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Abstract
Background: Temporal gene expression profiles characterize the time-dynamics of expression of
specific genes and are increasingly collected in current gene expression experiments. In the analysis
of experiments where gene expression is obtained over the life cycle, it is of interest to relate
temporal patterns of gene expression associated with different developmental stages to each other
to study patterns of long-term developmental gene regulation. We use tools from functional data
analysis to study dynamic changes by relating temporal gene expression profiles of different
developmental stages to each other.

Results: We demonstrate that functional regression methodology can pinpoint relationships that
exist between temporary gene expression profiles for different life cycle phases and incorporates
dimension reduction as needed for these high-dimensional data. By applying these tools, gene
expression profiles for pupa and adult phases are found to be strongly related to the profiles of the
same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups
that exhibit relationships with positive and others with negative associations between later life and
embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle
development related genes, and a negative relationship for strictly maternal genes for Drosophila,
using temporal gene expression profiles.

Conclusion: Our findings point to specific reactivation patterns of gene expression during the
Drosophila life cycle which differ in characteristic ways between various gene groups. Functional
regression emerges as a useful tool for relating gene expression patterns from different
developmental stages, and avoids the problems with large numbers of parameters and multiple
testing that affect alternative approaches.

Background
Biological motivation and overview
Normal development of an organism depends on pre-
cisely regulated temporal and spatial expression of its
genes. In unicellular organisms, such as yeast, different

sets of genes are expressed at different stages of the cell
cycle. In higher organisms, with very few exceptions, all of
the different types of cell possess the same genes; however
each type of cell only expresses a unique set of "signature"
genes at a certain time, depending on current develop-

Published: 28 January 2008

BMC Bioinformatics 2008, 9:60 doi:10.1186/1471-2105-9-60

Received: 14 September 2007
Accepted: 28 January 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/60

© 2008 Müller et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 20
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/60
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18226220
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:60 http://www.biomedcentral.com/1471-2105/9/60
mental tasks [1]. Different life stages of an organism are
thought to share the same or similar set of "signature"
genes, which thus play a role throughout ontogenesis. For
example, there are two phases of somatic muscle forma-
tion in the development of Drosophila melanogaster. The
first phase of myogenesis occurs during embryonic devel-
opment and generates larval muscle elements that medi-
ate the relatively simple behaviors of the larva. During
pupal metamorphosis, a second phase of myogenesis gen-
erates a diverse pattern of muscle fibers, facilitating the
more complex behaviors of the adult fly [2].

While appreciating intrinsic differences between these two
phases of myogenesis in Drosophila, it seems plausible that
the genes involved in embryonal myogenesis are re-acti-
vated, perhaps in a modified way, during the assembly of
adult muscles [3]. In a recent study of temporal gene
expression during the life cycle of Drosophila by Arbeitman
et al., using cDNA microarrays, a group of "muscle" genes
was identified from gene expression time courses [4].
Viewed over the entire life cycle, genes in this group
exhibit a two-peak expression pattern where the timing of
expression peaks coincides with the timing of larval and
adult muscle development. Another example is provided
by the group of "strictly maternal" genes of Drosophila. It
has been suggested that "if the information to build the fly
is already deployed in the newly laid egg, then the genes
that encode that information must be expressed and uti-
lized while the egg is being constructed, during oogenesis"
[5]. This was confirmed by Arbeitman et al., who showed
that the "strictly maternal" genes had peaks during the
very early hours of embryonal development and were
only re-expressed at higher levels in the female germline
during oogenesis [4].

It seems straightforward that within a specific biological
pathway a gene with higher expression level in an early
stage of development also tends to be expressed more in a
later stage. However, to the best of our knowledge, this
issue has not been quantitatively investigated in the tem-
poral gene expression framework. It is therefore of interest
to quantify repeated patterns of gene activation over the
life cycle. Such patterns may reflect properties of the
molecular basis of events during ontogenesis that underlie
the cellular changes. On the other hand, as the same set of
"signature" genes may appear at different life stages, they
orchestrate similar yet distinct phases of development.
There appear to be two levels of genetic information being
accessed during the different phases: the common infor-
mation of the same development and the specialized
information pursuant to the distinctive phases. This moti-
vates the task to quantitatively ascertain relationships of
gene expression trajectories for various developmental
stages. Variation in the patterns of gene expression may
point to unique morphological, physiological or molecu-

lar properties of individual phases that manifest them-
selves in phase-gene specific interactions.

To study these questions, we take advantage of the tempo-
ral microarray gene expression data collected by Arbeit-
man et al. for Drosophila, with the specific goal to regress
later life gene expression patterns on those of embryonal
gene expression [4]. Since these expression patterns are
time-dynamic, the goal of relating various gene expression
dynamics to each other requires the deployment of statis-
tical methodologies that are adequate for regressing time
courses on each other. Functional regression analysis is a
promising tool to ascertain such relationships. The ulti-
mate goal is to gain insights into pathways that are repeat-
edly activated during the life cycle. We demonstrate here
that distinct relationships exist between later life expres-
sion trajectories and embryonal trajectories, which can be
summarized as positive and negative association. Positive
association describes groups of genes for which higher
embryonal expression tends to be followed by higher
expression during reactivation of these genes in later life
as well, with opposite effects in the case of negative asso-
ciation.

Temporal gene expression profiles for the Drosophila life 
cycle
Arbeitman et al. reported cDNA microarray transcrip-
tional profiles for nearly one-third of all 4028 Drosophila
melanogaster genes throughout a complete life cycle, cov-
ering 66 sequential time points, beginning at fertilization
and spanning the embryonic, larval and pupal periods
and the first 30 days of adulthood, when males and
females were sampled separately (Fig. 1) [4]. Groups (or
clusters) of co-expressed genes were identified. In this
paper we study the nature of dynamic relationships of
expression during different life cycle phases for two
groups of such genes.

A first group is composed of 23 "muscle" genes. The tis-
sue-specific (expressed in muscle tissue) genes in this
group have a two-peak expression pattern that coincides
with larval and adult muscle development. Larval muscle
development is initiated in the embryo by the gene twist
(twi), which directly regulates another gene dMef2. Some
twi-expressing cells are set aside during embryonic myo-
genesis to contribute to adult-specific muscle formation.
In both larval and adult muscle development, dMef2 is
required for the differentiation of the various muscle types
[3,6]. Fifteen of the 23 genes in this group (65%) contain
pairs of predicted dMef2-binding sites, so that many of the
genes in this group are likely to be direct targets of dMef2
[4]. Our goal is to study the dependence of adult gene
expression patterns on larval patterns for this group of
genes.
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A second group of genes that we consider are 27 "strictly"
maternal genes. These maternal genes are responsible for
the polarity of the egg and ultimately, the embryo. Each of
these is deposited into the egg during oogenesis by the
mother prior to fertilization, in preparation for later func-
tion during embryonic development. Transcripts from all
these genes are degraded after fertilization and are not re-
expressed until oogenesis in the female germline [4]. Our
interest is to assess gene expression pattern dependencies
between early embryo and the female adult germline for
this group of genes.

Key features and relevance of functional regression
The developmental gene-specific expression time courses
are viewed as being generated by an underlying smooth
random trajectory which is specific to each gene. These
trajectories are sampled at a grid of measurement points
during each life cycle phase, e.g., s1,...,sp, where p = 31 for
the measurements of gene expression during the embryo-
nal period. If we denote the embryonal phase predictor
trajectories by Xi(s), where i is a gene index, then the
observed data for the embryonal gene expression are Xij =
Xi(sij) + eij, where the eij are measurement errors which are
assumed to be independent, with zero mean and finite
variance.

The situation is analogous for the response trajectories
Yi(t) which pertain to measured expression of the same
genes but for a different developmental phase and also
give rise to a set of analogously defined discrete measure-
ments (tik, Yik). As the gene expression dynamics in our
model is reflected by the entire embryonal and later life

trajectories, the task arises to relate response trajectories Yi
to predictor trajectories Xi. A basic problem here is the
high dimension of both responses and predictors. As fur-
ther detailed in Section 4.1, classical regression models do
not provide good estimation for this situation and classi-
cal regression inference is hampered by the high dimen-
sions and the necessity to adopt multiple testing
procedures. Functional regression on the other hand
incorporates an automatic dimension reduction step
which is data-adaptive and therefore estimation relies on
only few parameter estimates. An overall functional coef-
ficient of determination R2 in conjunction with the boot-
strap can be used for functional inference.

Functional linear regression, where both predictors and
responses are trajectories, can be understood as an exten-
sion of multivariate linear regression. The development of
functional regression falls within the expanding area of
functional data analysis [7]. Recent work for the case
where predictors are scalars and the responses are trajecto-
ries includes references [8-11]. For the purpose of relating
gene expression trajectories to each other, a functional
regression setting in which both predictor and response
are trajectories is appropriate [12,13].

We extend previous methodological work in various
directions useful for the analysis of gene expression trajec-
tories, demonstrating the following beneficial features:
(1) functional linear regression can be broken down into
a series of linear regressions of functional principal com-
ponent scores of the response trajectories on those of the
predictor trajectories; (2) this decomposition leads to a
straightforward implementation of functional regression
via a series of simple linear regressions; (3) the decompo-
sition opens up alternative ways to interpret a functional
regression relation; (4) outliers and influential trajectories
corresponding to individual genes can be identified with
this methodology; and (5) inference for functional regres-
sion can be obtained via bootstrapping.

In biological applications of functional regression it is
often of primary interest to test whether a functional
regression relationship exists for given data. For this
objective, the proposed bootstrap method is very useful;
besides testing for significance of a functional regression,
it can also be used to construct confidence regions.
Equally important is the interpretability of the results, for
which the decomposition into simple linear regressions
provides an useful alternative. For the developmental Dro-
sophila gene expression profiles, various types of depend-
ency of adult on embryonal gene expression trajectories
can be clearly distinguished through the application of
these functional regression tools, reflecting differences in
the underlying dynamics of gene expression. The pro-

A subset of observed gene expression profiles (strict mater-nal genes)Figure 1
A subset of observed gene expression profiles (strict mater-
nal genes). Each profile (or curve) is composed of expression 
levels of one gene at different time points.
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posed methodology is inherently nonparametric and
therefore very versatile.

Methods
The description of the methods in the following includes
some technical material that is not essential for the
description of the results in the following sections but is
provided so as to give a complete account of the func-
tional regression methodology. The methodology
described below and used for the analysis of gene expres-
sion trajectories has been implemented in Matlab and is
freely available in the PACE (principal analysis by condi-
tional expectation) package, downloadable from the
internet [14].

In this program, if one chooses default values, the only
required input for the functional regression part PACE-
REG are the measurements of gene expressions for predic-
tor and response trajectories, denoted in the previous sec-
tion by (sij, Xij) and (tik, Yik) where i ranges over the genes,
j over the predictor measurements (its range may depend
on i), and k over the response measurements (range may
depend on i). As outputs one obtains the quantities as
shown in the results section.

Preliminaries on functional linear regression
Denoting the random predictor and response functions
by X(s) resp. Y(t), their mean functions by μX(s) = E(X(s)),
μY (t) = E(Y(t)) and their covariance functions by GX(s1, s2)
= cov(X(s1), X(s2)), GY (t1, t2) = cov(Y(t1), Y(t2)), one
obtains under mild conditions the Karhunen-Loève
expansions for trajectories X and Y, given by

[15, see Appendix for further explanations]. These repre-
sentations provide a convenient way to implement the
necessary dimension reduction for the trajectories X and
Y, by truncating the sums on the r.h.s. at a finite number
of terms, where the truncation point needs to be chosen
data-adaptively (flatter and simpler structured trajectories
requiring fewer and more complex trajectories requiring
more components to be included). The trajectories are
represented by their overall mean function, random coef-
ficients ξj resp. ζk and the sequence of basis functions φj
resp. ψk, with indices j and k ranging between 1 and the
truncation value, say 1 ≤ j ≤ J for X and 1 ≤ k ≤ K for Y. The
functions φj and ψk are chosen as eigenfunctions and are
often referred to as "modes of variation": They represent
the main "directions" in function space in which the tra-

jectories vary. Representations (1) and (2) are analogous
to expressing a centered random vector in terms of the
basis of the vector space that consists of the eigenvectors.
The random effects ξj, ζk are centered at zero and are
referred to as functional principal component scores, or
just scores. Additional mathematical details can be found
in the Appendix.

The functional linear regression model with response
function Y and predictor function X is

where the bivariate regression parameter function β(s, t) is
smooth and square integrable [12]. This model emerges as
a generalization of the multivariate linear regression
model E(Y|X) = BX, where X and Y are random vectors and
B is a parameter matrix. The function β is central to this
functional regression model. For fixed t, the value of the
response trajectory at t, which is Y(t), is obtained by inte-
grating the predictor trajectory over its domain with the
weight function β(s, t), viewed as a function of s for fixed t.

One way to interpret the functional regression is therefore
to fix various levels of t and to then inspect these weight
functions by taking the appropriate cross-section through
the surface β(s, t) when t is held fixed at the selected level.
This weight function then indicates which parts of the pre-
dictor trajectory contribute positively or negatively to the
outcome Y(t). Under regularity assumptions, the regres-
sion parameter surface β has the following basis represen-
tation,

A detailed description of how the mean functions μX, μY,

eigenfunctions φj, ψk and eigenvalues λj, τk can be consist-

ently estimated from noisy data by using nonparametric
smoothing methods can be found in references [13,16].
These estimation steps involve pooling the measurements
for all predictor (resp. response) trajectories and then
applying a smoothing method to obtain the mean func-

tion μX, and to smooth pointwise "raw" covariances

(omitting the diagonal variances) to obtain the smooth
covariance function cov(X(s1), X(s2)). Then eigenfunc-

tions are obtained by numerical discretization and spec-
tral decomposition of the resulting covariance matrix and

X(s) = (s) + (s),X

j=1
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projected onto a positive definite covariance function.

This leads to estimates ,  of the functional principal

component scores ξj, ζk. These estimates must cope with

noise in the observed expression data and therefore are
implemented as estimated conditional expectations. The
resulting estimates are then plugged in on the r.h.s. of eq.
(4) to obtain an estimate of the regression parameter func-

tion β.

Decomposing functional linear regression into simple 
linear components
As is shown in the Appendix, the relationships between
response scores within the functional linear model are
simple: They are simple linear regressions through the ori-
gin, i.e.,

E(ζk|ξj) = βkjξj. (5)

Here the slope coefficients βkj of these simple linear regres-
sions define the functional regression parameter function
according to (4). This leads to the conclusion that func-
tional linear regression can be decomposed into a series of
simple linear regressions of the functional principal com-
ponent scores of response processes on those of predictor
processes.

This fact substantially simplifies the analysis and provides
an alternative interpretation of the resulting functional
linear regression model. Note that representation (4)
implies that for given slopes βkj, the regression parameter
surface β(·,·) is uniquely determined. It follows from
(12) in the Appendix that the inverse also holds. There-
fore, a functional linear relationship between random tra-
jectories Y and X can be described equivalently by the
regression parameter function β(s, t) or the doubly-
indexed sequence of all slope coefficients βkj, k, j ≥ 1.

A consequence of this equivalence is that estimates of the
slope coefficients can be directly used to obtain straight-
forward estimates of the regression parameter function.
Another consequence of this equivalence is that it opens
up two different perspectives for the interpretation of a
functional linear regression relation: Either through fea-
tures of the shape of the regression parameter surface β(s,
t), or through the ensemble of the regression slopes βkj, k,
j = 1, 2,.... For the latter, the interpretation is in terms of
changes towards the direction of the corresponding eigen-
functions. For example, if the slope coefficient β11 relating
the first predictor score to the first response score is posi-
tive and large, it implies that as the predictor trajectories
move increasingly towards the direction marked by φ1,
i.e., from its mean μX towards μX + γφ1 for increasing γ,
response trajectories move increasingly towards direction

ψ1, i.e., from μY towards μY + γψ1 for increasing γ. The
other slope coefficients can be interpreted analogously.

Often there will be interest in measuring the strength of
association between predictors and responses in a func-
tional regression. The classical measure in a multiple lin-
ear regression relationship is the coefficient of
determination R2. Extensions to the functional case were
discussed in reference [13]. When applying the decompo-
sition into simple linear regressions, this functional coef-
ficient of determination assumes a particularly simple
form.

Implementing the decomposition

Given estimates , ,  and  of eigenfunctions

and functional principal component scores, the regression
parameter surface is estimated by

where unknown slope estimates  can be obtained by

least squares estimation of the slopes in scatterplots { }

on { }, fitted without intercept, for all k = 1,..., K, and j

= 1,..., J. These least squares estimates are however subject
to attenuation and therefore bias due to the presence of

errors in the predictors { } (corresponding to errors-in-

variables), as these need to be estimated from the data and
are therefore imprecise. An alternative estimate that is less
subject to this problem is given by

as the denominator is estimated directly from the covari-
ance surface where the measurement errors are confined
to the diagonal which allows to eliminate their effect to a
large extent. If the denominator is estimated from empir-
ically observed functional principal component scores, as
is the case in the usual least squares estimators, then con-
tamination by error may lead to inflated empirical vari-
ances, and as a result to attenuation of the estimated
regression coefficients. In the following we therefore
adopt the alternative estimate (7).

Note that J and K denote the numbers of random compo-
nents of predictor resp. response processes to be included
in the functional regression analysis. These numbers can
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be determined in practice by scree plots, displaying the
fraction of variance explained as the number of included
components increases. This simple and fast approach
leads to adequate results, choosing the smallest number
of components that explain 85% of the variation. Alterna-
tive selectors are discussed in references [13,17]. Based on
(13), we insert the chosen values of J and K to obtain the
estimated coefficient of determination

using estimates (7). Here the  are the estimated coeffi-

cients of determination of the simple linear regressions of

ζik on ξij, which target (14).

Bootstrap inference
Inference for the functional regression that overcomes the
high dimension and multiple testing problem is obtained
by the bootstrap. In the face of the complexity of the
dependencies between estimated functional principal
component scores and estimated eigenfunctions, the
regression bootstrap with resampling from the sample of
all pairs of predictor and response trajectories emerges as
a doable approach. The starting point for generating the
bootstrap samples is to randomly sample n units from tra-
jectory indices {1, 2,..., n} by sampling with replacement
and, for each sampled index i*, entering all observations
for the corresponding predictor and response trajectories.
This sampling procedure is repeated until B bootstrap
samples, consisting of predictor and response data for
each of n trajectories, have been assembled.

For each of these bootstrap samples, we then carry out the
functional linear regression procedure, obtaining all rele-
vant estimates. The resulting estimates from the B boot-
strap samples are used to construct pointwise confidence

intervals for the regression parameter function β(·,·),
simply by locating the corresponding lower and upper
quantiles in the bootstrap distribution of the estimated

surface values (s, t) (6) for all fixed s, t. The resulting

upper and lower confidence surfaces will provide an idea
how well the surface is actually determined from the data.
Analogously, local confidence bands can be constructed
for individual predicted trajectories, given any predictor
function.

In addition to confidence intervals, it is a common objec-
tive in regression analysis to establish the "significance of
the regression relation", i.e., to infer whether within the
assumed model the predictors indeed influence the

responses. The classical test for a multiple regression cor-
responds to the null hypothesis that all regression slope
coefficients vanish, or equivalently, that the coefficient of
determination R2 = var(E(Y|X))/var(Y) vanishes. The
extension to the functional case is not straightforward. In
a first attempt to assess the overall significance of the func-
tional regression, one can use pointwise bootstrap confi-
dence intervals, say at the 95% level, and check whether
there are areas where 0 is not included in these intervals.
However, this does not properly account for the multiple
confidence statements that are made. To obtain an overall
bootstrap test for the significance of the functional regres-
sion relation, we use an alternative resampling procedure
where predictors and responses are resampled separately
under the null hypothesis of no regression relationship.
For each resample, the data for a predictor trajectory and
the data for a response trajectory are selected separately by
sampling with replacement from all predictor and all
response trajectories. As predictors and responses are
unrelated in this case, applying functional regression to B
such null bootstrap samples (each of size n) provides a
null distribution for the pivotal statistic.

In our approach we specifically select the functional coef-
ficient of determination R2 (13) as test statistic, as it sum-
marizes the regression effect. Accordingly, we obtain the
overall p-value of the functional regression by determin-
ing the empirical quantile of the observed value of R2

within the null bootstrap distribution for R2. Bootstrap
inference for the overall regression effect based on this
device will be illustrated in the application to gene expres-
sion profiles in the next section.

Results
Regressing pupa-adult temporal gene expression profiles 
on embryonal profiles for muscle-specific genes
The functional response is the combined pupa-adult tem-
poral gene expression profile, which we view as a smooth
random function. For each of the 23 muscle-specific
genes, these expression profiles are sampled at 26 time
points during the combined pupa-adult phase. Likewise,
the functional predictors are smooth random functions
that correspond to the embryonal gene expression pro-
files, recorded for the same genes as the functional
responses, and sampled at 31 time points. An initial step
is the estimation of the mean trajectories for predictor and
response. Along with the individual temporal gene expres-
sion profiles, these mean trajectories are shown in Fig. 2.
They are flat in the beginning for both predictors and
responses and for predictors increase monotonously in
the right half, while they have a marked peak in the right
half for the responses. This provides a general timeline for
the expression of these muscle-specific genes.
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In a next step, implementing the main dimension reduc-
tion step, we select the first two eigenfunctions, separately
for predictor and response trajectories; these are shown in
Fig. 3. We find that the first eigenfunctions for both pre-
dictors and responses are roughly proportional to the
mean function of Fig. 2. They explain 75–80% of total var-
iation; the proportionality of mean function and first
eigenfunction as seen here is commonly observed in func-
tional data analysis (see the discussion of this phenome-
non in reference [18]). The second eigenfunctions are
restricted to be orthogonal to the first eigenfunctions and
are found to not change sign in this application. For pre-

dictor processes, the first two eigenfunctions together
explain 98.5% of total variation, while the corresponding
figure is 92.5% for response processes.

Decomposing the functional linear regression into simple
linear components as described in Methods leads to four
scatterplots visualizing first and second functional princi-
pal component scores of response processes versus first
and second functional principal scores of predictor proc-
esses. These are shown in Fig. 4, along with the fitted least
squares regression lines. We note that the positive slope of
the simple linear regression of the first functional princi-

Observed trajectories and estimated mean function for muscle-specific genes for predictor profiles X (corresponding to gene expression profiles in embryo phase, left panel) and for response profiles Y (profiles for pupa-adult phase, right panelFigure 2
Observed trajectories and estimated mean function for muscle-specific genes for predictor profiles X (corresponding to gene 
expression profiles in embryo phase, left panel) and for response profiles Y (profiles for pupa-adult phase, right panel.
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pal component scores on each other stands out (upper left
panel of Fig. 4).

The functional coefficient of determination as defined in
(13) is found to be R2 = 0.85, with p value p = 0.0010,
obtained via the null bootstrap (see Methods) and based
on B = 1000 bootstrap samples. We note that the size of
this functional coefficient of determination points
towards a strong regression relationship. The associated
bootstrap p-value is correspondingly small, indicating the
significance of this functional regression relation. We may
infer that as the expression profiles of predictor trajecto-
ries are increasing proportionally in the direction of the

first eigenfunction, the response trajectory gene expres-
sions also tend to increase in the direction of their first
eigenfunction. Since the first eigenfunctions are overall
quite similar to the mean expression trajectories, and
explain most of the variation, another way to express this
is to say that as the level of gene expression increases pro-
portionally to the mean expression trajectories for embry-
onal muscle-specific genes, the expression of pupa-adult
trajectories also tends to increase proportionally to their
respective mean response trajectory.

We conclude that for muscle-specific genes the expression
patterns of both embryonal and pupa-adult phases are

First two estimated eigenfunctions for temporal gene expression trajectories for the muscle-specific genes in embryo phase (predictors X, left panel) and pupa-adult phase (responses Y, right panel)Figure 3
First two estimated eigenfunctions for temporal gene expression trajectories for the muscle-specific genes in embryo phase 
(predictors X, left panel) and pupa-adult phase (responses Y, right panel).
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positively coupled in a relatively straightforward fashion.
One could summarize the situation as proportionality of
the activity patterns for muscle genes between adult and
the embryo phases. This is an instance of functional pro-
portionality. This functional proportionality with its pos-
itive coupling is also evident when looking at individual
predictor trajectories and their associated fitted response
trajectories; these are shown for a sample of randomly
selected six genes in Fig. 5. The higher the amplitude of a
predictor trajectory is, with more expressed features such
as lower trough, steeper rise and higher peak, the more
expressed are the features of the corresponding response
trajectory, such as a higher peak.

Functional linear regression of pupa-adult profiles on 
embryonal profiles for strict maternal genes
A functional regression relationship that clearly differs
from the functional proportionality that was seen to be
present for the muscle-related genes is found for the group
of 27 strict maternal genes. The number of time points at
which expression is available is the same as for the mus-
cle-specific genes, with expression during the embryonal
phase as predictor and expression during pupa-adult
phase as response.

As in the analysis for muscle-specific genes, we first plot
individual gene expression trajectories for the embryonal
predictor phase and the pupa-adult response phase over-

Scatterplots of functional principal component scores ζk of response trajectories versus ξj of predictor trajectories, for j, k = 1, 2, for muscle-specific genes with embryo phase as predictors X and pupa-adult phase as responses YFigure 4
Scatterplots of functional principal component scores ζk of response trajectories versus ξj of predictor trajectories, for j, k = 1, 
2, for muscle-specific genes with embryo phase as predictors X and pupa-adult phase as responses Y. Superimposed are simple 
linear regression lines, fitted without intercept. The functional coefficient of determination R2 is 0.8479, with the bootstrap p-
value p = 0.0010.
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laid with the mean trajectories in Fig. 6. We find distinct
patterns of expression for both embryonal and pupa-adult
phases, with fast early and then slower late declines in
mean gene expression for the embryonal phase, while the
mean trajectory for the pupa-adult phase shows low and
nearly constant expression on average for the first 15 time
units (the pupa phase), later followed by rapidly increas-
ing expression (in the adult phase).

Again, two eigenfunctions are chosen for response as well
as predictor trajectories, shown in Fig. 7. In contrast to the
muscle-specific genes, the first eigenfunction is not pro-
portional to the mean function for predictor trajectories,

while the second eigenfunction has this property. For
response trajectories, the first eigenfunction is approxi-
mately proportional to the mean expression function.

Decomposing the functional regression into the corre-
sponding series of four simple linear regressions without
intercept, the least squares fitted regression lines are
shown in Fig. 8, along with the corresponding functional
principal component scores. The positive relation of ζ1
versus ξ1 implies that embryonal expression that is above
the mean trajectory, especially in the pattern delineated by
the first embryonal eigenfunction, is associated with a
pupa-adult response that is below the mean pupa-adult

Predictor trajectories (left panel) and fitted response trajectories (right panel) for six randomly selected muscle-specific genesFigure 5
Predictor trajectories (left panel) and fitted response trajectories (right panel) for six randomly selected muscle-specific genes.

5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

3

4

Time Unit (s)

F
itt

ed
 F

un
ct

io
n 

of
 X

5 10 15 20 25
−3

−2

−1

0

1

2

3

Time Unit (t)

F
itt

ed
 F

un
ct

io
n 

of
 Y
Page 10 of 20
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:60 http://www.biomedcentral.com/1471-2105/9/60
trajectory. This inverse pattern, with a slightly different
emphasis on the nature of the deviations from the mean
function, is also evident in the simple regressions of ζ1 vs
ξ2 with its positive slope, and in the regression of ζ2 vs ξ1
with its negative slope. Here we note that a larger first
principal component ζ1 corresponds to a response that is
below the mean response, according to the negativity of
the first eigenfunction of the response trajectories (the
sign of the eigenfunctions is arbitrary). We note that (a) in
order to evaluate the signs of the simple linear regression
coefficients, they need to be considered in conjunction
with the signs of the corresponding eigenfunctions; and

(b) functional principal component scores measure the
difference of a random trajectory and its mean trajectory,
according to the Karhunen-Loève expansion (1), and
therefore serve as proxies for the differences in gene
expression between an individual's trajectory and the
mean trajectory.

The inverse relation between embryonal and pupa-adult
expression can also be visualized through the shape of the
regression parameter surface (Fig. 9): Expression for the
early part of the pupa-adult phase is larger for those trajec-
tories with a larger increase in the embryonal expression

Observed trajectories and estimated mean function for strict maternal genes in embryo phase (for predictor X, left panel) and pupa-adult phase (for response Y, right panel), respectivelyFigure 6
Observed trajectories and estimated mean function for strict maternal genes in embryo phase (for predictor X, left panel) and 
pupa-adult phase (for response Y, right panel), respectively.
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over time (or, equivalently, those with a smaller
decrease), however this effect is reversed for the later part
of the pupa-adult expression. This reversal reflects the
inverse functional relationship.

A more direct way to interpret the functional regression is
provided by looking at a few predictor trajectories and
their associated responses (Fig. 10). A clear pattern that
emerges is that predictor curves (in the left panel) that fall
above the mean have associated response curves below
the mean and vice versa, thus providing the graphical
equivalent of an inverse functional relationship: Those
genes characterized by increased expression during the

embryonal period express less in the pupa-adult period.
This observed negative association is of interest, as it is
quite unexpected and pinpoints a dynamic interaction of
life cycle stage and gene expression. The underlying mech-
anism causing this phenomenon and the strong differ-
ences between muscle and maternal genes is unknown
and further studies to uncover it would be of interest.

For bootstrap inference (section 2.4), we construct B =
1000 bootstrap samples and also null bootstrap samples.
For the choices of the number of included components J
for predictor processes and K for response processes,
implementing the criterion of 85% of variance explained,

First two estimated eigenfunctions for strict maternal genes in embryo phase (predictor X, left panel) and pupa-adult phase (response Y, right panel)Figure 7
First two estimated eigenfunctions for strict maternal genes in embryo phase (predictor X, left panel) and pupa-adult phase 
(response Y, right panel).
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the relative frequencies of bootstrap selections were as fol-
lows: J = 1 in 33.7%, J = 2 in 66.3%, and K = 1 in 1.6%, K
= 2 in 97.7%, and K = 3 in 0.7% of all bootstrap samples.
Pointwise 95% bootstrap confidence intervals are shown
along with the function estimates for mean functions μX
and μY in Fig. 11, and for the first eigenfunctions for pre-
dictor and response in Fig. 12. The 95% bootstrap confi-
dence surfaces along with the estimated parameter
function surface can be found in Fig. 13. In view of the
large and dominant size of the area where the confidence
surfaces do not include 0, it seems likely that the regres-
sion is significant.

To more unequivocally establish significance, we also ran
the bootstrap test, described above, which is based on the
functional coefficient R2 as test statistic and the null boot-
strap. This led to a p-value of p = 0.0020, for the functional
coefficient of determination R2 = 0.5503, providing evi-
dence that the functional regression relation is significant
here, with a sizable functional coefficient of determina-
tion.

Discussion and Conclusion
Comparison with simpler approaches
A natural question is whether the dimension reduction
afforded by functional linear regression through regress-
ing the functional principal components on each other is

Scatterplots of response functional principal component scores ξk versus predictor scores ζj, for first two principal compo-nents, superimposed on simple linear regression lines without intercept, for strict maternal genes with embryo phase expres-sions as predictors X and pupa-adult phase expressions as responses YFigure 8
Scatterplots of response functional principal component scores ξk versus predictor scores ζj, for first two principal compo-
nents, superimposed on simple linear regression lines without intercept, for strict maternal genes with embryo phase expres-
sions as predictors X and pupa-adult phase expressions as responses Y. The functional coefficient of determination R2 is 0.5503, 
with the bootstrap p-value p = 0.0020.
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really useful for modeling gene expression trajectories and
their relationships. To investigate this, we compared the
proposed method with two simpler alternatives, both uti-
lizing conventional linear regression models.

In the first alternative approach, we use the gene expres-
sion measurements of as many predictor time points as
possible. This amounts to using the predictor expression
at every second predictor trajectory time point to obtain
the response at each time point where the response was
recorded, fitting a multiple linear regression with 16 pre-
dictors. Note that one cannot use all 31 predictor time
points in this classical regression approach, since then the
number of predictors would be larger than the sample size
which is not possible. This approach requires to fit as
many such regressions as there are response time points,
and therefore it requires a large number of parameters
with the associated problems. So while this approach is
conceptually and numerically simple, it does not provide
dimension reduction, does not take into account the con-
tinuity of the underlying trajectories, and is subject to
measurement errors in the predictors. This method is also
not amenable to global significance analysis, as one
encounters a multiple testing problem when dealing with
the many separate regressions (and their associated coeffi-
cients of determination). In the following, we refer to this
as the multiple regression approach.

In a second alternative approach, we first average all
response measurements and then all predictor measure-

ments to obtain a scalar response and associated scalar
predictor. This corresponds to replacing all trajectories by
constants. Then we run a simple linear regression of the
response on the (single) predictor. This approach includes
drastic dimension reduction but fails to model highly
non-constant predictor and response trajectories as
encountered for the Drosophila life cycle genes. This
approach will be referred to as the simple regression
model.

These methods are then compared in terms of their one-
leave-out prediction errors for the muscle and the mater-
nal gene groups: One removes one predictor-response tra-
jectory pair at a time and then fits the corresponding
approach (i.e., obtains the regression parameters for the
sample that is reduced by the left out pair). Then the pre-
dictor data of the left out pair are fed into these fitted
models and the resulting predicted responses at the times
where the responses were obtained are recorded and com-
pared with the actual observed responses. The differences
are squared and averaged over the response times and
then are averaged over the sample size of the gene group
by recalculating them in turn for each left out pair. This
procedure provides the averaged squared prediction error
(SPE) and is a measure of the quality of the model and
how well it can predict the actual observed data for a new
data point.

The comparison of the above two alternative approaches
with the functional regression method using this predic-
tive quality measure led to the following squared one-
leave-out prediction errors (SPE) as shown in Table 1. It
emerges that functional linear regression provides a more
sensible approach for the analysis of gene expression tra-
jectories than classical regression approaches.

Role of functional regression for gene expression 
trajectories
This paper explores functional regression approaches and
their application to gene expression pro-files. Ultimately,
useful statistical methodology should facilitate insights
into the dynamics of microarray gene expression time
courses. Our results in the application to temporal gene
expression profiles for Drosophila life cycle indicate that
while iterated reactivation of similar genes occurs
throughout ontogenesis, there are gene-group specific dif-

Estimated regression parameter function (s, t) for strict maternal genes with embryo phase as the predictor X(s) (plotted towards the right) and pupa-adult phase as the response Y(t) (plotted towards the left)Figure 9

Estimated regression parameter function (s, t) for strict 

maternal genes with embryo phase as the predictor X(s) 
(plotted towards the right) and pupa-adult phase as the 
response Y(t) (plotted towards the left).
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Table 1: Comparison of SPE using functional regression (FR), 
multivariate regression (MR), and simple regression (SR).

Gene group FR MR SR

Muscle 1.03 2.17 2.89
Strict maternal 0.60 1.50 1.44
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ferences in the reactivation patterns. Investigating the
nature of these patterns eventually may provide a connec-
tion to the molecular basis of development. As a step
towards this goal, we have proposed to quantitatively
relate similar genetic pathways at different life stages.
Functional regression is an adequate and promising tool
for this purpose.

In general, a functional data analysis approach is well
suited for the analysis of gene expression profiles, comple-
menting the time series approaches that have been advo-
cated for time course gene expression data [19,20]. We

discuss in the following the pros and a few cons of the
functional linear regression approach.

1. Easily handles a large variety of designs, including those
where trajectories are sampled at many fixed times, or are
sparsely sampled in random designs [13]. Totally at ran-
dom missing observations present no problem (as long as
two measurements per trajectory remain available).

2. Works under minimal assumptions, as it is a highly
flexible nonparametric approach. The shapes of predictor
and response trajectories can be arbitrary (only restriction

Predictor trajectories (left panel) and fitted response trajectories (right panel) for six randomly selected strict maternal genesFigure 10
Predictor trajectories (left panel) and fitted response trajectories (right panel) for six randomly selected strict maternal genes.
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is smoothness). No stationarity is required (as by some
time series approaches).

3. Dimension reduction aspect avoids large number of
parameters problem with increased variability and the
need for multiple testing adjustments for valid inference.
Trajectory dimension is chosen data-adaptively, enhanc-
ing the flexibility.

4. Decomposition into a series of simple linear regressions
aids interpretation and motivates functional coefficient of
determination R2, summarizing the strength of these
regressions and representing an overall measure of the
strength of the functional regression relation. It also serves
as the bootstrap test statistic, discussed before.

5. Availability of associated graphical devices and visuali-
zation, characterizing the nature of the relationship
between gene expression trajectories: These include (a)
simple linear regressions through the origin of all
response principal component scores on all predictor
principal component scores, which in their entirety are
equivalent to the functional linear regression; (b) the
regression parameter surface β(·,·); and (c) the side-by-
side plots of predictor functions and their fitted responses,
that may be displayed for a subsample of the data and
provide a trajectory-wise representation of the fitted
model. These side-by-side plots allow for the easiest over-
all interpretation, while the simple linear regression lines
also can be nicely interpreted when taking into account
the shape of the relevant eigenfunctions. The regression
parameter surface has the advantage to summarize the fit-
ted model in one plot, and provides an interpretation of

Estimated mean function with 95% bootstrap confidence intervals for strict maternal genes in embryo phase (for predictor X, left panel) and pupa-adult phase (for response Y, right panel), respectivelyFigure 11
Estimated mean function with 95% bootstrap confidence intervals for strict maternal genes in embryo phase (for predictor X, 
left panel) and pupa-adult phase (for response Y, right panel), respectively.
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how the values of response trajectories at each fixed
domain point depend on the entire predictor trajectories
via a weight function.

6. Bootstrap as a useful inference tool to construct confi-
dence bands for the functional components of the models
such as mean and eigenfunctions and regression parame-
ter surface, and to infer the overall significance of the func-
tional regression relation. For the latter, the functional
coefficient of determination R2 is a natural target statistics.
This allows the usual interpretation regarding the strength
of a regression relationship, albeit here for relating ran-
dom trajectories to each other.

On the con side, the interpretation of the regression
parameter function is complex and requires careful scru-
tiny, as exemplified in the results. The decomposition into
simple linear regressions can ameliorate this situation

only to some extent. While the simple linear regressions
themselves are easy to interpret, in the context of the func-
tional regression model one must take into account the
shape of the respective eigenfunctions.

The computational effort is relatively high, compared to
classical regression approaches. The PACE package
includes default features to accelerate computations for a
large number of genes, including prebinning the measure-
ments. Besides this package, there are not many software
options available at this point which implement the
described approach.

Insights for life cycle gene expression
Using the functional regression tool, a first finding is that
for the Drosophila life cycle, later life gene expression is sig-
nificantly related to early life gene expression across genes.
A second finding is that the nature of the relationship of

First estimated eigenfunctions with 95% bootstrap confidence intervals for strict maternal genes in embryo phase (predictor X, left panel) and pupa-adult phase (response Y, right panel)Figure 12
First estimated eigenfunctions with 95% bootstrap confidence intervals for strict maternal genes in embryo phase (predictor X, 
left panel) and pupa-adult phase (response Y, right panel).
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later phase gene expression profiles with the profiles of
earlier phases of the life cycle is specific to a gene group.
For the group of muscle-specific genes, increased expres-
sions along the mean trajectories for the embryonal phase
are coupled with equally increased expression along the
mean expression for the pupa-adult phase. We refer to this
kind of relationship as functional proportionality, imply-
ing that similar relative expression levels for muscle-spe-
cific genes occur during both embryonal and adult phases.
Such simple positive coupling of gene expression trajecto-
ries points towards close ties between the expressions at
different stages and can be interpreted as positive develop-
mental correlation.

While myogenesis in embryonal and adult phases are dif-
ferent processes of somatic muscle formation, they share
common biological processes, such as myoblast fusion
and neuromuscular junction [3]. Among the 23 "muscle"
genes, unsurprisingly, seven (including CG11914,
CG9480, Mlc1, CG8154, Upheld, MSP-300, and Paramy-
osin) are involved in mesoderm development [21]. The
expression of those genes during adult muscle develop-
ment indicates that their function might extend to the
pupal stage. Chen and Olson pointed out that many in
vitro studies have implicated several classes of proteins in
myoblast fusion, including cell-adhesion molecules, pro-
tein kinases and phospholipases [22]. Six genes are related
to cell adhesion/receptor activity/signal transduction/pro-
tein kinase/phosphate transport (including CG10483,

Dscam, CG7028, CG9098, CG9090, and CG18020) [21].
Most research on molecular pathways on myoblast fusion
in Drosophila has focused on the embryonal phase, how-
ever it is conceivable that similar molecular mechanisms
might be involved in adult satellite-cell fusion analogous
to myoblast fusion during embryogenesis [22]. It is also
noteworthy that six genes (including Mlc1, Mhc, Upheld,
MSP-300, Paramysosin and CG1826) are related to
myofibril assembly/actin assembly or binding/microfila-
ment motor activity, and five genes (Dscam, Slowpoke,
CG9098, CG7565 and CG8256) showed neuronal expres-
sion. Dscam is involved in axon guidance, neuron devel-
opment and peripheral nervous system development, and
Slowpoke in synaptic transmission. These genes might be
involved in neuromuscular junction building during mus-
cle development. There is also good evidence that during
pupal development, motorneuronal innervation is critical
to the specification of at least one set of muscle fibers
[4,21,23].

Identification of the muscle gene cluster was based on evi-
dence of the involvement of the same genes in the two
phases as suggested in Arbeitman's study [4]. Our results
further show that beyond the involvement of these genes
in both phases also their levels of expression are a charac-
teristic that is relevant for normal development. Although
this is plausible, no previous systematic study that we are
aware of has provided evidence for this stability in expres-
sion level for this class of genes. While most studies have
been focusing on certain genes, or on mean levels of
expression for groups of genes, an advantage of our
approach is that we study a set of genes as a system,
focussing on association of their expression profiles over
the life cycle.

In the case of maternal genes, we also find a strong func-
tional relationship between the life cycle phase expres-
sions, but their association is of a quite different nature
than for the group of muscle genes. We detected a negative
coupling in the sense that predictor trajectories above the
overall mean of predictors are associated with response
trajectories below the overall mean of responses. More
specifically, the existence of an initial rapid decline and
deep trough in the middle of embryonal gene expression
is associated with larger pupa-adult expression through-
out, and if there is an initial larger embryonal expression
with a more modest decline then this is associated with
relatively low pupa-adult expression, including a deeper
trough in the response trajectories. This type of functional
relationship is surprising and can be described as inverse
functional proportionality. It points to a negative devel-
opmental correlation, and to the best of our knowledge,
such a negative association of gene expression between
different phases of development has not been previously

Estimated regression parameter function (s, t) with 95% bootstrap confidence intervals for strict maternal genes with embryo phase as the predictor X(s) (plotted towards the right) and pupa-adult phase as the response Y(t) (plotted towards the left)Figure 13

Estimated regression parameter function (s, t) with 95% 

bootstrap confidence intervals for strict maternal genes with 
embryo phase as the predictor X(s) (plotted towards the 
right) and pupa-adult phase as the response Y(t) (plotted 
towards the left).
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reported. It will be of interest to discover the underlying
mechanisms, as not much is known about these genes.

Gaining biological knowledge by observing and analyzing
developmental time courses of gene expression in simpler
organisms (with their short life spans) paves the way to
gain knowledge of the corresponding genetic mechanisms
in more complex organisms. For instance, both embry-
onic and pupal muscle development in Drosophila shows
striking similarities with elements of pattern formation in
vertebrate muscle. The presence of both positive and neg-
ative coupling of expression patterns is intriguing and
points to complex regulatory mechanisms.
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Appendix: Mathematical Details and Derivations
For square integrable predictor and response processes
X(s) resp. Y(t) with domains  and , mean functions

μX(s) = E(X(s)), μY (t) = E(Y(t)) and auto-covariance func-

tions GX(s1, s2) = cov(X(s1), X(s2)), GY (t1, t2) = cov(Y(t1),

Y(t2)), one defines the auto-covariance operators

These are linear operators in the Hilbert space L2 of square
integrable functions, with eigenfunctions characterized as
solutions of the eigen-equations (Af)(t) = λf(t), where λ is
an eigenvalue.

We denote by φj(s) and ψk(t) the sequences of orthonor-
mal eigenfunctions for X and Y, with non-increasing
eigenvalues λj and τk, ∑jλj < ∞ and ∑kξk < ∞, satisfying

The random coefficients  and

 are uncorrelated random

variables, respectively, with means E(ξj) = 0, E(ζk) = 0, and

variances var(ξj) = λj, var(ζk) = τk. The eigenfunctions ψk,

φj are also referred to as principal component functions

and the random effects ξj, ζk as functional principal com-

ponent scores. A further assumption is that all functions

{μY, ψk}, {μX, φj} are smooth, usually it is assumed they

are twice continuously differentiable.

Derivation of (5). Replacing function β(s, t) on the r.h.s. of
(3) by the representation (4) and X - μX by the Karhunen-
Loève expansion (1), one finds, using the orthonormality
of the eigenfunctions φj, that

Then (2) and the orthonormality of eigenfunctions ψk
imply

for all k ≥ 1. Since {ξj, j = 1, 2,...} are uncorrelated random
variables, it follows from model (10) that

for all pairs k, j, and (5) follows.

Regression parameter function β(s, t) determines the slopes βkj.
Using representation (4) of β(s, t), and the orthonormal-
ity properties of eigenfunctions φj and ψk, one finds

∫ ∫ β(s, t) φj(s) ψk(t) dt = βkj for all j, k. (12)

Therefore, the function β(s, t) determines all slope coeffi-
cients βkj uniquely.

Functional R2. One can show

where

are the coefficients of determination for the simple linear
regressions of ξk on ζj. This means that in the decomposi-
tion approach, the overall functional coefficient of deter-

 

( )( ) ( ) ( , ) , ( )( ) ( ) ( , ) .A f t f s G s t ds A f t f s G s t dsG X G YX Y
= =∫ ∫

G s s s s s s G t t t tX j j j

j

Y k k k( , ) ( ) ( ), , , ( , ) ( ) (1 2 1 2 1 2 1 2 1 2= ∈ =∑λ φ φ τ ψ ψ )), ,
k

t t∑ ∈1 2  .

(9)

ξ μ φj X jX s s s ds= −∫ ( ( ) ( )) ( )


ζ μ ψk Y kY t t t dt= −∫ ( ( ) ( )) ( )


E Y t X t tY kj j k

jk

( ( ) | ) ( ) ( ).= +
=

∞

=

∞

∑∑μ β ξ ψ
11

E X E Y t X t t dtk Y k kj j

j

( | ) ( ( ( ) | ) ( )) ( ) ,ζ μ ψ β ξ= − =∫ ∑
=

∞

1

(10)

E E E E E X Ek j k j k j kj j j

j

( | ) [ ( | , ,...) | ] [ ( | ) | ] |ζ ξ ζ ξ ξ ξ ζ ξ β ξ ξ= = =
=

∞

1 2

1
∑∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= β ξkj j ,

(11)

R
E Y t x dt

Y t dt

Rkj kk

kkj

2

1

2
1

1
= ∫

∫
= =

∞∑

=
∞∑=

∞var( [ ( )| ])

var( ( ))
,



τ

τ∑∑
(13)

R
E j k

E j E k

j k

j k
kj
2

2

2 2

2
= =

( ( )) [cov( , )]ξ ζ

ξ ζ
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λ τ

(14)
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mination R2 is obtained as a sum (summing over the
contributions of all functional principal components in
the predictor set) of eigenvalue-weighted averages of the
coefficients of determination of the simple linear regres-
sions (averaging over the contributions of all functional
principal components in the response).
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