
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
SPRINT: A new parallel framework for R
Jon Hill*1, Matthew Hambley1, Thorsten Forster2, Muriel Mewissen2,
Terence M Sloan1, Florian Scharinger1, Arthur Trew1 and Peter Ghazal2

Address: 1EPCC, The University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh, EH9 3JZ, UK and 2Division of Pathway
Medicine (DPM), The University of Edinburgh Medical School, Chancellor's building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK

Email: Jon Hill* - j.hill@epcc.ed.ac.uk; Matthew Hambley - mhambley@epcc.ed.ac.uk; Thorsten Forster - thorsten.forster@ed.ac.uk;
Muriel Mewissen - Muriel.Mewissen@ed.ac.uk; Terence M Sloan - T.Sloan@epcc.ed.ac.uk; Florian Scharinger - f.scharinger@epcc.ed.ac.uk;
Arthur Trew - A.Trew@epcc.ed.ac.uk; Peter Ghazal - p.ghazal@ed.ac.uk

* Corresponding author

Abstract
Background: Microarray analysis allows the simultaneous measurement of thousands to millions
of genes or sequences across tens to thousands of different samples. The analysis of the resulting
data tests the limits of existing bioinformatics computing infrastructure. A solution to this issue is
to use High Performance Computing (HPC) systems, which contain many processors and more
memory than desktop computer systems. Many biostatisticians use R to process the data gleaned
from microarray analysis and there is even a dedicated group of packages, Bioconductor, for this
purpose. However, to exploit HPC systems, R must be able to utilise the multiple processors
available on these systems. There are existing modules that enable R to use multiple processors,
but these are either difficult to use for the HPC novice or cannot be used to solve certain classes
of problems. A method of exploiting HPC systems, using R, but without recourse to mastering
parallel programming paradigms is therefore necessary to analyse genomic data to its fullest.

Results: We have designed and built a prototype framework that allows the addition of parallelised
functions to R to enable the easy exploitation of HPC systems. The Simple Parallel R INTerface
(SPRINT) is a wrapper around such parallelised functions. Their use requires very little modification
to existing sequential R scripts and no expertise in parallel computing. As an example we created
a function that carries out the computation of a pairwise calculated correlation matrix. This
performs well with SPRINT. When executed using SPRINT on an HPC resource of eight
processors this computation reduces by more than three times the time R takes to complete it on
one processor.

Conclusion: SPRINT allows the biostatistician to concentrate on the research problems rather
than the computation, while still allowing exploitation of HPC systems. It is easy to use and with
further development will become more useful as more functions are added to the framework.

Published: 29 December 2008

BMC Bioinformatics 2008, 9:558 doi:10.1186/1471-2105-9-558

Received: 24 September 2008
Accepted: 29 December 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/558

© 2008 Hill et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19114001
http://www.biomedcentral.com/1471-2105/9/558
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:558 http://www.biomedcentral.com/1471-2105/9/558
Background
Definition of Problem
The last few years have seen the widespread introduction
of high-throughput and highly parallel post genomic
experiments to biological research, leading to hardware
bottlenecks in the analysis of such high-dimensional data.
Microarray-based techniques are a prominent example,
allowing for simultaneous measurement of thousands to
millions of genes or sequences across tens to thousands of
different samples [1]. These measurements can represent
the expression of all genes in the human genome across
thousands of cancer tissue samples, or the individual gene
sequence differences between thousands of patients [2,3].
These studies have generated an unprecedented amount
of data and tested the limits of existing bioinformatics
computing infrastructure, for example, whole genome
analysis becomes intractable for any experiment with
more than a few hundred arrays, depending on hardware
available. Emerging whole genome associative studies
and clinical projects will require from several hundreds to
several thousands of microarray experiments. The com-
plexity increases even further when considering the meta-
analysis of combined data from several experiments.
Microarray experiment repositories such as ArrayExpress
[4] are constantly growing in size and this trend is set to
continue as advances in technology are constantly con-
tributing to an increase in the amount of data to be ana-
lysed. Increase in coverage allows for more gene
sequences to be analysed on one single array. The reduc-
ing cost of this technology has also fuelled its popularity.
As a consequence even larger amounts of data are being
produced. The analysis of such data has become intracta-
ble on all but the most powerful hardware which often
implicitly requires specialist knowledge of parallel pro-
gramming.

Many biostatisticians use R to process the data gleaned
from microarray analysis [5-9] and there is even a dedi-
cated group of packages, Bioconductor, for this purpose
[10]. In recent years, in an attempt to address the problem
of large-scale analysis, some groups in the R open source
community have contributed packages that enable R code
to run on multiprocessor or cluster platforms. These pack-
ages fall into two major groups: parallel "building blocks"
and "task farm" packages. The first group provide funda-
mental parallel building blocks such that a parallel imple-
mentation of an algorithm can be constructed. The data
and algorithm can be arbitrarily complex with data being
passed between processors to accomplish the necessary
task. However, to effectively utilise the additional process-
ing power that this approach brings, one must have
knowledge of parallel programming and perform sub-
stantial modifications to any existing R scripts. These
"building blocks" are based around standard HPC pro-
gramming libraries, compilers and other tools, the most

popular of which are OpenMP [11] and MPI (Message
Passing Interface) [12]. These two programming interfaces
match onto common High Performance Computing
(HPC) hardware – the shared memory system (Figure 1A)
and the distributed memory system (Figure 1B). However,
MPI can also be run on a shared memory system as the
actual implementation of communication is independent
of the functionality.

In contrast, the second group implement a task farm
approach, where a 'master' process feeds a pool of 'slave'
processes with jobs (Figure 2). The jobs on the slave proc-
essors are independent in that they do not communicate
with other slaves. Therefore, typical uses are performing
the same algorithm on each slave, but work on different
data; or perform different analyses on the same data. Little
knowledge of parallel processing is required here, but sub-
stantial changes to an existing R script must still be carried
out.

A brief overview of eight such packages is presented here
bearing in mind their applicability to analysing large
genomic datasets by a statistician (that is not an expert in
parallel programming). Firstly, we present the packages
that can be used to create bespoke parallel functions
within R. We then examine the second category of paral-
lelisation – the task farm.

Parallel Building Block Packages
The technologies in this group allow a programmer to dis-
tribute data and work across processors when the data is
not independent to the processor that holds the data and
therefore communication between processors is neces-
sary. They therefore require knowledge of parallel pro-
gramming to make full use of them, but are flexible. All of
the following packages are available from the Compre-
hensive R Archives Network (CRAN) [13].

NWS and Sleigh
NWS (NetWorkSpaces) implements a shared memory sys-
tem. It allows machines in a cluster to share specified var-
iables, i.e. the same variable, with the same value, exists
on all machines in the cluster. Sleigh is built on top of
NWS and included in the same package and provides
tools for task farming.

Rmpi
Rmpi is a simple wrapper around the MPI library that
offers an R function for most MPI functions. MPI is the
recognised standard for communication among processes
that model a parallel program running on a distributed
memory system. This wrapper offers very low level paral-
lelism but requires programmers to have an extensive
knowledge of parallel programming and requires signifi-
cant alterations to existing scripts.
Page 2 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:558 http://www.biomedcentral.com/1471-2105/9/558

Page 3 of 10
(page number not for citation purposes)

Parallel architecturesFigure 1
Parallel architectures. A) A block diagram of a shared memory system in which all processors access the same memory by
means of a network. B) A block diagram of a message passing system in which memory is private to a processor. Processors
share data by explicit communication over the network.

Processor Processor Processor

Memory

Network

A)

Processor

Memory Memory B) Memory

Processor Processor

Network

BMC Bioinformatics 2008, 9:558 http://www.biomedcentral.com/1471-2105/9/558
Rpvm
Rpvm is similar to Rmpi and provides a wrapper around
the Parallel Virtual Machine (PVM) message passing
library [14]. The PVM library has been almost completely
superseded by MPI.

Task Farm Packages
The packages in this section allow data to be processed in
parallel provided that it is independent of the processor;
therefore there is no need for communication between
processors during execution. For example, performing the
same analysis on many datasets could be done in parallel,
as could examining independent subsets of data with the
same algorithm. Many of the packages described below
have overlapping functionality. All of the following pack-
ages are available from the Comprehensive R Archives
Network (CRAN) [13].

Biopara
This package allows the execution of code fragments via
secure shell on remote systems. This solution is unsuitable
for typical HPC platforms because it is not usually possi-
ble to access the internal nodes of a HPC cluster via SSH
where advanced knowledge of the nodes to be used is
required. It also requires invasive code modifications and
up-front knowledge of which machines are going to form
the compute cluster.

R/Parallel
This package is capable of parallelising loops using mini-
mal editing of existing R scripts [15]. This parallel R solu-
tion is of particular use in studies which involve
permutation tests or heuristic searches [15], but cannot be
used to solve problems where the data is dependent on
other loop iterations. It is implemented using threads in

A task farm in which data is sent from the master to the slave processesFigure 2
A task farm in which data is sent from the master to the slave processes. The slaves process the data and return a
result. The slaves do not communicate with each other, only the master.

Slave

Master

Slave

Slave

Slave

Data

Results
Page 4 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:558 http://www.biomedcentral.com/1471-2105/9/558
C++ and as such, in the first stage at least, is only capable
on running on shared memory systems.

Papply
This package implements a parallel version of the R com-
mand 'apply' which applies a specified expression to every
element of a list. Parallelism is achieved with a task farm.
There can be no dependence between list elements as no
guarantee can be made regarding execution order. The
user is responsible for splitting the data into chunks, one
per processor used.

Simple Network Of Workstations (SNOW)
Snow provides a task farm Application Programming
Interface (API) which allows for a single expression to be
carried out on subsets of data. Snow is low level and so the
user must understand the technicalities of parallel com-
puting but it does provide greater control to the program-
mer. It does, however, require more extensive and non-
trivial modifications to the original R program.

TaskpR (Task-Parallel R)
This package works by creating and managing a task farm.
It is possible to pass an expression to the master and have
it distributed in some non-specified manner between the
slaves. Modifications to the original program are needed
such as identifying which expressions are the most
resource hungry and therefore will benefit most from
farming out.

The parallel building block category of packages can be
used to solve non-trivial problems in parallel, such as the
calculation of a correlation matrix, but the user requires
significant understanding of parallel programming, soft-
ware and hardware architecture. Such knowledge is not
common within the biological and statistical research
community.

The task farm category of packages only addresses prob-
lems that benefit from simple parallelism. They are well
suited for tasks such as analysing the same data with dif-
ferent analysis model parameters or running the same
analysis on different data. However, any change in the
type of analysis or the analysis method may require signif-
icant renewed customisation of R code.

As an example of the type of problem that might be faced
by biostatisticians – the correlation between all values in
the input data – it is helpful to look at the above packages
are consider which might be used. This more computa-
tionally complex problem can be solved on HPC
resources using the first set of R parallel packages, but can-
not be solved on HPC resources using the second category
of task farms. A solution to this and other similar prob-
lems encountered in the statistical analysis of post

genomic biological data is to create such an easy-to-use
interface to parallel versions of the commonly used ana-
lytical routines such as correlation and other similarity
metrics. Such a tool will both increase the speed and size
of data that biostatisticians can be analyse easily.

The SPRINT framework
In order to enable biostatisticians easy access to HPC plat-
forms, we have created the Simple Parallel R INTerface
(SPRINT) framework. SPRINT is essentially an R wrapper
to parallelised statistical algorithms. The design of SPRINT
uses the functionality that exists in R to transfer data to
another executable process that can be written in C or
FORTRAN – common languages on HPC platforms. In
essence, SPRINT is a "compute farm"; it manages a
number of processors that can be used for any purpose. As
shown in Figure 3, the R executable and the R script used
to carry out the analysis is only run on one of these proc-
essors, while SPRINT runs on all processors (including the
one that R uses). When the R script encounters a function
that has a parallel implementation in SPRINT, for exam-
ple cor which has a parallel replacement called pcor, R
then passes the necessary data to SPRINT, which carries
out the correct function in parallel and passes the data
back to R (Figure 3).

Given the problem of running analysis on a large dataset,
a typical solution for a HPC platform would be to write
code using either C or FORTRAN and implement parallel-
ism using either OpenMP or MPI. This requires creating
not only the algorithm itself, but the user-interface and I/
O routines. For a small example like this, these are rarely
major issues, but if any software is to be widely used by a
community it must use a standard interface that is suitable
for that community. As the biostatistics community uses
R heavily, this means using the R interface would be an
advantage. With this in mind, one could use existing R
modules to write a parallel version of the R cor function,
for example, with Rmpi being the obvious choice of exist-
ing R packages to use. However, a biostatistician would
need to learn the parallel programming paradigms neces-
sary and a HPC programmer would need to learn R.
SPRINT bypasses both of these issue by allowing the HPC
programmer to use whichever tool is most suitable for the
problem in hand and the biostatistician to continue to use
R as normal. It must also be considered that C and FOR-
TRAN usually produce faster programs as they are not
interpreted as R is, although this may not always be the
case (as indeed R is written in C at the base level). In addi-
tion, in order to be widely adopted such a solution would
need to be easy to use and be flexible in terms of hardware
support.

SPRINT is written in C and uses the MPI library for com-
munication between processes. This combination of lan-
Page 5 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:558 http://www.biomedcentral.com/1471-2105/9/558
guage and parallel library is available on a wide range of
platforms and generally gives very good performance. MPI
uses the message passing paradigm where data is local to
a particular processor and in order to share it with another
processor a message containing the data must be sent to
the other processor. Its use is more widespread than other
parallelisation techniques, such as threading, as it will
work well on almost any multi-processor platforms, from
a dual-core machine to Massively Parallel Processing
(MPP) architectures, such as BlueGene/P [16], though it is
explicitly designed to run on typical HPC platforms. MPI
programs can arbitrarily split themselves into groups,
known as communicators. Most programs (SPRINT
included) use only the main communicator,
MPI_COMM_WORLD, which spans all processors. As
such, we rely on only one feature of the MPI2 standard
[12] using the MPI launch program (mpiexec) to launch
two executables that share the same
MPI_COMM_WORLD. This enables us to launch R on a
single processor, while using the rest of the available proc-
essors only to launch SPRINT. When a parallel processing

command is reached within R, all processors can then par-
ticipate in the algorithm.

An R script, that uses one of the functions contained in the
SPRINT framework, will go through the following stages:

• Job script requests n processors: 1 for R and SPRINT, n-
1 for SPRINT only. The job is submitted to the back-end
of the HPC system

• R is launched on a single processor (the master proces-
sor) and SPRINT is launched on all processors (via
mpiexec, see later for details)

• R script includes SPRINT R library stub, which interfaces
with SPRINT

• R script calls a parallel function contained in SPRINT

❍ The stub in R tells SPRINT which function to exe-
cute

The SPRINT frameworkFigure 3
The SPRINT framework. SPRINT runs across all processors. The R application (which runs the R script) runs on the mas-
ter processor. This links to the SPRINT library via the R to C interface. The compute farm library uses files to communicate
with compute farm which can then execute functions in the library over this compute farm. The pcor library is a parallel func-
tion library (in this case parallel correlation). Other libraries can be added, such as "hello" which is a simple "Hello World"
function.

P r o c e s s o r 0 P r o c e s s o r s 1 - n

R S P R I N T
(S t u b)

R A p p l i c a t i o n

S P R I N T

h e l l o

p c o r
Page 6 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:558 http://www.biomedcentral.com/1471-2105/9/558
❍ The stub for that function sends data to SPRINT

❍ All processors call the correct parallel function

❍ Result collected on master processor and returned
to R

• R script call the pterminate function which shuts down
SPRINT

• R script ends

To launch the two applications using the same
MPI_COMM_WORLD, the following mpiexec command
is used:

mpiexec -n 1 R -f $SCRIPT_NAME: -n
$FARM_SIZE $SPRINT_LOCATION

The shell variables $SCRIPT_NAME, $FARM_SIZE and
$SPRINT_LOCATION are the R script, an automatically
created variable which gives the number of processors
requested minus one for SPRINT to run on and the loca-
tion of the SPRINT executable, respectively. Although the
SPRINT compute farm is given one less processor than is
available, it can still use the master processor on which R
is running.

In this paper we describe a single parallel function, imple-
mented within the SPRINT framework: a parallelised pair-
wise calculated correlation matrix. With this example
function we show the potential SPRINT has for producing
a step change in the size of data that can be processed and
analysed using R. However, SPRINT is not limited to a sin-
gle function. The framework is designed to be extended
and the hope is that the computationally intensive parts
of R can be ported into SPRINT and parallelised.

Parallel Correlation – a practical implementation using
SPRINT
We selected a frequent analysis problem with high-dimen-
sional biological data as a representative case to solve
using our parallelisation framework. The computation of
a pairwise calculated correlation matrix is part of many
clustering and classification algorithms, e.g. identifying
sets of genes with similar gene expression patterns across
all biological conditions in a microarray study. In this
example we correlate each gene with every other gene. In
practical terms this equates to correlating each row of a
two-dimensional array with every other row to produce a
triangular matrix of correlation coefficients. This cannot
be solved with a simple task-farm approach.

There are two possible approaches to solving this prob-
lem. The first is to replicate the data on all processors. This

makes programming the correlation much simpler, but
limits the amount of data that can be processed as the
memory on each processor must be large enough to hold
all the input and output data. The second approach is to
distribute the data. This removes the memory limit
(depending on the size of the problem and the number of
processors used), but introduces much more complex
data access patterns and therefore is much more difficult
to program. For this test case we chose to replicate data.

The parallel correlation algorithm is quite straightfor-
ward. A master processor is used to co-ordinate the rest of
the processors. Each processor takes a row to correlate
with every other row of the input matrix. Clearly, one can
reduce the amount of work by not repeating rows that
have already been correlated against. However, this leads
to a load imbalance where the first processor gets the first
row and has to correlate this to all other rows, whereas the
penultimate row only has to be correlated with the final
row. In order to reduce the load imbalance, a "first come,
first serve" basis is used to distribute rows to slave proces-
sors. The processors are given the next row as they com-
plete their current one until no more are left.

The resulting R script is extremely similar to the original
serial, script (Figure 4). The only changes necessary are
those to include the parallel library, call the parallelised
correlation and shut down the framework.

Results
Testing and Scaling Results
The results from our simple test show the worth of HPC in
genomic analysis as well as demonstrating the usefulness
of a parallel version of some R functions. Our test input
data consisted of 11,000 rows (genes) of 321 columns
(samples); a total of 83 Mbytes of data. The output data an
11,000 by 11,000 matrix consisting of the correlation
coefficients and is 1.3 Gbytes in size. The parallel correla-
tion function produces identical output to that of the
standard ("Pearson") correlation function which mirrors
the correlation coefficients along the diagonal to produce
a symmetrical matrix. While a considerable amount of
memory could be saved by only storing non-zero ele-
ments, the entire result would still need to fit in memory
on one processor in order to pass back the correct result,
in the correct format, to R. Therefore, replicating R's built-
in function imposes restrictions on what is possible, but is
a necessary step to ensure compatibility.

We used the Edinburgh Compute and Data Facility
(ECDF) [17] to test the parallel correlation function. The
ECDF consists of 1548 AMD Opteron processors, each
with 2 Gbytes of memory. The system uses Sun GridEn-
gine [18] as a batch system and jobs must be submitted to
the batch system for executing. Running the test data on
Page 7 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:558 http://www.biomedcentral.com/1471-2105/9/558
varying numbers of processors shows that increasing proc-
essor numbers does reduce the time taken to perform this
calculation. Times were captured using R built-in sys-
tem.time command.

The scaling of this test function is limited as the perform-
ance increase starts to drop at around 4 processors (Figure
5). However, the executable time for the correlation is
reduced from 72 seconds when using R sequentially to
just 21 seconds when running the SPRINT parallel imple-
mentation over eight processors. The speed-up will
increase with larger datasets. Changing the data handling
strategy to a distributed one will mean that a problem that
is currently intractable in serial due to memory limits will
become tractable on multiple processors.

Discussion and conclusion
In this paper we have presented a framework, SPRINT, for
executing R scripts using newly created parallelised func-
tions. We believe this framework has a widespread appeal
as it requires little knowledge of parallel processing, but
instead leverages on users' existing knowledge of R.
Knowledge of parallelisation is only required by those
wanting to add new parallel functions to the framework,
not by the users of the interface. Existing R scripts need
only minor modifications in order to utilise any parallel-
ised function contained within SPRINT.

Adding new parallel functions to SPRINT is straightfor-
ward and we plan to implement more 'bottleneck' func-
tions in the near future. By using MPI, rather than
threading techniques such as OpenMP, SPRINT can be
used on a wide range of systems, from a cluster of PCs to
HECToR [19], the UK national supercomputer. The
SPRINT framework is released under the GNU General
Public Licence and is free to use [20]. In addition, the
implementation of a function is separate from its interface
thus allowing it to be improved without changes to the
interface, and hence to changes to R scripts currently using
the SPRINT framework are necessary.

The main issue regarding the framework proposed here is
that functions have to be re-implemented which requires
significant effort, but unlike other "out of the box" paral-
lel R solutions we have greater freedom on how an algo-
rithm is implemented and expands the range of
algorithms that can be parallelised. However, alternatives
that might provide similar potential to SPRINT are either
re-writing R from the ground-up with in-built parallelism
or wrap R with MPI. Both options need as much if not
more effort and importantly require altering the R source
code. Re-writing R with in-built parallelism would be the
preferable solution as no modification of existing R scripts
would be required. However, this would clearly require a
vast amount of effort to achieve and in addition needs

Altering the R scriptFigure 4
Altering the R script. The upper box shows the original R script used to carry out the correlation. The lower box shows
the modified R script. Only two additional lines are needed and the function (cor) is changed to pcor.

edata <- read.table("largedata.dat")
system.time(

pearsonpairwise <- cor(t(edata)) #correlations
)
write.table(pearsonpairwise, "Correlations.txt")
quit(save="no")

library("sprint")
edata <- read.table("largedata.dat")
system.time(

pearsonpairwise <- pcor(t(edata)) #correlations
)
write.table(pearsonpairwise, "pCorrelations.txt")
pterminate()
quit(save="no")
Page 8 of 10
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:558 http://www.biomedcentral.com/1471-2105/9/558

Page 9 of 10
(page number not for citation purposes)

Performance and strong scaling of the parallel correlation functionFigure 5
Performance and strong scaling of the parallel correlation function. Top graph shows the executing time of the cor-
relation function. The dashed horizontal line is the time taken for R to execute the correlation on a single processor. The solid
line shows the time for the parallelised version within SPRINT. The bottom graph shows the strong scaling (same data, differ-
ent number of processors) for the parallel correlation function within SPRINT. The straight, dashed line shows linear scaling
based on the execution time of R running on a single processor.

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16

CPU Count

T
im

e
(s

)

0

2

4

6
8

10

12

14

16

0 2 4 6 8 10 12 14 16

CPU Count

S
p

ee
d

-u
p

BMC Bioinformatics 2008, 9:558 http://www.biomedcentral.com/1471-2105/9/558
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

concerted and concentrated effort. In contrast, SPRINT
can be built incrementally by implementing one function
at a time which will allow a core set of functions to be
built early and new functions can be added as required.
Hence, implementations of functions are independent of
each other and can be built using community effort.
Implementing a framework such as SPRINT also means
that solutions to problems only need to be derived once
(by the community) and placed in to the framework.

In order to solve a problem such as the parallel pair-wise
correlation described above a typical R user would have a
few choices. Firstly, they could write their own solver
using Rmpi or Rpvm. This would require learning parallel
programming techniques and programming in general.
Alternatively, they could try one of the task farm solutions
and write a script that solves each row-row correlation on
a separate processor. This is feasible, but is unlikely to be
particularly efficient. SPRINT aims to solve both of these
issues. The HPC programmer can concentrate on writing
efficient, correct code to solve the problem in hand. The R
user can concentrate on what analysis needs to be per-
formed and does not have to consider the underlying
technology.

The current function that has been implemented is a pro-
totype that can be improved by switching to a distributed
data strategy in order to remove the memory limitation.
This could not be done within R alone or using any of the
existing packages. In summary, SPRINT provides a very
flexible framework for extending R into the realm of High
Performance Computing.

Availability and requirements
SPRINT is available from NeSCForge at: http://
forge.nesc.ac.uk/projects/sprint/

The software is published under GNU General Public
License. The software requires Linux, R 2.5.1 or greater, C,
and a version of MPI2 installed on the cluster. It has been
tested using OpenMPI and LAM.

Authors' contributions
All authors conceived the project and design. MH, JH and
FS wrote the source code for SPRINT. TF, MM and PG sup-
plied the test data. All authors drafted the manuscript,
read and approved the final manuscript.

Acknowledgements
This research was supported by edikt2 (SFC grant HR04019). This work
has made use of the resources provided by the Edinburgh Compute and
Data Facility (ECDF). http://www.ecdf.ed.ac.uk/. The ECDF is also partially
supported by the edikt2 initiative http://www.edikt.org/.

References
1. Bowtell DDL: Options available – from start to finish – for

obtaining expression data by microarray. Nature Genetics 1999,
21:25-32.

2. Heller MJ: DNA microarray technology: Devices, systems, and
applications. Annual Review of Biomedical Engineering 2002,
4:129-153.

3. Quackenbush J: Microarray data normalization and transfor-
mation. Nature Genetics 2002, 32:496-501.

4. Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeyguna-
wardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, et al.:
ArrayExpress – a public repository for microarray gene
expression data at the EBI. Nucl Acids Res 2003, 31(1):68-71.

5. Åstrand M, Mostad P, Rudemo M: Empirical Bayes models for
multiple probe type microarrays at the probe level. BMC Bio-
informatics 2008, 9(1):156.

6. Calza S, Valentini D, Pawitan Y: Normalization of oligonucleotide
arrays based on the least-variant set of genes. BMC Bioinformat-
ics 2008, 9(1):140.

7. Dunning M, Barbosa-Morais N, Lynch A, Tavaré S, Ritchie M: Statis-
tical issues in the analysis of Illumina data. BMC Bioinformatics
2008, 9(1):85.

8. Schwender H, Ickstadt K: Empirical Bayes analysis of single
nucleotide polymorphisms. BMC Bioinformatics 2008, 9(1):144.

9. Xiong H, Zhang D, Martyniuk C, Trudeau V, Xia X: Using General-
ized Procrustes Analysis (GPA) for normalization of cDNA
microarray data. BMC Bioinformatics 2008, 9(1):25.

10. Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S, (eds): Bioin-
formatics and Computational Biology Solutions Using R and
Bioconductor. Springer; 2005.

11. Dagum L, Menon R: OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Computational Science and
Engineering 1998, 5(1):46-55.

12. Message Passing Interface Forum: MPI-2: Extensions to the Mes-
sage-Passing Interface. 2003.

13. The Comprehensive R Archive Network (CRAN) [http://
cran.r-project.org/]

14. Geist GA, Sunderam VS: The PVM System: Supercomputer
Level Concurrent Computation on a Heterogeneous Net-
work of Workstations. Distributed Memory Computing Conference,
1991 Proceedings, The Sixth: 1991 1991:258-261.

15. Vera G, Jansen R, Suppi R: R/parallel – speeding up bioinformat-
ics analysis with R. BMC Bioinformatics 2008, 9(1):390.

16. The IBM Blue Gene/P Solution [http://www-03.ibm.com/sys
tems/deepcomputing/bluegene/]

17. ECDF – The Edinburgh Compute and Data Facility [http://
www.ecdf.ed.ac.uk/]

18. Sun GridEngine [http://www.sun.com/software/gridware/]
19. HECToR – UK National Supercomputing Service [http://

www.hector.ac.uk/]
20. SPRINT [http://forge.nesc.ac.uk/projects/sprint/]
Page 10 of 10
(page number not for citation purposes)

http://forge.nesc.ac.uk/projects/sprint/
http://forge.nesc.ac.uk/projects/sprint/
http://www.ecdf.ed.ac.uk/
http://www.edikt.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9915497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9915497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12117754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12117754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12454644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519949
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18366694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18366694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18318917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18318917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18254947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18254947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18325106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18325106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18199333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18199333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18199333
http://cran.r-project.org/
http://cran.r-project.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18808714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18808714
http://www-03.ibm.com/systems/deepcomputing/bluegene/
http://www-03.ibm.com/systems/deepcomputing/bluegene/
http://www.ecdf.ed.ac.uk/
http://www.ecdf.ed.ac.uk/
http://www.sun.com/software/gridware/
http://www.hector.ac.uk/
http://www.hector.ac.uk/
http://forge.nesc.ac.uk/projects/sprint/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Definition of Problem
	Parallel Building Block Packages
	NWS and Sleigh
	Rmpi
	Rpvm

	Task Farm Packages
	Biopara
	R/Parallel
	Papply
	Simple Network Of Workstations (SNOW)
	TaskpR (Task-Parallel R)

	The SPRINT framework
	Parallel Correlation – a practical implementation using SPRINT

	Results
	Testing and Scaling Results

	Discussion and conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

