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Abstract
Background: The reconstruction of genetic regulatory networks from microarray gene
expression data has been a challenging task in bioinformatics. Various approaches to this problem
have been proposed, however, they do not take into account the topological characteristics of the
targeted networks while reconstructing them.

Results: In this study, an algorithm that explores the scale-free topology of networks was
proposed based on the modification of a rank-based algorithm for network reconstruction. The
new algorithm was evaluated with the use of both simulated and microarray gene expression data.
The results demonstrated that the proposed algorithm outperforms the original rank-based
algorithm. In addition, in comparison with the Bayesian Network approach, the results show that
the proposed algorithm gives much better recovery of the underlying network when sample size
is much smaller relative to the number of genes.

Conclusion: The proposed algorithm is expected to be useful in the reconstruction of biological
networks whose degree distributions follow the scale-free topology.

Background
The reconstruction of genetic regulatory networks based
on microarray gene expression data is one of the most
challenging tasks in bioinformatics. The genetic regula-
tory relationship considered here will be restricted to what
might be observed in a microarray experiment: a change
in the expression of a regulator gene modulates the
expression of a target gene mainly via protein-DNA inter-
actions besides other types of interactions, such as pro-
tein-protein interaction. Various approaches have been
proposed to this problem, such as Boolean Network and
Bayesian Network approaches [1-10], differential equa-
tions and steady-state models [11-15], and other statisti-

cal and probabilistic methods [16-27]. Each method has
its own strengths and weakness [28], however, very few
has been considered superior to the others mainly because
of the intrinsically noisy property of the data, 'the curse of
dimensionality', and the unknown 'true' underlying net-
works. Various scoring metrics and searching heuristics
were proposed in [9] within the Bayesian Network (BN)
framework. It was shown that a large amount of data is
required in order to have a good recovery of the underly-
ing network. This requirement is easily satisfied in a sim-
ulated environment; however, it is unlikely to be met for
biological applications. Efforts such as incorporating het-
erogeneous biological data in network reconstruction
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have been witnessed to improve the accuracy of the net-
works [29-35].

As pointed out in [36-38], large scale networks, such as
the Internet and the scientific collaboration network,
show the scale-free property, i.e., the connections or edges
in the networks follow the power law distribution. Many
biological networks, including transcription regulatory
networks, fall into this category. So far there is little
research that has explicitly explored this important prop-
erty to facilitate the learning of genetic networks from
gene expression data. One recent study imposed the scale-
free constraint on structure in network inference based on
the S-system model [39]. They investigated the perform-
ance with a simulated small scale time-course data. On
the other hand, different mechanisms have been
employed to explain the formation of the scale-free prop-
erty in large scale networks other than biological net-
works. Most of the suggested models relate to Preferential
Attachment [36]. In contrast to modeling network grow-
ing, a model with fixed number of nodes and links was
proposed recently [40]. By applying local rewiring moves,
the network can reach equilibrium states which have the
power law degree distribution. Different mechanisms also
were proposed to explain specific properties of different
types of networks, such as genetic regulatory networks and
the World Wide Web [41].

In this study, we proposed a network reconstruction algo-
rithm that takes into account the scale-free network topol-
ogy based on a modification of the Symmetric-N algorithm
originally developed in [42]. The Symmetric-N algorithm
was used to construct co-expressed gene networks which
showed scale-free topology. It was also recently incorpo-
rated as a major component in their Nearest Neighbor
Network algorithm for clustering expression data for gen-
erating functionally coherent clusters [43]. Both our mod-
ified and the original algorithms were evaluated on
simulated data sets and a 102-gene set of microarray gene
expression data from a study of the Saccharomyces cerevi-
siae yeast cell cycle [44]. Compared with the original algo-
rithm, the proposed algorithm demonstrated promising
capability in recovering the underlying network structure.
The results of our algorithm were further compared with a
previous study based on the BN approaches [9]. Our algo-
rithm performed much better on the simulated data when
the sample size is small compared with the number of var-
iables, as is most of the currently available microarray
expression data.

Results
Proposed algorithm
Our algorithm is a modification of the algorithm for net-
work construction proposed in [42]. The algorithm in
[42] is based on the concept of N-nearest-neighbor and

consists of two steps. This algorithm (we name it Symmet-
ric-N) is presented in the 'Methods' section. In the first
step, for each node in the network, all other nodes are
sorted according to the magnitude of correlations of gene
expression in descending order. These nodes are consid-
ered as potential neighbors. In the second step, each pair
of nodes is investigated. If they are both in each other's N
nearest neighbors, a connection between them is made.
Otherwise, they are not connected. Here N is a prescribed
number for the size of neighbors.

By using the Symmetric-N algorithm, Agrawal [42] con-
structed co-expressed gene networks from several pub-
lished gene expression data sets and found that the gene
networks had small-world characteristics and became
scale-free when N was above certain threshold. It was
shown that this algorithm was able to uncover the scale-
free topology, however, no analysis was provided on bio-
logical relevance of the co-expressed networks in the
study. The major characteristic of a scale-free network is
that a few nodes with much higher degrees of connections
act as the core of the network and other nodes with much
fewer connections act as the periphery of the network. In
biological networks such as genetic regulatory networks,
the transcription factors (TFs) are more likely to regulate
multiple target genes and therefore have more connec-
tions compared to those non-TFs. On the other hand, the
non-TF genes are only regulated by a few TFs. These obser-
vations suggest that the sizes of neighbors for the core and
periphery nodes should generally not be equal. This phe-
nomenon motivated a modification of the algorithm Sym-
metric-N so that the unequal neighbor sizes of the core
and periphery nodes can benefit the network construc-
tion. In step 2 of the Symmetric-N algorithm, instead of
using the same N neighbors for all the nodes, a larger
number NC is assigned to a core node and a smaller
number NP is assigned to a periphery node. If a periphery
node is within the NC nearest neighbors of a core node
and the core node is within the NP nearest neighbors of
the periphery node, then a connection is made between
them. Since the ranges of potential neighbors are different
for these two types of nodes, the proposed algorithm is
named Asymmetric-N. Details of the algorithm are pre-
sented in the 'Methods' section.

Computation study
The original algorithm Symmetric-N and our modified
algorithm Asymmetric-N were evaluated with both simu-
lated gene expression data and microarray gene expression
data related to yeast cell cycle. Details on the microarray
data, the construction of the simulated networks, and their
node degree distributions are presented in the 'Methods'
section. Two simulated datasets were derived from a 100-
node network and a 20-node network, respectively. The
underlying scale-free network for the 100-node network
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has 10 core nodes and 90 periphery nodes. The directions
of edges are more likely to be from core nodes to periphery
nodes. The 20-node network was constructed in a similar
way. The criteria used to evaluate the performance of the
algorithms on the simulated data include recall, precision
and F-Score. Recall is defined as the ratio of the number of
true edges found in the reconstructed network to the
number of total edges in the underlying network. Precision
is defined as the ratio of the number of true edges found in
the reconstructed network to the number of total edges
found in the reconstructed network. F-Score is defined as
2*recall*precision/(recall + precision).

The microarray data include 102 gene expression tempo-
ral profiles observed over 18 time points derived from the
yeast cell cycle gene expression data [44]. For this study,
the 'true' interactions were derived from the database of
Pathway Studio [45] by submitting the list of genes and
querying for instances of published interactions between
these genes limited to interaction types 'expression' and
'regulation'. One hundred seventy one published interac-
tions were found for this 102-gene set. It should be noted
that this is not a so-called 'golden standard' set for a true
evaluation of the learning outcome. We report the per-
centage of the published edges out of the total edges in the
reconstructed network, as the criteria used for the simu-
lated datasets would be inappropriate for this microarray
dataset because of the unknown or incomplete 'true' net-
work. For the examination of biological relevance of the
predicted edges, we report the percentage of edges whose
nodes (genes) share a common Gene Ontology (GO) Bio-
logical Process (BP) annotation from the Saccharomyces
Genome Database (SGD) GO Slim mapper [46]. Gener-
ally, two genes or gene products with a common GO BP
annotation are considered likely to interact with each
other.

In addition, γ in P(k) ~ kγ of the node degree distribution
in the constructed network and the fitness of the distribu-
tion, measured by the Coefficient of Determination (R2),
were used for the evaluation of the network structure. The
parameters γ and R2 were computed with the fit() function
in Matlab (see the 'Methods' section for more details of
the fit() function). Both F-score and R2 range between 0
and 1. For a good recovery of the network, F-Score is
expected to be high; γ is expected to be close to the γ of the
underlying network; and R2 is expected to be high. For the
100-node network, γ = -1.22 and R2 = 0.96 for mixed-
degree distribution; for the 102-gene network formed
with the published interactions from the Pathway Studio,
γ = -1.22 and R2 = 0.93 for mixed-degree distribution.

Experiment with simulated data
For each underlying network, 10 different sets of gene
expression profiles were generated for a fixed number of

samples (time points) and results obtained from the algo-
rithms were averaged.

The 100-node network
Figure 1 shows the results obtained from the Symmetric-N
algorithm on the 100-node network. In panel (a), when
the number of samples S is fixed at 25, as the number of
possible neighbors N increases, recall increases, precision
decreases and the F-Score first increases (up to N = 9) and
then decreases (from N = 9 to N = 10). This is because that
as N increases, pairs of nodes become more likely to be in
each other's neighborhood and thus become more likely
to be included. This leads to more true edges in the recon-
structed network at the cost of including more edges and
decreasing precision. Similarly, as N becomes larger, γ
tends to drastically deviate from -1.22, the γ of the under-
lying network, in panel (b); the reconstructed network
becomes less scale-free. Here we chose γ from the mixed-
degree distribution since the reconstructed network is
directionless.

In panel (c), while the number of neighbors is fixed (N =
5 in this example), increasing the number of samples will
generally improve both recall and precision, therefore also
F-Score. This result is expected since more observations
usually lessen the 'curse of dimensionality', and agrees
with the previously published results [9]. The parameter γ
in panel (d) is still far from the true value (γ = -1.22) as the
number of samples increases.

Figure 2 presents the results when applying the Asymmet-
ric-N algorithm to the 100-node network. Different from
the Symmetric-N, the number of neighbors of the core
nodes and the periphery nodes were set unequal. Note
that there could be different combinations of NC and NP.
The values reported in Figure 2 are the ones that achieved
the best results according to F-score and γ. However, the
behavior of the algorithms is similar regardless of the
choice of values for NC and NP.

In panel (a), we see the trends of recall, precision and F-
Score when fixing the number of samples (S = 25) and the
number of neighbors for the periphery nodes (NP = 2)
while varying the number of neighbors for the core nodes
(NC). All the three measurements increase as NC increases,
which implies that the inclusion of more neighbors for
the core nodes generally improves the performance of the
algorithm. Similarly, increasing the number of neighbors
for the core nodes makes γ move toward -1.22 as observed
in panel (b). Better results with larger NC for core nodes
are consistent with the fact that TFs usually regulate a large
number of genes.

In panel (c), S and NC are fixed at 25 and 91 respectively,
and NP varies. The trends of the three curves show some
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different patterns compared with those in panel (a): recall
increases while precision decreases and F-Score decreases
very gently, which means that more false edges are
included than true edges when increasing the number of
neighbors NP. Similarly, the structure of the network
becomes drastically different from the underlying struc-
ture as the number of neighbors for the periphery nodes
increases (γ deviated from -1.22 when Nc > 2 in panel
(d)). Therefore, this implies periphery nodes should have
very few neighbors. This phenomenon is consistent with
the fact that non-TF nodes are usually regulated by a few
TFs. Similarly, as observed for the Symmetric-N algorithm,
when fixing NC and NP, the increase of S improves the per-
formance of the algorithm for all the three criteria (panel
(e)) and the structure of the reconstructed network

becomes closer to that of the underlying network (panel
(f)).

The performance of Symmetric-N and Asymmetric-N can be
compared by examining Figures 1 and 2. When the
number of samples is fixed (S = 25) while numbers of
neighbors vary, comparing results in panel (a) of Figure 1
with those in panels (a) and (c) of Figure 2, the Asymmet-
ric-N algorithm performs much better than the Symmetric-
N algorithm in terms of F-Score, when the number of
neighbors for the core nodes is large and the number of
neighbors for periphery nodes is small. It is also true for γ
by comparing panel (b) of Figure 1 with panels (b) and
(d) of Figure 2. The same phenomenon is observed when
numbers of neighbors are fixed while number of samples

Results for the Symmetric-N algorithm with the 100-node simulated networkFigure 1
Results for the Symmetric-N algorithm with the 100-node simulated network. Panels (a) and (b) show the results when sample 
size S is fixed (S = 25) while the number of neighbors N is varying. Panels (c) and (d) show the results when N is fixed (N = 5) 
while S is varying. The upper panels (a) and (c) show the results for Recall, Precision and F-Score. The lower panels (b) and (d) 
show the results for γ and R2. The parameter pair <γ, R2> for the underlying network structure are <-1.27, 0.96> for in-degree 
distribution, <-1.61, 0.97> for out-degree distribution, and <-1.22, 0.92> for mixed-degree distribution, respectively.
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changes (comparing panel (c) in Figure 1 with panel (e)
in Figure 2, panel (d) in Figure 1 with panel (f) in Figure
2, respectively). The reason is that in the Symmetric-N
algorithm all the nodes are treated equally while in Asym-
metric-N algorithm different types of nodes (core and
periphery) are distinguished, which reflects biological
expectations more closely. Thus the improved perform-
ance is expected. In summary, Asymmetric-N algorithm
outperforms significantly the Symmetric-N algorithm pro-
posed in [42].

The 20-node network
We compared the proposed algorithm with some other
methods currently used for the reconstruction of tran-
scription regulatory networks. The experiments of Yu et al.
[9] was selected because our simulated profiles were gen-
erated following their procedure, though our networks
possess the scale-free property while no structure was

assumed in theirs. They applied the BN method to 10 sim-
ulated small networks each with 20 nodes, with the
number of samples ranging from 25 to 5,000. A recall-
imprecision curve was used to show the performance when
the number of samples increases (imprecision = 1 - preci-
sion). Here, a recall-imprecision curve for the Asymmetric-N
algorithm is drawn for a 20-node network (Figure 3). The
largest number of samples is 1,000 in our study. To better
appreciate the performance, the precision curve (1 - impre-
cision) is shown as well.

It is not surprising that recall increases with the number of
samples. Imprecision, however, increases first and then
decreases. It is not clear why this happens and needs fur-
ther investigation. Fixing at the sample size of S = 25, F-
Score is 0.23, which is better than 0.16 (this number is
inferred from Figure 4 in [9]) obtained from the BN
method [9]. At larger sample sizes such as 500 and 1,000,

Results for the Asymmetric-N algorithm with the 100-node simulated networkFigure 2
Results for the Asymmetric-N algorithm with the 100-node simulated network. Panels (a) and (b) show the results when S and 
NP are fixed (S = 25, NP = 2) while NC is varying. Panels (c) and (d) show the results when S and NC are fixed (S = 25, NC = 91) 
while NP is varying. Panels (e) and (f) shows the results when NC and NP are fixed (NC = 91, NP = 2) while S is varying.
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the BN approach performs much better. This is reasonable
because that the BN method is statistically rigorous and it
benefits when more samples are available. However,
when only limited samples are available, as is the case in
most of the currently available microarray data, our
approach may perform better.

Experiment with the yeast cell cycle microarray data
The results obtained from our Asymmetric-N algorithm
with different choices of correlation matrices are summa-
rized in Table 1. Results of several combinations of NC and
NP are illustrated. The γ and R2 values, e.g., γ = -0.96 and
R2 = 0.79, deviate far from their counterparts for the
underlying network with γ = -1.22 and R2 = 0.93. This is in
contrast to the results that the structural parameters of the
reconstructed network are close to their counterparts of
the underlying network with the simulation data. The
main reason for the inconsistency is that the underlying
network in this real dataset is incomplete. The γ and R2

values for these two networks, namely, the network
formed with published interactions and the reconstructed
network, might both deviate from those of the real gene
interaction network at work in the yeast cell cycle, for
which our understanding is still incomplete.

As the gold standard or 'true' network is unknown or
largely incomplete for this real microarray expression
dataset, using criteria such as recall and precision to evalu-
ate the performance of the reconstruction algorithms is
inappropriate and likely to be misleading. There is an
emerging tendency recently to take biological context into
consideration when dealing with functional genomic data
[47-49]. By incorporating biological context information

into the data integration process and the network recovery
procedure, Myers et al. [49] demonstrated that the utiliza-
tion of such an important source yielded dramatic benefit
comparing with their earlier work which only used prior
knowledge of gene function but did not particularly
exploit biological context. In general, most experiments
are designed with the goal of investigating a particular
biological process in mind [49]. Consequently, it is both
necessary and important to inspect the related biological
process information when checking the validity of the pre-
dicted interactions in a network, especially for situations
where gold standard is not available or incomplete. In this
study, for the biological relevance of the predicted edges,
we report the percentage of edges whose nodes or genes
share a common GO BP annotation from the SGD GO
Slim mapper [50]. In general, the probability for two
genes or gene products to interact with each other is high
if they belong to the same biological process.

The 100-node simulated network and its node degree distri-butionsFigure 4
The 100-node simulated network and its node degree distri-
butions. Core nodes are the 10 nodes that form the initial 
network. Periphery nodes are the remaining nodes that are 
(preferentially) attached (see 'Methods' – 'Dataset' section 
for more details).

Recall, precision and imprecision curves obtained with the Asymmetric-N algorithm for the 20-node simulated network when NC and NP are fixed (NC = 17, NP = 1) while S is varyingFigure 3
Recall, precision and imprecision curves obtained with the 
Asymmetric-N algorithm for the 20-node simulated network 
when NC and NP are fixed (NC = 17, NP = 1) while S is varying. 
The imprecision is defined as 1 - precision.
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For the interactions found by our algorithm, when using
the point-to-point Pearson correlation coefficient (P-P
PCC) between two time series of gene profiles of 18 time
points as the value in the correlation matrix with NC = 101
and NP = 4, 38% of which are found to share the same GO
BP annotation when no time lag is used; while 31% are
found to share the same GO BP annotation when one
time lag is used with NC = 101 and NP = 16. When using
the segment-to-segment Pearson correlation coefficient
(S-S PCC) over 17 segments, the results are 28% with NC
= 91 and NP = 11 and 46% with NC = 91 and NP = 1 for
with and without time lag, respectively (see Table 1). This
percentage (46%) is comparable to the result (45%) on
the same dataset in [51] by using the PCC. Of all the inter-
actions in the network constructed in [51], 3.5% are pub-
lished interactions in comparison with those (14.08% –
28.33%) in the current study.

Discussion
In our proposed algorithm, it is required to specify
whether a node is a core node or a periphery node. In case
of reconstruction of genetic regulatory network, it is not
hard to identify transcription regulators from biological
knowledge, therefore the core nodes. Consequently, the
core and the periphery nodes can be always specified for a
set of genes whose networks are to be reconstructed by the
proposed algorithm.

We have also mentioned that in our current study the
edges in the recovered networks are directionless, i.e.,
interaction between a pair of nodes is indicated without
specifying which node is the source of influence. When
more accurate information is needed, the directions of the
edges have to be considered. The direction between core
and periphery nodes can be always assigned as from the
core node to the periphery node since transcription fac-
tors always regulate target genes. Several other possible

ways to assign the directions for the connections between
core and core nodes or periphery and periphery nodes can
be considered:

a) compare the rank of node i with respect to node j and
the rank of node j with respect to node i. Assign the direc-
tion of the connection as from the higher ranked node to
the lower ranked node. Generally, regulators tend to have
more connections and targets tend to have fewer connec-
tions. Thus the rank of a regulator with respect to a target
tends to be high while the rank of a target with respect to
a regulator tends to be low. When there is a tie, a random
direction is assigned.

b) for the time-lagged computation, always assign the
direction of the connection as from the node without time
lag to the node with time lag. This is in accordance with
the fact that the expression level of a regulator changes
before it can influence its target.

At the same time, we are seeking even better and more effi-
cient ways to improve this method such as specifying
neighbor size for each node according to biological
knowledge. It is also noted that although the proposed
algorithm demonstrated improved performance over the
previous one for simulated networks with underlying
scale-free property, our algorithm does not directly use
any information on the node degree distribution. There-
fore, we expect that this algorithm can be applied to the
construction of biological networks that are not random.

Conclusion
A modification of the current algorithm for the scale-free
network construction has been proposed and evaluated
with two different simulated gene expression datasets and
one microarray gene expression dataset. The proposed
algorithm performs much better than the original one in

Table 1: Results of Asymmetric-N on the 102-gene dataset

NC NP #Edges #Published %Published %GO BP γ R2

P-P PCC: no time lag 101 4 142 20 14.08 38.03 -0.69 0.45
P-P PCC: one time lag 101 16 185 31 16.76 30.81 -0.96 0.79
S-S PCC: no time lag 91 1 60 17 28.33 45.83 -1.27 0.65
S-S PCC: one time lag 91 11 155 29 18.71 27.74 -0.89 0.70

P-P PCC means point to point (total 18 points) Pearson correlation coefficient between two time series profiles.
S-S PCC means segment to segment (total 17 segments) Pearson correlation coefficient and the segment (say i) value is +1 (-1) if the value at point 
i is less (greater) than that at point i + 1 [53].
Time lag means when aligning the two gene profiles, one of them needs to be shifted relative to the other.
#Edges means the total interactions reconstructed;
#Published means the reconstructed interactions that were previously published;
%Published is the percentage of the published interactions among all the reconstructed interactions;
%GO BP means the percentage of the reconstructed interactions whose genes or gene products pair share a common Gene Ontology (GO) 
Biological Process (BP) annotation from the SGD GO Slim mapper [46];
γ and R2 are the power in P(k) ~ kγ and coefficient of determination returned by the fit() function, respectively (see 'Results' – 'Computation Study' 
section for more details).
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recovering the underlying true networks. Compared with
previously published experiments using Bayesian Net-
work approaches, our algorithm shows its advantages
when the number of samples is small relative to the
number of genes, as is the case for most actual biological
microarray experiments. The proposed algorithm is
expected to be used in reconstruction of biological net-
works that have underlying scale-free topologies. Besides,
as the original algorithm was recently successfully used in
gene expression data clustering analysis [43], our
improved algorithm hopefully can be incorporated into
such clustering algorithm frameworks to derive better
clustering results.

Methods
Datasets
Simulated gene expression data
The underlying scale-free network is a 100-node network
constructed by selecting initially 10 core nodes in the net-
work. The connections are made between pairs of these 10
nodes with a pre-specified probability. Either direction for
the connection is equally likely. Thus an initial small ran-
dom network is formed. Then the remaining 90 periphery
nodes are added into the network. The nodes to be con-
nected in the existing network with the new coming node
are selected preferentially, that is, nodes with higher
degree of connectivity will be more likely to be chosen to
link to the newly added node. The directions of new con-
nections are more likely (by setting a pre-specified proba-
bility) to be from core nodes to periphery nodes. Due to
the randomness of the procedure a node might not be
connected to any other node in the final network. In the
100-node network, 79 nodes form a large connected com-
ponent and the others are isolated from this main subnet-
work, the number of edges is 182, and the γ in the node
distribution function (P(k) ~ kγ) is approximately -1.27 for
in-degree, -1.61 for out-degree, and -1.22 for mixed-
degree with the Coefficient of Determination R2 about
0.96, 0.97 and 0.92, respectively. The network thus can be
considered as scale-free. Here, γ and R2 are computed with
the fit() function in Matlab. The 100-node simulated net-
work and its degree distributions are illustrated in
Figure 4. The 20-node simulated network was constructed
in a similar fashion.

With this fixed network topology, the simulated gene pro-
files are generated following a two-step procedure
described in [9]. First, values at each time step are updated
by a simple stochastic process:

Yt+1 = Yt + A(Yt - T) + E

where Yt is a vector representing the expression levels of all
genes at time t, the matrix A represents the regulatory
interactions in the simulated network, the vector T repre-

sents constitutive expression values for each gene, and the
vector E models the intrinsic biological noise. Second,
expression levels are restricted by a floor and ceiling func-
tion to range from 0 to 100 (arbitrary units). Expression
levels are initialized randomly with values uniformly sam-
pled from this range [9]. By calculating the Pearson corre-
lation coefficients between pairs of these profiles, the
correlation matrix is derived. Since the correlation coeffi-
cients will be considered in the proposed method, the
actual magnitude of the gene expression chosen in the
simulated profiles is not essential.

Microarray gene expression data
The time course profiles for a set of 102 genes are selected
from the widely used yeast, Saccharomyces cerevisiae, cell
cycle microarray data [44]. These microarray experiments
were designed to create a comprehensive list of yeast genes
whose transcription levels were expressed periodically
within the cell cycle. The gene expressions of cell cycle
synchronized yeast cultures were collected over 18 time
points taken in 7-minute intervals. This time series covers
more than two complete cycles of cell division. The 102-
gene set includes 9 known transcription regulators and
their possible regulation targets [33]. It is highly enriched
for known interacting genes involved in the Saccharomyces
cell cycle. The true edges of the underlying network were
provided by the database of Pathway Studio [45], which is
based on information derived from PubMed abstracts
using natural language search algorithms. If there is con-
firmative report that gene A and gene B interact with each
other, a true edge is then assigned between the pair of
genes. For this 102-gene regulatory network, γ for in-
degree is -0.979 with R2 = 0.9, γ for out-degree is -0.948
with R2 = 0.44, and γ for mixed-degree is -1.22 with R2 =
0.93. It appears that the distribution for the mixed-degree
fits better with the power law distribution. The network
and its degree distributions are shown in Figure 5.

Algorithm Symmetric-N
This algorithm was proposed in [42]. It is presented here
for the sake of completeness.

ConstructedNet = Symmetric-N(NumNodes, N, Correlation-
Matrix)

Step 1: for i = 1 to NumNodes

SortedNeighbor [i, 1:NumNodes - 1] = mySort(i, Correla-
tionMatrix);

Step 2: for i = 2 to NumNodes

for j = 1 to i - 1
Page 8 of 11
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if (j is in SortedNeighbor [i, 1:N] and i is in SortedNeigh-
bor [j, 1:N])

ConstructedNet [i, j] = ConstructedNet [j, i] = 1;

otherwise

ConstructedNet [i, j] = ConstructedNet [j, i] = 0;

Here NumNodes represents the total number of nodes in
the network; N the pre-specified number of neighbors;
and CorrelationMatrix the pre-computed absolute values
of the correlation coefficients for all pairs of nodes. The
function mySort() returns the other nodes in the sorted
order in terms of their 'closeness' or correlation with the
selected node.

Algorithm Asymmetric-N
ConstructedNet = Asymmetric-N(NumNodes, NC, NP, Corre-
lationMatrix)

Step 1: for i = 1 to NumNodes

SortedNeighbor [i, 1:NumNodes - 1] = mySort(i, Correla-
tionMatrix);

if (i is a core node) Ni = NC; otherwise Ni = NP;

Step 2: for i = 2 to NumNodes

for j = 1 to i - 1

if (j is in SortedNeighbor [i, 1:Ni] and i is in SortedNeighbor
[j, 1:Nj])

ConstructedNet [i, j] = ConstructedNet [j, i] = 1;

Otherwise

ConstructedNet [i, j] = ConstructedNet [j, i] = 0;

fit() function in Matlab
fit() function [52] fits data to model, especially for (non-
linear) curve fitting. It was used to fit the data points (dots
in Figures 4 and 5) to some power law distributed model
(P(k) ~ kγ). The returns of the function include γ and R2 for
the best fit it finds. We used fit(xdata, ydata, 'power1') in
which 'power1' is defined as y = a*xb. More details on the
function can be found in Additional files 1.
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Matlab fit() function. The file provides detail information on the usage 
and the algorithms used for this function.
Click here for file
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The 102-gene network and its node degree distributionsFigure 5
The 102-gene network and its node degree distributions. 
Core nodes are the 9 transcription factors. Periphery nodes 
are the remaining non-transcription factors. The edges are 
obtained from Pathway Studio [45] (see 'Methods' – 'Dataset' 
section for more details).
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