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Abstract

Background: The development and improvement of reliable computational methods designed to
evaluate the quality of protein models is relevant in the context of protein structure refinement,
which has been recently identified as one of the bottlenecks limiting the quality and usefulness of
protein structure prediction.

Results: In this contribution, we present a computational method (Artificial Intelligence Decoys
Evaluator: AIDE) which is able to consistently discriminate between correct and incorrect protein
models. In particular, the method is based on neural networks that use as input |5 structural
parameters, which include energy, solvent accessible surface, hydrophobic contacts and secondary
structure content. The results obtained with AIDE on a set of decoy structures were evaluated
using statistical indicators such as Pearson correlation coefficients, Z,_,, fraction enrichment, as well
as ROC plots. It turned out that AIDE performances are comparable and often complementary to
available state-of-the-art learning-based methods.

Conclusion: In light of the results obtained with AIDE, as well as its comparison with available
learning-based methods, it can be concluded that AIDE can be successfully used to evaluate the
quality of protein structures. The use of AIDE in combination with other evaluation tools is
expected to further enhance protein refinement efforts.

accompanied by computational techniques suitable for

Background
three-dimensional structure predictions, such as hom-

The very large and continuously increasing amount of

data obtained by genome sequencing makes the develop-
ment of reliable computational methods capable to infer
protein structures from sequences a crucial step for func-
tional annotation of proteins. In fact, functional annota-
tion is often strictly dependent on the availability of
structural data, which in turn are still difficult to obtain
experimentally. As a consequence, efforts and progresses
in high throughput X-ray and NMR methods need to be

ology modeling, fold recognition or ab-initio methods [1-
7], which are intrinsically characterized by different levels
of accuracy.

In parallel to the development and improvement of pre-
diction methods, reliable and accurate evaluation tools
are necessary to check the quality of computational pro-
tein models [8,9]. Moreover, in the context of protein
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structure refinement, which has been recently identified
as one of the bottlenecks limiting the quality and useful-
ness of protein structure prediction [1], it has been noted
that improvements in the selection of the most native-like
model from an ensemble of closely related alternative
conformations can be crucial. The increasing importance
of the field of quality assessment methods is demon-
strated by the introduction of a dedicated section in the
latest CASP edition (CASP7) [10].

To evaluate protein structures, several different scoring
functions have been developed, which can be classified
into different categories depending on the principles and
on the structural features considered in the evaluation.
Physical scoring (energy) functions aim to describe the
physics of the interaction between atoms in a protein and
are generally parameterized on molecular systems smaller
than proteins [11]. Knowledge-based scoring functions
are designed by evaluating the differences between some
selected features of a random protein model and the char-
acteristics of a real protein structure [12-16].

Learning-based functions can be developed by training
algorithms to discriminate between correct and incorrect
models [17]. Independently by the category, scoring func-
tions are generally tested by examining their capability to
detect the native structure among a set of decoys [18],
which can be generated in several different ways [19-21].

It is important to note that the performance of learning-
based functions are generally strongly dependent on the
specific aim for which they were developed, and conse-
quently on the training set used. As an example, ProQ, a
neural network based method developed to predict the
quality of protein models [17], was specifically designed
to discriminate between correct and wrong models, i.e. to
recognize folds that are not compatible with a protein
sequence. In fact, ProQ was recently combined success-
fully with the Pcons [22] fold recognition predictor and
ranked as one the best methods in a recent survey of qual-
ity assessment methods [10]. Other reliable and exten-
sively used computational methods used to validate the
quality of protein structures are PROSA [23], ERRAT [24],
Verify 3D [25,26], PROCHECK [27], what-if [28], PROVE
[29] and victor/FRST [15].

In the present contribution, we present a computational
method (Artificial Intelligence Decoys Evaluator: AIDE)
that is able to reliably and consistently discriminate
between correct and incorrect protein models. In particu-
lar, the quality of the protein structure is evaluated with
neural networks using as input 15 structural parameters,
which include solvent accessible surface, hydrophobic
contacts and secondary structure content. In the first sec-
tion of the paper, the neural network structure and the
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training procedure are presented and discussed. In the sec-
ond section, the performance of the neural network is
evaluated, compared to available methods, and critically
discussed.

Results and Discussion

The evaluation of the quality of protein structures is gen-
erally carried out calculating a score which is a function of
a set of parameter values computed for the protein model
under study. In our computational procedure, the descrip-
tion of the relation between the parameters space and the
scoring values is obtained using neural networks, because
of their ability to describe complex non-linear relation-
ships among data.

Selection of protein parameters related to structure
quality

Among the possible parameters that can be computed for
a protein structure, we have selected some properties that
are expected to be related to structure quality: solvent
accessible surface of hydrophobic and hydrophilic resi-
dues, secondary structure content, the fraction of second-
ary structure content of the model fitting with that
predicted by PSIPRED [30], number of hydrophobic con-
tacts, and selected PROCHECK parameters [27] (see
Methods for details). It should be noted that other possi-
bly relevant parameters, such as the number of hydrogen
bonds, have not been used due to intrinsic difficulties in
the normalisation of their values.

Selection of the parameters used to evaluate structure
similarity

A key issue for evaluating the quality of a predicted pro-
tein structure is the measure of its "distance" relative to
the "real" structure, experimentally obtained by X-ray dif-
fraction or NMR. Since AIDE has been developed to eval-
uate protein models that are often characterized by the
correct fold but may differ for local details, the backbone
root mean square deviation (RMSD) of the protein model
relative to the X-ray structure can be considered a suitable
measure of structure similarity [31]. In fact, it is well
known that the proper evaluation of the quality of protein
structures can be a non-trivial task, often depending on
the methods used to generate protein models. Therefore,
several other measures of protein structure similarity have
been formulated, the most commonly used being: GDT-
TS [32], LG-score [32], TM-score [33] and MaxSub [34],
which have also been adopted in the present work.

Selection and optimization of the neural networks

A preliminary evaluation of the relative importance of
each parameter in the description of structure quality was
obtained using a linear models built with the M5-prime
attribute selection algorithm [35], as implemented in
Weka 3.4.2 [36]. A different linear model was computed
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for each accuracy measure. Analysis of the linear models
revealed that the secondary structure content and the sol-
vent accessible surface have the highest importance in all
models. Moreover, results show that it is not possible to
exclude any parameter since non negligible weights are
associated to all selected parameters, when the accuracy
measures chosen are considered as a whole (Additional
File 1).

The neural networks forming the core of AIDE are four
layers feed forward neural networks with fifteen neurons
(corresponding to the selected parameters) in the input
layer, two hidden layers formed by two neurons each, and
one neuron in the output layer. A linear activation func-
tion was chosen for all neurons. Indeed, different combi-
nations of hidden layers (one or two) and different
numbers of hidden neurons per layer (from two to ten
nodes per layer) were tested. In addition, we tested also
different activation functions of the neurons (sigmoid,
log-sigmoid and linear functions). It turned out that,
among the different combinations, the neural network
featuring two hidden layers formed by two neurons gave
the best results. In fact, an increase in the number of neu-
rons led to poorer performances, probably due to the
increased difficulties in the optimization procedure aris-
ing from the augmented network complexity. To carry out
the optimization of neural networks, we have imple-
mented the attractive-repulsive particle swarm optimiza-
tion algorithm (AR-PSO) [37], as explained in Methods.
Training of the neural networks using more conventional
approaches (Gradient descent, Levenberg-Marquardt), led
to slightly lower performances (Additional file 2). This
may be due to the greater exploration ability that charac-
terize the PSO methods.

AIDE was trained and tested on datasets of all-atoms pro-
tein decoys for which the three-dimensional structures are
available. Since it is known that methods used for build-
ing decoys may introduce some systematic bias, it is
important to benchmark a scoring function on different
decoy sets in order to assess its generality. The overall
dataset used in the present study is composed by an
ensemble of widely used all-atom datasets containing
models of different proteins (4state-reduced, fisa, fisa-
casp3, rosetta all-atoms, CASP5, CASP7, Livebench2,
Imds, and hg-structal [19-21,38-40]), plus a molecular
dynamics set that was generated in our laboratory from X-
ray structures (see Methods).

After computation of the structural parameters to be
inserted in the neural networks, the overall dataset was
subdivided into a training and a test set, which were com-
posed by 13693 and 49126 structures, respectively. The
training-set includes only the proteins belonging to the
LiveBench2 and CASP7 decoy sets (13693 model struc-
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tures built on 96 different proteins). The test-set includes
the Imds, CASP5, hg_structal, MD, Rosetta and 4state-
reduced subsets (49126 models build on 97 proteins).
The LiveBench2 and CASP7 decoy sets were chosen as
training sets because they contain models build with dif-
ferent methods and of different protein size, ranging from
20 to 500 residues. No protein contained in the training
set is present also in the test set.

Then, a population of 50 neural networks was trained
starting from different initializations of the structural
parameters. The network featuring the best performance
(the highest correlation coefficient on the training set)
was selected as the working network in AIDE.

A different neural network was trained for each measure
of structure similarity chosen to evaluate proteins quality
(RMSD, TM-score, GDT-TS, LG-score and MaxSub).
Therefore, five different versions of AIDE were obtained
from the training procedure, referred to in the following
as AIDE RMSD, AIDE TM-score, AIDE GDT-TS, AIDE LG-
score and AIDE MaxSub.

Assessment of AIDE performance

The performances of the different version of AIDE have
been compared to results obtained from widely used
methods developed to evaluate protein models quality.

The performances of the different methods were evaluated
using a test-set which includes Imds, CASP5, hg_structal,
MD, Rosetta and 4state-reduced subsets. The LiveBench2
and CASP7 sets were already used for training AIDE and
therefore were not used in the comparative evaluation.

The Pearson correlation coefficient, Z,, and fraction
enrichment (F.E.), which give indications about a method
ability to assign good scores to good models, have been
computed and results are collected in Tables 1, 2, 3.

Analysis of Pearson correlation coefficients (Table 1)
shows that, according to this statistical indicator, the dif-
ferent AIDE versions behave quite similarly. Most impor-
tantly, average AIDE performances are similar or slightly
better than those obtained by two state-of-the-art meth-
ods such as ProQ [17] and Victor [15]. It is also notewor-
thy that the performance of AIDE changes significantly
moving through the different subsets forming the test-set.
In particular, very high correlation coefficients are
obtained with the MD and hg_structal datasets (correla-
tion coefficient in the range 0.61-0.89 and 0.48-0.73,
respectively), whereas low values of Pearson coefficients
are associated to the CASP5 dataset (0.15-0.38). Rela-
tively different values of Pearson correlation coefficients
are obtained also with ProQ and Victor. In particular, and
differently from AIDE, low correlation coefficients are
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Table I: Pearson correlation coefficients. For each dataset belonging to the test-set the Pearson correlation coefficient between the
predicted and the computed values is reported. The performance of AIDE is compared to that of ProQ and Victor/FRST validation

softwares.
Imds 4state_reduced CASP5 fisa MD hg_structal ROSETTA average
AIDE RMSD 0.39 0.42 0.15 0.63 0.6l 0.69 0.27 0.45
AIDE TM-score 0.39 0.32 0.38 0.48 0.89 0.70 0.43 0.51
AIDE GDT-TS 0.45 0.34 0.28 0.58 0.77 0.73 0.44 0.51
AIDE LG-score 0.52 0.31 0.22 0.29 0.77 0.48 0.38 0.42
AIDE MaxSub 0.39 0.34 0.36 0.55 0.73 0.70 0.40 0.49
ProQ LG-score 0.20 0.62 0.48 0.18 0.81 0.80 0.06 0.45
ProQ MaxSub 0.15 0.48 0.39 0.14 0.77 0.76 0.05 0.39
Victor GDT-TS -0.29 -0.53 -0.29 -0.05 -0.78 -0.75 -0.23 -0.41

obtained by ProQ for the Rosetta subset, and by Victor for
the fisa subset (Table 1). The factors responsible for such
non-homogeneous performances of the methods, when
applied to different datasets, could not be unrevealed and
might require further dissection of the test-set. In light of
these results and observations it can be concluded that,
even if the overall performances of AIDE, ProQ and Victor
are similar, these methods can behave very differently on
protein models obtained using different approaches, sug-
gesting that the combined use of AIDE, ProQ and Victor
could be useful to properly evaluate the quality of a pro-
tein structure.

Analysis of F. E. values (Table 2) shows again quite similar
overall performances of AIDE, ProQ and Victor. However,
the average F. E. values obtained using ProQ are consist-
ently higher (by 5-10%)) relative to the corresponding val-
ues obtained with Victor and AIDE. A more detailed
analysis of F. E. values obtained from the different subsets
composing the test set highlights some interesting trends.
F. E. values obtained from the Imds and fisa subsets are
consistently lower than the average. Moreover, AIDE and
ProQ versions trained using different parameters to evalu-
ate structure similarity can give quite different results. The
latter observation is particularly evident for the Imds sub-
set. It is also interesting to note that the best performances
on the different subsets forming the test set are often
obtained by different methods. As an example, the best F.

E. values for the fisa subset are obtained using AIDE,
whereas the best values for the hg structal subset are
obtained with ProQ, further suggesting that the combined
use of the different methods can be a good strategy to
obtain a more confident evaluation of the quality of a pro-
tein structure. Z, ,, allows to evaluate how (and if) the dif-
ferent methods distinguish the native (X-ray) structure
from the ensemble of its models (Table 3). In this case it
was possible to extend the comparison to other methods
widely used to evaluate protein structures quality (Errat,
Prosa Il and Verify 3D). Only the Imds and 4state_reduced
subsets have been used in this comparison because these
are the only datasets in common among all the compared
methods for which data are available. Analysis of Z,, val-
ues reveals that ProQ and Victor have better performances
in this statistical test, whereas AIDE results are generally
comparable to those obtained with Errat, Prosa Il and Ver-
ify 3D. Notably, very low Z,,, scores are obtained using
AIDE RMDS and AIDE LG-score on the 4state_reduced
subset.

It should be noted that Z,,, and F.E. do not give informa-
tion about the ability of a method to assign low scores to
bad models, i. e. these statistical indicators do not allow
to check if a method is confusing different classes. To
explore this issue we have qualitatively compared AIDE
and ProQ performances, superposing the ROC plots (see
Methods) computed on the test-set for each different per-

Table 2: 10%-fraction enrichment. The 10%-fraction enrichment is shown for each dataset belonging to the test-set. The performance
of AIDE is compared to that of ProQ and Victor/FRST validation softwares.

CASP5

fisa MD

Imds 4state_reduced hg_structal ROSETTA average
AIDE RMSD 15.20 42.58 37.10 25.00 48.19 43.67 20.80 33.22
AIDE TM-score 1.84 31.18 34.84 19.50 72.29 44.82 26.49 32.99
AIDE GDT-TS 2.07 32.68 29.86 11.50 72.28 50.57 25.29 32.03
AIDE LG-score 25.80 34.40 31.67 17.52 67.47 42.53 29.96 35.62
AIDE MaxSub 322 33.54 35.29 10.00 73.49 44.82 24.12 32.06
ProQ LG-score 18.30 54.78 39.59 12.50 72.45 7471 13.30 40.80
ProQ MaxSub 1.95 52.84 45.24 12.00 65.86 67.84 43.69 41.34
Victor GDT-TS 14.40 42.57 28.50 4.0 63.85 54.02 11.61 31.27
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Table 3: Z, .. Comparison of Z,, values obtained using AIDE and

other protein structure validation softwares. ProQ values have
been obtained from Ref. 17.

Imds 4state_reduced
AIDE RMSD 2.4 0.5
AIDE TM-score 34 2.9
AIDE GDT-TS 35 3.1
AIDE LG-score 2.0 1.6
AIDE MaxSub 3.1 3.1
ProQ LG-score 39 4.4
ProQ MaxSub 1.8 3.5
Victor GDT-TS 35 4.4
Errat 3.1 2.5
Prosa Il 2.5 2.7
Verify 3D 1.4 2.6

formance function (Figure 1). According to this analysis,
ProQ MaxSub exhibits the greatest overall accuracy,
whereas AIDE GDT-TS has the lowest accuracy.

Considering the different AIDE versions, a clear distinc-
tion can be observed when comparing the overall accu-
racy of AIDE RMSD and AIDE MaxSub relative to AIDE
LGscore, AIDE GDT-TS and AIDE TMscore (Figure 1).
Notably, a similar difference was not evident when con-
sidering the correlation coefficients or the fraction enrich-
ment test. It is also important to note that AIDE LGscore
behaves very similarly to ProQ LGscore until about 60%
of sensitivity, whereas at higher sensitivity levels AIDE
outperforms ProQ LGscore. These observations further
corroborate the hypothesis that the combined use of ProQ
and AIDE should give improved results in the evaluation
of the quality of three-dimensional protein models.

The web interface of AIDE

The availability of five different AIDE versions gives a nice
picture of the overall performance of the method. How-
ever, the overloading of output information can become a
drawback for the user interested only in the most relevant
results. In fact, the analysis of AIDE performance has
shown that the five different versions of AIDE are gener-
ally characterised by similar behaviour (see Table 1, 2, 3).
To better evaluate the degree of correlation among differ-
ent AIDE versions we have carried out a principal compo-
nent analysis on the Pearson correlation matrix of the
descriptors chosen to evaluate models quality. This analy-
sis reveals a strong correlation between TM-score, GDT-TS
and MaxSub. The different clustering of TM-score, GDT-TS
and MaxSub relative to RMSD and LG-score is mainly due
to the inverse relationship between the two families(Addi-
tional files 3 and 4). Therefore, two (GDT-TS and the Max-
Sub) of these highly correlated parameters have been
excluded from the output of the AIDE program available

http://www.biomedcentral.com/1471-2105/9/66
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ROC plots. Comparison of AIDE and ProQ as obtained
using a receiver operating characteristic (ROC) plot com-
puted on the complete test-set (Imds, CASP5, hg_structal,
MD, Rosetta and 4state-reduced datasets). Each line repre-
sents the ROC curve obtained with a specific AIDE or ProQ
version. The ProQ MaxSub and the ProQ LG-score are plot-
ted as solid:red and dashed:green line, respectively. The dif-
ferent AIDE versions are plotted as follow: GDT_TS
dashed:blue; LG-score dotted:purple; MaxSub dashed-dot-
ted:cyan; RMSD dashed-dotted:yellow; TM-score
dashed:black.

on the Internet [41]. Moreover, to help the user in the
evaluation of AIDE results, we have defined a threshold
for each predicted parameter, in order to discriminate
between incorrect and correct models. In particular, cor-
rect models should have TM-score > 0.31, RMSD < 4.96 A
and LG-score < 0.35. These thresholds were chosen using
a dataset of manually assessed models composed by some
CASPS5 targets belonging to the new fold and fold recogni-
tion categories. According to the visual evaluation of Aloy
and coworkers [42], the models were divided into three
class: class 2 ("excellent") when the overall fold is correct,
class 1 ("good") when the model is considered partway to
the correct fold, and class O for all the other models. For
each model, the TM-score, LG-score and RMSD were com-
puted (Additional files 5, 6, 7) and the average value for
the models belonging to the "excellent" class was used as
threshold. To further evaluate the classification ability
using the chosen thresholds, the sensitivity and the specif-
icity based on the ROC plots were also computed (Addi-
tional file 8).

Conclusion

In this paper we have presented AIDE, a neural network
system which is able to evaluate the quality of protein
structures obtained by prediction methods.
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AIDE differs from other evaluation methods mainly for :
i) a different choice of the parameters used to describe the
protein structure, ii) a different choice of the parameters
related to structure quality, iii) a novel strategy used to
optimize the neural networks. AIDE overall performances
are comparable to recently published state of the art meth-
ods, such as ProQ [17] and Victor [15]. However, detailed
comparative analysis of results obtained using AIDE,
ProQ and Victor reveals that the three methods have dif-
ferent and often complementary ability to properly assess
the quality of protein structures. This observation suggests
that the combined use of AIDE, ProQ and Victor could
increase the reliability in the evaluation of protein struc-
tures quality. AIDE is presently available on the Internet
[41].

Methods

Protein datasets

The 4state-reduced set is an all-atom version of the mod-
els generated by Park & Levitt [19] using a four-state off-
lattice model.

The fisa and fisa-casp3 sets contain decoys of four small
alpha-helix proteins. In these sets main chains were gen-
erated using a procedure of fragment insertion based on
simulated annealing: native-like structures were assem-
bled from a combination of fragments of known unre-
lated protein structures characterized by similar local
sequences, using Bayesian scoring functions [20]. The side
chains of fisa and fisa-casp3 were modeled with the soft-
ware package SCWRL [43].

The hg-structal is a set of hemoglobin models generated
by homology modelling.

The Imds subset [19,44] was produced by Keasar and Lev-
itt by geometry optimizations carried out using a complex
potential that contains a pairwise component, as well as
cooperative hydrogen bonds terms. The Rosetta all-atom
decoys were generate with the ROSETTA method devel-
oped by David Baker [21]. The molecular dynamics set of
decoys was generated by molecular dynamics (MD) simu-
lations carried out in vacuum with the software
GROMACS 3.2 [45,46]. Each protein structure was sub-
mitted to 100 ps of simulation using the OPLS force field
[47]. MD simulations were performed in the NVT ensem-
ble at 600 K, using an external bath with a coupling con-
stant of 0.1 ps [48]. The LINCS algorithm [49] was
adopted to constrain bond lengths of heavy atoms, allow-
ing us to use a 2 fs time step. Van der Waals and Coulomb
interactions were truncated at 8 A, while long-range elec-
trostatics interactions were evaluated using the particle
mesh ewald summation scheme [50]. The Van der Waals
radii were increased to 4 A for all atoms, in order to speed
up the unfolding process [51].

http://www.biomedcentral.com/1471-2105/9/66

Snapshots from the trajectory have been extracted every
0.4 ps, collecting 250 misfolded structures for each pro-
tein, with a backbone RMSD (root mean square deviation
between the initial structure and each snapshot) ranging
from 0 to about 10 A.

In addition to these decoy datasets, the CASP5 [38],
CASP7 [39] and LiveBench2 [40] sets were also included.

The complete dataset contains 62819 protein models
build on 193 proteins.

Training-set and test-set

The dataset was splitted into two disjoint sets : a training-
set and a test-set. The training-set includes only proteins
belonging to the LiveBench2 and CASP7 decoys sets
(13693 model structures built on 96 different proteins).
The test-set includes the Imds, CASP5, hg structal, MD,
Rosetta and 4state-reduced datasets (49126 models build
on 97 proteins).

Parameters-Descriptors used in the neural network
The relative solvent accessible surface (rSAS) was com-
puted as follow:

SAS hydrophobic
TSAShydmphobic = S/)\/S . i ;
ota
SAShydrophilic
rSAShydrophilic = S A); . f I
ola

where the residues A, L, V, [, P, F, M, W were considered as
hydrophobic and the SAS,,,,; is the total solvent accessible
surface computed using NACCESS [52].

The secondary structure was evaluated with the DSSP pro-
gram [53], in which the typical 8-state DSSP definition
was simplified according to the following rules : H and G
to helix, E and B to strand and all other states considered
as coil, in agreement with PSIPRED definition [30].

The fraction of secondary structure (SS) is defined as:

ss =55 4100,
N

where n is the number of residues located in well-defined
secondary structure elements, and N is the number of pro-
tein residues.

The secondary structure for each decoy was also compared
with the corresponding secondary structure predicted by
PSIPRED. Accordingly, the relative consensus secondary
structure (SSc) was defined as the ratio:
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ss¢ = ¢ «100,
N

where n_is the number of residues located in correspond-
ing secondary structure elements according to DSSP defi-
nition and PSIPRED secondary structure prediction.

Generally, native structures are characterized by hydro-
phobic residues clustered in buried regions. Therefore, the
number of contacts between hydrophobic residues was
chosen as a possible relevant parameter to discriminate
among correct and incorrect models. According to our
definition, a contact is present if the distance between two
residues is greater than 2.5 A and lower or equal to 5 A
[54]. Given n hydrophobic residues, the number of hydro-
phobic contacts (Q) is normalized relative to the number
of all possible contacts:

__2Q
Q= n(n-1)!"

Moreover, to keep into account the stereochemical quality
of the model, some PROCHECK parameters were consid-
ered (Table 4).

Model accuracy measures

Quality of protein models was evaluated by means of five
different descriptors, using the crystal structure as refer-
ence: RMSD on the backbone atoms, TM-score [33], GDT-
TS [32], LG-score [32] and MaxSub [34]. RMSD was com-
puted on the backbone atoms after superposing the
model structure on the crystal structure, using the pro-
gram CE [55].

TM-score was developed to evaluate the topology similar-
ity of two protein structures [33]. TM-score values fall into
the interval [0, 1]. Scores equal or below 0.17 indicate that
the prediction has a reliability compared to a random
selection from the PDB library.

http://www.biomedcentral.com/1471-2105/9/66

GDT-TS gives an estimation of the largest number of resi-
dues that can be found in which all distances between the
model and the reference structure are shorter than the cut-
off D. The number of residues is measured as a percentage
of the length of the target structure. The values of GDT-TS
fall into the interval [0-1], with a GDT-TS of 1 corre-
sponding to perfect superposition.

The LG-score represents the significance (P-value) of a
score (S str [56]) associated to the best subpart of a struc-
tural alignment between the model and the correct struc-
ture. The value is measured by using a structural P-value
ranging from 0 to 1, with a value of 0 corresponding to
optimal superposition.

MaxSub is calculated from the largest number of residues
that superimpose well over the reference structure, and
produces a normalized score that ranges between 0 and 1.
A MaxSub value of 1 is associated to perfect superposition.

Neural network

Four layers feed forward neural networks were used, with
fifteen neurons in the input layer, two neurons in two hid-
den layers and one neuron in the output layer. A linear
activation function was chosen for all neurons.

For each accuracy measure chosen to evaluate proteins
quality (RMSD, TM-score, GDT-TS, LG-score and Max-
Sub) a different neural network was trained.

The inverse of the Pearson correlation coefficient (CC)
between the true and the predicted data was used as per-
formance function.

-1
(=) T (y-11y)

-1 _
e = (M-1)otoy

where t is the vector of predicted values for each decoy, y
is the vector of true values, 4, o, u, o,are the averages and

Table 4: PROCHECK parameters. PROCHECK parameters used in AIDE. The G-factor, which is a log-odds score based on the

observed distributions of stereochemical parameters, provides a measure of how "normal"”, or alternatively how "unusua

stereochemical property is.

, a given

Parameter

Percentage of residue in Ramachandran plot core regions

Percentage of residue in Ramachandran plot allowed regions
Percentage of residue in Ramachandran plot generously allowed regions
Percentage of residue in Ramachandran plot disallowed regions
Number of bad contacts

G-factor for dihedral angles

G-factor for covalent bonds

Overall G-factor
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the standard deviations of predicted and true values,
respectively, and M is the number of decoys.

Optimization of neural networks was carried out using
the attractive-repulsive particle swarm optimization algo-
rithm (AR-PSO) [37], which is a modification of the orig-
inal PSO method [57,58]. PSO is a stochastic population-
based optimization approach which explores the hyper-
dimensional parameters space of a population of candi-
date solutions named particles. Particles fly over the solu-
tion space looking for the global optimum. Each particle
retains an individual memory of the best position visited
and a global memory of the best position visited by all the
particles.

A particle calculates its next position combining informa-
tion from its last movement, the individual memory, the
global memory and a random component.

The PSO updating rule is described as follow:

_ best
{vi,tﬂ = uv +cy(wiy

Wi =W TV

lobal
—w;,)+c(wf™ —w;,)

in which w;

. .1 Tepresents the position vector of the parti-

best

cleiattime (i.e. the neural network weights), w;" is the

best position identified by the particle i so far (i.e. the neu-
ral network weights associated with the best performance

global

value) and w; is the best position identified among

all the particles. The vector v represents the particles veloc-
ity, which is computed as the difference between two posi-
tions and assuming unitary time.

best

The term (w;” - w; ,) represents the individual memory

component and (wg® - w; ) is the global one. These
two terms are rescaled by the random coefficients ¢, and
c,, respectively. The u coefficient is used to rescale the

velocity.

Starting particle positions and velocities were initialized at
random. To reduce the problem of premature conver-
gence to relative minima, the Attractive-Repulsive modifi-
cation has been introduced [37]. This modification
defines a measure of global diversity (D) among the parti-
cles as:

http://www.biomedcentral.com/1471-2105/9/66

where S is the number of particles in the swarm, N is space
dimension (the number of networks weights) and w; is

the average of the parameter j among the particles.

If D falls below a minimal threshold (¢,,,) the update rule
is inverted as follow

b lobal
Vi = MV (_l)cl(wifsz - wi,l) + (_1)Cz(w;go “ - wi,[)
Wil = Wi Vi

causing the particles to spread in the phase space. If D
reaches a maximal threshold (t,,) the update rule is
restored as in the standard PSO method. We choose t,,;, =
0.1 and ¢,,,, = 5.0.

The parameters c1, ¢2 and g were set as in the original PSO
method as c1 =¢2 € [0.0, 2.0] and g = 0.7298. The maxi-
mum number of iterations was set to 10000. A population
size of 5 particles was chosen. It should be noted that
standard training algorithms such as gradient descent
back-propagation, Levenberg-Marquardt and BFGS, led to
poorer results when compared to the particle swarm opti-
mization (data not shown).

Statistical analysis

The following statistical parameters were used: Pearson
correlation coefficient, already described in the neural
network section, fraction enrichment (F.E.) and Z_nat.

Fraction enrichment (F.E.) is defined as the fraction of the
top 10% conformations featuring best structural resem-
blance to the native structure among the top 10% best
scoring conformations.

Z,.: is the Z-score of the X-ray structure compared to the
ensemble of decoys structures. It is computed using the
following equation:

_ Scorengtive — Hdecoys
nat —

O decoys

Higher Z, , values correspond to higher capacity to dis-
criminate between the native structure and the corre-

sponding decoys.

The Receiver Operating Characteristic (ROC) graph is a
plot of all sensitivity/specificity pairs resulting from con-
tinuously varying the decision threshold over the range of
results observed. The sensitivity or true positive fraction is
reported on the y-axis, while the x-axis represents the 1-
specificity or true negative fraction. A test with perfect dis-
crimination (no overlap between the two distribution of
results) has a plot curve that passes through the upper left
corner, where both specificity and sensitivity are 1.00. The
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ipotetical plot of a test with no discrimination between
the two groups is a 45° line going from the lower left to

the upper right corner.

Qualitatively, the closer the plot is to the upper left corner,

the higher the overall accuracy of the test.
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