in E. coli
GroES (Figure 4C, shown in blue) are almost negligible
(whole protein Cα RMSDs 0.42 ± 0.13 Å). It is therefore
surprising that the corresponding DALI sequence align-
ments with M. tuberculosis GroES show remarkable varia-
tion in this region (Figure 4A). To pinpoint the source of
this variation, we also used three other structural align-
ment programs: CE, MATT and FATCAT. The latter two
explicitly take structural flexibility into account and this
leads to more consistent alignments in the variable loop
(alignment positions 20–69, Figure 4A). On the other

hand, two regions (84–89 and 107–109, Figure 4A) are
aligned consistently by DALI but show inconsistencies
when aligned by CE and the two flexibility-aware meth-
ods. Strikingly, there is no overall consistency between the
four methods, which is in line with several other studies
where several structural alignment methods are compared
[7,8,18]. It should be stressed that the focus of this paper
is not on comparing the performance of the various meth-
ods but rather on the effects of structural diversity. A com-
prehensive overview of the GroES variability is given by
the alignment matrix and the consistency plots (Figure
4B). The alignment matrix scores the occurrence of
aligned residue pairs over all alignments, similar to the
dot-plot [25,26]. Consistency plots show for each residue
the standard deviation from the alignment position of the
consensus pair. The alignment matrix and associated con-
sistency plots allow a detailed visualization of the varia-
bility while enabling easy interpretation of the ensemble
of alternative alignments.

Although alignment uncertainty has been shown to have
a great impact on large scale sequence analysis [16,17],
the relation with structural variation has not been widely
explored [27]. This is remarkable given that structural
alignments are generally employed to benchmark
sequence alignment methods. We demonstrate that in

Overview of the approachFigure 2
Overview of the approach. SP scores are calculated to describe the differences at the sequence level between the refer-
ence and alternative structural alignments. In addition each alternative structure (either obtained with molecular simulation or 
from the PDB) is fit onto the reference structure and root mean square deviations (RMSDs) are calculated.
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Effects of structure and sequence variation on the alignmentFigure 3
Effects of structure and sequence variation on the alignment. The bottom panel shows structural difference (meas-
ured by the RMSD) versus alignment similarity, measured by the SP score, which is defined as the fraction of aligned reference 
residues pairs that are reproduced in the query alignment. The top panel shows distributions of SP scores for alignments shar-
ing less and more than 50% sequence identity. Orange (lighter) refers to alternative crystal structures while blue (darker) 
refers to alternative structures obtained from molecular simulations.
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many cases structural alignments can vary dramatically
even for small structural changes. Trends observed in the
set of crystal structures corroborate those observed in the
set of simulation snapshots, albeit alignment differences
in the latter set are more pronounced due to larger struc-
tural variations.

A depository for alignment variability
It is questionable whether a single reference alignment
captures the full width of naturally occurring sequence
variability [18]. Yet, current visualization and alignment
methods are not designed to take variable regions into
account, and they are typically ignored in sequence align-

An example of the impact of tiny structural variations in the GroES 'mobile loop' that lead to quite dramatic variations in the alignmentFigure 4
An example of the impact of tiny structural variations in the GroES 'mobile loop' that lead to quite dramatic 
variations in the alignment. A) The 'master-slave' alignments with 1p3h-N as master, variable regions marked at the top, 
and secondary structure with the mobile loop shown in red at the bottom. B) Alignment matrix with consistency plots along 
both axes give an overview of variability in each of the alignments from A). C) The different GroEs structures with 1p3h-N in 
red and 1aon-O and alternatives in blue. Alignment image created using JalView [33] with 'Zappo' colouring; secondary struc-
ture assignment according to Xu, et al. [24]. Protein structure rendered using SwissPDBViewer [34] and PovRay [35].
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ment benchmark protocols. Since variable regions are
often important structurally and/or functionally, new
approaches for visualization, alignment and benchmark-
ing are desirable.

To this end we have constructed a database of 'flexible' ref-
erence alignments. This database is available online http:/
/www.ibi.vu.nl/databases/stralivari and contains all struc-
tures and alignments used in this study. For each align-
ment in our database, variation is visualized using
alignment matrices and consistency plots as shown in Fig-
ure 4B. In addition the database contains the ensemble
'master-slave' alignments as shown in Figure 4A. This pin-
points alignment regions that are affected by variability.

Conclusion
Structural variation, as presented here by alternative crys-
tal structures and molecular dynamics simulations, has a
profound effect on structural alignment. The sensitivity to
structural variation is a bottleneck for the effective appli-
cation of structural alignment approaches. This under-
mines the current basis of all sequence alignment
methodologies and is an underestimated problem for the
homology assessment used in structural and functional
classification. The GroES 'mobile loop' example demon-
strates how functionally essential protein regions can
coincide with variable structural alignment segments. Our
database should therefore be useful for alignment verifica-
tion and delineation of functionally important protein
regions.

Methods
The HOMSTRAD database of homologous structure align-
ments [14] was used as a source to select homologous pro-
teins with known structure. HOMSTRAD families
containing two homologous proteins (A and B in Figure
2) were selected. The corresponding structures were
retrieved from the PDB [28] and taken as reference. For
each reference structure, after equilibration, molecular
dynamics simulations were performed for up to 10 ns,
and snapshot structures were stored every 1 ns. Standard
solvated conditions in the Gromos 43a1 forcefield [29]
and the Gromacs simulation package [30] were used
(details summarized in additional file 2). In addition, for
each reference structure, we retrieved all alternative PDB
structures with 100% sequence identity. In the subse-
quent analysis only the residues corresponding to the
HOMSTRAD sequences were used.

From each pair of reference HOMSTRAD structures, we
constructed reference alignments with the widely used
structural alignment tool DALI [1]. We also used DALI to
create pairwise alignments between each reference struc-
ture and the alternatives of the other reference structure
(PDB and snapshots). The sequence differences between

the alignments were calculated using Sum-of-Pairs (SP)
scoring implemented in the BAliBASE alignment compar-
ison tool [13]. SP scores range from 0 (non-identical) to 1
(identical sequence alignments). Finally we calculated the
root mean square deviation (RMSD) between the Cα
atoms of the alternative structures and their reference
structure using the McLachlan algorithm [31] as imple-
mented in the program ProFit version 2.5.3 [32].

Our final database consists of 496 proteins (divided over
341 families) for which 3309 snapshot structures could be
made and 565 proteins (divided over 395 families) for
which we found in total 2998 alternative crystal structures
with redundant sequences. A full list of all aligned struc-
tures and relevant details is provided in additional file 3.
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