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Abstract

Background: Protein sumoylation is an essential dynamic, reversible post translational
modification that plays a role in dozens of cellular activities, especially the regulation of gene
expression and the maintenance of genomic stability. Currently, the complexities of sumoylation
mechanism can not be perfectly solved by experimental approaches. In this regard, computational
approaches might represent a promising method to direct experimental identification of
sumoylation sites and shed light on the understanding of the reaction mechanism.

Results: Here we presented a statistical method for sumoylation site prediction. A 5-fold cross
validation test over the experimentally identified sumoylation sites yielded excellent prediction
performance with correlation coefficient, specificity, sensitivity and accuracy equal to 0.6364,
97.67%, 73.96% and 96.71% respectively. Additionally, the predictor performance is maintained
when high level homologs are removed.

Conclusion: By using a statistical method, we have developed a new SUMO site prediction
method — SUMOpre, which has shown its great accuracy with correlation coefficient, specificity,
sensitivity and accuracy.

Background

Sumoylation, a reversible post-translational modification
(PTM) by the small ubiquitin-related modifier (SUMO) is
essential to dozens of cellular activities, including subcel-
lular transport, control of gross subnuclear architecture,
direct and indirect effects on transcription, regulation of
DNA damage recovery and replication, chromosome seg-
regation, cell cycle progression, and competition with
other ubiquitin-like modifiers (Ubls) [1-3]. Sumoylation

is reportedly also a factor in various diseases and disor-
ders, especially neural diseases, such as neuronal intranu-
clear inclusion disease (NIID), Alzheimer's disease (AD),
and Parkinson's disease (PD) [4,5]. SUMO proteins are
highly conserved across eukaryotes, and mammals
express four highly conserved SUMO genes - SUMO-1,
SUMO-2, SUMO-3, and SUMO-4-among which SUMO-1
has received the most attention. Yeasts express only a sin-
gle SUMO gene, while plants express at least eight. How-
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ever, the exact role played by such a modification - for
example, positive or negative transcriptional regulation -
is still unknown. Thus, more detailed information is
needed on sumoylation substrates and sites.

It was still widely accepted that yKxE/D [6,7] (w repre-
sents a large hydrophobic amino acid and x represents any
amino acid) is the consensus motif for SUMO-1 conjuga-
tion. However, there were many cases of sumoylation
which did not occur at sites with this consensus motif. In
fact, approximately 26% (69/268) of confirmed sumoyla-
tion sites contain a non-consensus motif. Although it has
been reported that in some cases a short peptide contain-
ing the yKxE/D motif and a nuclear localization sig-
nal(NLS) is sufficient for SUMO-1 recognition in vivo |3],
SUMO E3 ligases that increase the efficiency of SUMO
conjugation may require more sequence information [1].
Therefore, it is necessary to focus on the exact sumoylated
site and the related sequence information that may be
required.

Currently, the complexities of sumoylation mechanism
can not be perfectly solved by experimental approaches.
Mutational analysis has been widely used in the identifi-
cation of the majority of known sumoylated sites. How-
ever, while facing larger and more complex proteins,
especially those with dozens of potential consensus and
non-consensus sumoylation sites, mutational analysis
would be labor-intensive and time-consuming. Another
approach - large-scale proteomic approach is more suita-
ble for high-throughput identification. But limited by rea-
gent availability and the efficiency of computational
peptide identification, its accuracy and stability are not so
perfect. Furthermore, their current results mainly concen-
trate on the identification of sumoylation substrates
rather than the sites [8-11]. Although Pedrioli et al.[12]
have introduced SUMmOn, an automated theoretical pat-
tern recognition tool that identifies sumoylated sites by
detecting diagnostic PTM fragment ion series within com-
plex MS/MS spectra, its practical sensitivity and accuracy
require further validation. In this regard, computational
approaches might represent a promising method to direct
experimental identification of sumoylated sites. SUMO-
plot, for instance, is the first sumoylation site prediction
tool and made a great progress. But limited by its over-
concentration on data with wKxE or yKxE/D consensus
motif, the prediction results may miss many non-consen-
sus true positives. Another recent bioinformatical tool
SUMOsp which applies GPS and MotifX on sumoylated
site prediction, has achieved its prediction sensitivity as
high as 89.12% [13]. Nevertheless, the large number of
free parameters and small size of true-positive dataset may
cause over-prediction. And the most appropriate perform-
ance measurement, Matthews' correlation coefficient
(CQ), is not so great in either prediction tool.
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In the current work, SUMOpre employed a new statistical
method, to predict sumoylated sites based on its adjacent
amino acid subsequence. Correlation coefficient of
0.6401 was significantly higher than those in SUMOplot
(0.4785) and SUMOsp (0.4873). The 5-fold cross valida-
tion/self-consistency also showed higher specificity
(97.67%/97.74%) and accuracy (96.71%/96.79%), while
keeping sensitivity (73.96%/74.25%) at equivalent levels
to those in the two published predictors. In addition, the
predictor performance was maintained when high level
homologs were removed. All these results revealed that
SUMOpre has a greater robustness and prediction accu-
racy for sumoylation site prediction. The SUMOpre web
server is available on line [14].

Results

Effect of window length and threshold value on prediction
performance

In order to derive good prediction parameters from lim-
ited experimental data, especially those with such a signif-
icantly unbalanced number of positives to negatives
(approximately 1:25), it is crucial to confirm the appropri-
ate one-side window length (n) and threshold value (Thd)
and to realize their effects on prediction performance.

As shown in Fig 1, assuming Thd = 0.30, the size of n adja-
cent to the Lys site had much more impact on Sn and CC
than on Sp and Ac, which kept their level around 98.0%
and 97.0%, respectively. As n increased, CC raised
smoothly from 0.6218 (n = 2) to 0.6498 (n = 6) and then
remained around 0.64 (n = 7, 8). Sn showed a similar
trend, reaching its peak of 0.75 at n = 6. It seems reasona-
ble to choose 1 = 6 as the default one-side window length.
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Dependence of specificity (Sp, red circle), accuracy (Ac,
green triangle), sensitivity (Sn, black rectangle) and Matthews'
correlation coefficient (CC, blue reversing triangle) on one-
side window length (n).
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However, when setting n = 6, the number of free coeffi-
cients would increase to 228, the approximate size of the
positive control dataset. Consequently, the free coeffi-
cients would directly "remember" almost all of the infor-
mation without any optimization, and result in
unrealistically high accuracies on current data and low
accuracies on unknown protein sequences. Therefore, in
order to reduce the size of free coefficients and maintain
stability and applicability for both the current dataset and
further predictions, we chose n = 3 as the default one-side
window length. Based on the increasing tendency of Sn,
and the smooth trends of CC, Sp and Ac, such a setting
would seldom lose prediction accuracy.

The dependences of the four measuring parameters corre-
sponding to Thd were shown in Fig. 2. As Thd increased,
CC smoothly ascended and reached its peak at 0.6774
(Thd = 0.35), while Sn initially showed a smooth descent
before declining dramatically when Thd>0.25. Addition-
ally, Sp and Ac increased sharply at a similar rate, and then
remained above 97% and 99%, respectively, at Thd>0.3.
In this paper, 0.3 was set as the default cut-off Thd, with
user-defined values (0.2-0.4) in the web server. Choosing
lower cut-off Thd, such as Thd = 0.2, would facilitate a pre-
diction with much higher sensitivity (80.97%), but lower
CC, Sp and Ac. On the other hand, setting higher Thd,
such as 0.35, would maintain much higher robustness
with CC = 0.6774, but relatively low sensitivity. Users can
choose different cut-off Thd according to their experimen-
tal designs and prediction expectations.
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Figure 2

Dependence of specificity (Sp, red circle), accuracy (Ac,
green triangle), sensitivity (Sn, black rectangle) and Matthews'
correlation coefficient (CC, blue reversing triangle) on the
threshold value (Thd).
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Stability of SUMOpre

In order to test the stability of the SUMOpre method, we
employed three strategies on the same dataset: k-fold
cross-validation, jack-knife validation and self-consist-
ency tests. The test performances were shown in Fig. 3. Sn,
Sp, Ac and CC (represented by red, green, blue and cyan
bars, respectively) corresponding to the k-fold (3<k<10)
cross-validation were found in the first eight columns,
while both jack-knife and self-consistency test results were
in the last two columns. Interestingly, these prediction
performances were all robust with relatively small stand-
ard error among these tests. CC, for instance, maintained
a stable level around 0.6401 in all three tests with only a
small standard error.

One vital factor that could result in misleadingly high pre-
diction performance and possibly influence prediction
stability is sequence homology in training dataset. In fact,
if the training data and test data are identical or highly
homologous, for example, at a sequence identify level
higher than 30%, the memorization effects in the self-
consistency tests cannot be completely removed. Conse-
quently, the prediction accuracy could be misleadingly
high [15]. Here, NCBI BLASTCLUST software was used to
filter out highly homologous sequences, after which
SUMOpre was rerun to evaluate differences between the
original dataset and the low-homology dataset. Table 1
lists the prediction performances of the low homology
datasets. CC persisted at a level of 0.65 after the shift to a
lower homology level. Simultaneously, Sp and Ac also
kept their traces in both jack-knife and self-consistency
validation, regardless of the similarity and minimum
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Figure 3
Performance of self-consistency, K-fold (3-, 4- ... 10-fold)

cross-validation and jack-knife validation. Sn, Sp, Ac, CC in
each validation are represented with red, green, blue and
cyan bars, respectively.
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Table I: Performance of SUMOpre using datasets filtering out highly homologous sequences.

Dataset Similarity2 Coverageb size Method¢ CC Sn (%) Sp (%) Ac (%)
Dataset | 03 0.4 108 self 0.6782 64.02 99.13 97.80
jk 0.6364 60.85 98.94 97.50

Dataset 2 0.3 0.6 119 self 0.6500 66.03 98.67 9741
jk 0.6061 63.64 98.35 97.01

Dataset 3 0.3 0.8 140 self 0.6520 70.34 98.33 97.24
jk 0.5983 66.53 97.95 96.72

All data - - 159 self 0.6401 74.25 97.74 96.79
(268 sites) jk 0.5911 70.90 97.30 96.23

a Similarity threshold used in NCBI BLASTCLUST was set as 0.3;
b Minimum length coverage threshold used in NCBI BLASTCLUST;
< Validation strategies: self, self-consistency test; jk, jack-knife validation

length coverage cut-off. With decreases in minimum
length coverage cut-off value (from 0.8 to 0.6 and 0.4),
19, 40 and 51 sequences were filtered out, and Sn in jack-
knife validation decreased smoothly from 70.34% to
66.03% and 64.02%, respectively. Nevertheless, the fact
that even with the filtering of approximately 1/3 (51/159)
of homologous sequences, the tiny variety on perform-
ances is shown by Sn with a 10% decrease, sufficiently
suggested the robustness of SUMOpre and its database.

To further illustrate the robustness of SUMOpre in regard
to threshold-independent performance, receiver operat-
ing characteristic (ROC) curves of self-consistency, jack-
knife validation and 5-fold cross validation were provided
(see Additional file 1). After comparisons with SUMOsp
[13], both the ROC curves and the areas under the ROC
curves (AUC) again obviously imply the robustness of
SUMOpre.

Comparison of SUMOpre with SUMOplot and SUMOsp

In order to comprehensively compare the prediction per-
formance of SUMOpre with SUMOsp and SUMOplot,
two separate datasets were utilized. The first dataset con-
tained all 159 training sequences for both training and
testing, The other dataset used 144 substrate sequences
obtained before December 10, 2005 (employed by
SUMOsp [13] as training and testing data) for training
plus 15 new sequences reported later for testing (not
included in SUMOplot or SUMOsp). Since the Jack-knife
validation could not be performed again for the other two
predictors, we submitted the substrate sequence into these
tools and adopted the self-consistency performance of all
three tools for comparison. The two levels of stringency in
SUMOplot were denoted as high (motifs with high prob-
ability) and all (all predictions) just as defined on the web
site [16]. The cut-off of SUMOsp was defined as 4 and 18
[13,17]. In Table 2, using all 159 proteins for training and
testing, the CC, Sn, Sp and Ac of SUMOpre with a Thd of
0.3 are 0.6401, 74.25%, 97.74% and 96.79%, while the
CC, Sn, Sp and Ac with a Thd 0.2 are 0.4908, 80.97%,

93.18% and 92.68%, respectively. In contrast to SUMO-
plot and SUMOsp, CC, the most important measuring
parameter for the biased dataset, is higher or at least equal
to any level of the other two predictors when SUMOpre is
at a level of 0.2. Additionally, CC at the 0.3 level of
SUMOpre is significantly higher (0.6401) than the top
level of SUMOsp (0.4873) and SUMOplot (0.4785).
More importantly, Sp and Ac at either level of SUMOpre
(97.74% & 96.79%) are also much higher than those of
SUMOsp (93.05% & 92.56%) and SUMOplot
(93.43%&92.79%), with equivalent sensitivity at 74.25%.

After shifting the training dataset to the 144-protein data-
set used by SUMOplot, and the testing dataset to the 15-
protein dataset with sites newly identified, the perform-
ance of SUMOpre was much more robust and accurate
than that of other predictors. Because the testing dataset
completely differs from the training group, prediction per-
formance comprehensively represented their actual
robustness. For instance, as shown in Table 3, CC, Sp and
Ac at the 0.35 level of SUMOpre are also considerably
higher (0.6566, 99.51% and 97.49%, respectively) than
those in the upper levels of SUMOsp and SUMOplot,
while Sn of SUMOpre is definitely equal to that of
SUMOsp and SUMOplot. Thus, SUMOpre provides better
robustness, specificity and accuracy while retaining a sim-
ilar level of sensitivity.

Table 2: Performance comparisons using the whole dataset for
training and testing.

Predictor Threshold CC Sn (%) Sp(%) Ac (%)
SUMOpre* 0.30 0.6401  74.25 97.74 96.79

0.20 0.4908  80.97 93.18 92.68
SUMOsp 18 0.4873  80.97 93.05 92.56

4 0.3134 8657 80.03 80.30
SUMOplot High 0.4785  77.6l 93.43 92.79

All 0.3123 8545 80.46 80.66
*The self-consistency test was used as the testing strategy.
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Table 3: Performance comparisons using the 144-protein dataset
for training and |5-protein dataset for testing.

Predictor Threshold CC Sn (%) Sp (%)  Ac (%)
SUMOpre* 0.35 0.6566  53.57 99.51 97.49
0.20 0.3651 60.71 92.45 91.05
SUMOsp 18 0.3726  60.71 92.78 91.37
4 0.2361 67.86 79.97 79.43
SUMOplot High 0.3503 57.14 92.78 91.21
All 0.2097 64.29 78.82 78.18

*The self-consistency test was used as the testing strategy.

SUMOpre:

http://www.biomedcentral.com/1471-2105/9/8

Use of Web service

The program SUMOpre was implemented in C++, and its
Web server [14] has been developed in an easy-to-use
manner. Users can visit SUMOpre web server (Fig. 4), sub-
mit the protein sequences in FASTA format into the text
box, choose the proper Thd and run the program. Proba-
bility for true positive prediction (TPR) corresponding to
different threshold choices are provided in the table
below as a reference for various prediction expectations.
According to the threshold value, the prediction result
includes the potential sumoylated sites, scores and proba-
bility of true positive prediction.

SUMOylation PREdiction

Flease input the sequences:

You could input one primary sequence or multiple proteins' sequences in FASTA
format ! All the spaces, line breaks as well as non-residues will be automatically

removed.

Set threshold: |0.30 -

Submit Reset

Both the true prediction probability and prediction stability depend on the threshold
value. The higher threshold value results in higher true probability but less stable

prediction results.

Threshold & True prediction probability

. Thd | TPR | sn | GG

CED | 0.036 | 81.1% | 0.484
ES | 0.074 | 80.3% [ 0.513
[ 0.30 | 0.200 | 71.0% | 0.649
| o035 | 0.407 | 59.5% \ 0.671
[ 040 | 0.638 I 47.5% | oe20

Thd: threshold; TPR: true probability; Sn: sensitivity; CC: correlation

coefficient

Figure 4
The prediction page from the SUMOpre web server.
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Discussion

We have successfully developed a highly robust
sumoylated site prediction tool with the use of statistical
methods. In order to avoid overtraining due to the limited
experimental data, the predictor performance is main-
tained when high level homologs are removed and using
as few as possible fitting parameters. A predictor with too
many free coefficients would directly "remember" almost
all of the information without any optimization, and
result in unrealistically high accuracies on current data
and low accuracies on unknown protein sequences. Thus,
SUMOpre provides better robustness, specificity and accu-
racy while retaining a similar level of sensitivity as other
prediction methods. Furthermore, considering the highly
unbalanced training data (the negative training dataset is
approximately 25 times large of the positive dataset), the
main parameter for assessment of predictive performance
should be the Matthews' correlation coefficient, CC, that
of SUMOMpre is significantly higher (0.6401) than the top
level of SUMOsp (0.4873) and SUMOplot (0.4785).

Since about 74% of confirmed sumoylation sites in the
training data contain a consensus motif, the free coeffi-
cients obtained by training would be optimized to
"remember"” more information for the consensus motif.
The prediction specificity of SUMOpre, Sp, is 0.89 for con-
sensus sites and 0.25 for non-consensus sites, implying
that the prediction of non- consensus sites is fairly hard.

Sumoylation mechanism
sequence information

significantly depends on

Why was SUMOpre able to perform so well by simply uti-
lizing sequence information? It is mainly due to the corre-
sponding sumoylation mechanism that is heavily
dependent on sequence information. SUMO is conju-
gated to target proteins by an enzymatic cascade involving
a SUMO activating enzyme (E1), a SUMO conjugating
enzyme (E2), and typically a SUMO ligase (E3). SUMO
proteins are activated by the heterodimeric E1 AOS1-
UBA2 that use the E2 UBC9 for conjugation. There are cur-
rently three types of known E3s for the SUMO proteins —
RanBP2 (Ran-binding protein-2), PIASs family and Pc2
(Polycomb 2 homolog). These three types of enzymes
have distinct subcellular localizations and mediate the
modification of specific substrates [1,18]. Furthermore
statistic over the 57 sites with identified PDB structures,
there are only 3 sites buried in protein interior (K99 in
1J17 with 17% exposed, K347 in 1AM9 with 12% exposed
and K447 in 1U0J with 7% exposed) and all other 54 sites
exposed on the protein surface. This may reflect the fact
that UBC9 makes direct contact with substrates and has
sequence preference. In contrast to more than one thou-
sand protein kinases and their complicated phosphoryla-
tion recognition and modification systems with dissimilar

http://www.biomedcentral.com/1471-2105/9/8

site preferences [19], direct SUMO recognition on the sin-
gle Lys site merely relies on limited factors: three enzymes
and other elements such as subcellular localization or
appropriate presentation of the sequence on the sub-
strates [1,3]. Without various enzymes and their complex
recognition mechanisms and other factors, motif recogni-
tion based solely on sequence information could be suffi-
cient for sumoylation prediction.

As discussed by Matunis & Pickart [20], sumoylation is
frequently site specific, which may refer to the maximum
benefit from reduced entropy if the reacting lysine residue
is forced into a catalytically favorable orientation. Further-
more, the performance of SUMOpre, based merely on
sequence information from known sumoylated sites, sup-
ports the suggestion of a sequence-dependent recognition
and modification mechanism. In fact, using a dataset with
268 sumoylation sites (that includes 69 with non-consen-
sus motifs) and 6,361 non-reported sumoylation Lys sites
(including 210 sites with consensus motifs), we have
achieved a powerful predictor with CC = 0.6401 and sen-
sitivity = 74.25%. All findings indicate that sequence
information, especially the close proximity of a Lys to
sequence information, is an essential factor impacting the
specificity of SUMO recognition and modification.

Conclusion

By using a statistical method, we have developed a new
SUMO site prediction method - SUMOpre, which has
shown its great accuracy with correlation coefficient, spe-
cificity, sensitivity and accuracy equal to 0.6364, 97.67%,
73.96% and 96.71% in 5-fold cross validation, respec-
tively. Due to the full consideration on both consensus
wKxE/D and non-consensus motif, our method achieved
greater robustness (0.15 higher correlation coefficients)
than other published predictors. Furthermore, our predic-
tion accomplishment based on protein sequence supports
the suggestion of a sequence-dependent recognition and
modification mechanism.

Methods

Dataset

PubMed was searched with keywords 'SUMO' and
'sumoylation' and obtained 268 unambiguously experi-
mentally defined sumoylation sites in 159 proteins from
710 research articles published online before Aug. 10,
2006. Their primary sequences have also been extracted
from Swiss-Prot/TrEMBL database [21]. In those 159 pro-
tein sequences, there are a total of 6,629 lysine (Lys) sites,
including 268 experimentally identified sumoylated sites
used as positive training data, and 6,361 non-reported
sumoylation Lys sites.

In order to compare prediction performance with other

two published predictors, the dataset was divided into
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two subsets for performance comparison among the three
predictors. One 144-protein set included proteins within
240 experimentally identified sumoylated sites reported
before December 10, 2005, and utilized in SUMOsp. The
other 15-protein one contained proteins within 28 exper-
imentally identified sumoylated sites that were reported
after December 10, 2005. The other K sites not reportedly
sumoylated were collected as negative training datasets for
both subsets (see Additional file 2 and 3).

Algorithms

We are interested in predicting the sumoylation state of
residue Lys on position i, @; (sumoylated or non-
sumoylated), based on knowledge of the amino acid sub-
sequence window, {A;}, of a restricted size (2n+1) (n:
one-side window length) symmetric about position i.
Positions within the window are indexed by j (j = 1, 2,...,
2n+1), with j = n+1 equaling to position i. Thus, given a
subsequence, the conditional probability of the sumoyla-
tion states (@;):

Pr(A;j ;)
Pr(A;)

Pr(Ajlo;)

Pr(w; [ A;) = Pr(A;)

= Pr(w;) = (1)

Here Pr(®;) denotes the probability of sumoylation state
w; of the central residue Lys; Pr(A;) represents the proba-
bility of subsequence A;; Pr(A;, »;) means the probability
of both subsequence A;and sumoylation state w;, of central
residue Lys occur; and Pr(A;|@,) is the conditional proba-
bility of the subsequence Ai given the sumoylation state.
If assuming that the 2n positions in the window inde-
pendently, then the subsequence probability could be
obtained by multiplying the single-position probability
over the window [22].

2n+1
Pr(A,) = H Pr(R))
j=1
j#En+1
2n+l 2n+1
Pr(wj|R;)
Pr(A; |o) = | | Pr(R; |w) = | | Pr(r)——— L
I1 |} R
]¢n+1 ]¢n+1

Here R represents residue type R on position j. Pr(;|R;) is
the conditional probability of the sumoylation state @, for
position j given that it is occupied by residue type R. So we
can simplify Eq. (1) as following:

2n+1 Pr(a)l|R])
Pr(o; | A;) = Pr(a))H (o] @)

]¢n+1

http://www.biomedcentral.com/1471-2105/9/8

Eq. (2) is equivalent to the secondary structure prediction
model of GOR I [22]. Since the assumption of position
independently was not so solid, GOR IV [23] uses pair-
wise information over all possible paired positions in the
window. As the experimental sumoylation data are not
large enough to provide sufficient data, we simply modi-
fied the model as following:

2041 R oc(R])
Pr(w; | A,) = Pr(w)H( r;:zil)ﬂ} 5
j#En+1

After taking the natural logarithm on both sides of Eq.(3),
we obtain:

2n+1

In(Pr(; | 4))= Y a(R)In( o (i' )j))+ln(Pr(w,-))
j=1 @i
j#En+1

(4)

Pr(wj[R )
Pr(w;)

residue type- dependent parameters. So we define:

In Eq. (4), both «(R;) and In(—5-——<~) are position- and

(w|R i)
P( i)

For convenience, we move a constant from the left to the
right side and define the left side as a value, I(®;), which
represents the sumoylation states by 1 (sumoylated) or 0
(non-sumoylated). Rewriting the formula gives:

0(@; | R;) = a(R)l( )

2n+1

z 6.(o; | R))+C
j=1

j#En+l1

l(w;) = (5)

Here, 0(w]| R) is a position-dependent 20-demisional
vector for 20 types of amino acids. C is a constant. If the
subsequences in the window are DAMKNEC, for example,
the equation for the sumoylated state of Lys is:

1.0 = 6,(D) + 6,(A) + 65(M) + 65(N) + G4(E) + 6,(C) + C
That for the non-sumoylated state is:

0=26,(D) + 6,(A) + (M) + 65(N) + 6,(E) + &(C) + C
Eq. (5) is a linear equation. All the coefficients could be
determined by the data in the training dataset using Mul-

tiple Linear Regression method (MLR) to minimize the
sum of the square of deviation between the left and right
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side of the equation. In the practical MLR process, one
component should be left out from the 20-demisional
vector ¢, and the number of free coefficients is 2 x n x 19.
In the above example with n = 3, there are 114 (2 x 3 x 19)
free coefficients to be determined.

NCBI BLASTCLUST filter for highly homologous sequences
NCBI BLASTCLUST was employed to filter out highly
homologous protein sequences from the original dataset
[15]. BLASTCLUST automatically and systematically clus-
ters protein sequences based on pairwise matches found
using the BLAST algorithm. Similarity threshold and min-
imum length coverage are two crucial parameters for fil-
tering out highly homologous sequences: the former was
set as a BLAST score density, while the later restricted the
minimum percent for pairwise coverage. The similarity
threshold was set at 0.3. Due to different values of mini-
mum length coverage of the 159 protein sequences, pro-
teins were grouped in one cluster if they shared greater
similarity and larger minimum length coverage than the
corresponding thresholds. Only one protein in each clus-
ter was chosen to establish new low-homology training
and test datasets, while the remaining protein sequences
were filtered out.

ACCUI'GCY measures

All reported results were based on a window of length n
residues, symmetrically located about the residue under
consideration. Considering the highly unbalanced train-
ing data (the negative training dataset is approximately 25
times large of the positive dataset), the main parameter for
assessment of predictive performance was the Matthews'
correlation coefficient, CC, which can be calculated as fol-
lows:

(TPXTN)—(ENXFP)
J(TP+EN)X(TN+FP)X(TP+FP)x(TN+FN)

Where TP is the number of positive cases that were cor-
rectly predicted; TN is the number of negative cases that
were correctly rejected;FP is the number of over-predicted
cases; and FN is the number of under-predicted cases.

Additionally, other general parameters, used in most
other studies, were applied [13]. They were sensitivity
(Sn), specificity (Sp) and accuracy (Ac), defined as follows:

P TN
Sn = ’ SP = ’
TP+FN TN+FP
TP+TN

c=———"—""———,
TP+FP+TN+FN

http://www.biomedcentral.com/1471-2105/9/8

Self-consistency, K-fold cross-validation and Jack-knife
tests

Predictive quality was examined with three approaches,
one based on the re-substitution test and the other two
upon k-fold cross-validation.

Self-consistency test
The sumoylation state for each motif in the entire dataset
is predicted using the rules derived from the same dataset.

K-fold cross-validation

The dataset was randomly divided into k subsets. Each
time, one of the k subsets was used as the test set and the
other k-1 subsets were assembled to form a training set.

Jack-knife (Leave-one-out cross validation)

An extreme validation deduced from k-fold cross valida-
tion with k equal to N, the number of data points in the
set. It means that N separate times, the function approxi-
mator was trained on all the data except for the point
being predicted.

List of abbreviations

PTM: post-translational modification; SUMO: small ubiq-
uitin-related modifier; n: one-side window length; Thd:
threshold value; CC: Matthews' correlation coefficient; Sn:
sensitivity; Sp: specificity; Ac: accuracy; ROC, receiver
operating characteristic curve; MLR: Multiple Linear
Regression method.
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