BIVIC Bioinformatics moml.?@mral

Methodology article

Evolutionary approaches for the reverse-engineering of gene
regulatory networks: A study on a biologically realistic dataset
Cédric Auliac*12, Vincent Frouin*2, Xavier Gidrol? and Florence d'Alché-
Buc*!

Address: 'Laboratoire Informatique, Biologie Intégrative et Systemes Complexes (IBISC), Université d'Evry-Val d'Essonne, Evry, France and
2Laboratoire d'Exploration Fonctionnelle des Génomes (LEFG), Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Direction des Sciences
du Vivant (DSV), Commissariat a I'Energie Atomique (CEA), Evry, France

Email: Cédric Auliac* - cauliac@ibisc.univ-evry.fr; Vincent Frouin* - vincent.frouin@cea.fr; Xavier Gidrol - xavier.gidrol @cea.fr;
Florence d'Alché-Buc* - florence.dalche@ibisc.fr

* Corresponding authors

Published: 8 February 2008 Received: 9 August 2007
BMC Bioinformatics 2008, 9:91  doi:10.1186/1471-2105-9-9 Accepted: 8 February 2008
This article is available from: http://www.biomedcentral.com/1471-2105/9/91

© 2008 Auliac et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Inferring gene regulatory networks from data requires the development of
algorithms devoted to structure extraction. When only static data are available, gene interactions
may be modelled by a Bayesian Network (BN) that represents the presence of direct interactions
from regulators to regulees by conditional probability distributions. We used enhanced
evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the
model that best fits data without prior knowledge.

Results: We proposed various evolutionary strategies suitable for the task and tested our choices
using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin
network, which has been used in the literature for benchmarking. We assessed the inferred models
against this reference to obtain statistical performance results. We then compared performances
of evolutionary algorithms using two kinds of recombination operators that operate at different
scales in the graphs. We introduced a niching strategy that reinforces diversity through the
population and avoided trapping of the algorithm in one local minimum in the early steps of learning.
We show the limited effect of the mutation operator when niching is applied. Finally, we compared
our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy
search, TPDA, MMHC) devoted to BN structure learning.

Conclusion: We studied the behaviour of an evolutionary approach enhanced by niching for the
learning of gene regulatory networks with BN. We show that this approach outperforms classical
structure learning methods in elucidating the original model. These results were obtained for the
learning of a bio-realistic network and, more importantly, on various small datasets. This is a
suitable approach for learning transcriptional regulatory networks from real datasets without prior
knowledge.
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Background

Introduction

Biological functions result from the interaction of various
macromolecules in the cell. Among the different regula-
tory mechanisms at work in the cell, transcriptional regu-
lation plays an important role as it links a coding space of
genes to a functional space of proteins. The availability of
a wide range of genome wide experimental techniques,
such as DNA microarrays or ChIP on chip, gives the mod-
ellers the opportunity to consider reverse engineering of
transcriptional networks from experimental data. The elu-
cidation of these networks is usually implemented by
choosing a mathematical model to describe the interac-
tions between a regulee and its regulators and then using
the data to learn both the graph of interactions and the
parameters of the mathematical model. We consider here
the case when the graph structure is unknown and the
learning task consists of discovering the nature of interac-
tions.

Up to now, a variety of frameworks to infer transcriptional
regulatory networks from expression profiles have been
considered [1,2]. Among them, probabilistic graphical
models appear to be a successful approach [3,4]. They
offer an adequate representation of conditional
(in)dependencies between variables and allow the man-
agement of uncertainty which is relevant in case of noisy
data and stochastic processes. Regarding the learning
issue, the choice between dynamic and static modelling
depends mainly on data availability. Learning dynamic
systems requires observations of temporal variations of
gene expressions which are costly to produce while the
availability of static data in complex organisms is grow-
ing. In this work, we have thus chosen to focus on learning
the structure of static models using static data. Among the
probabilistic models, we selected Bayesian Networks (BN)
[5-7] that cover acyclic interaction networks. This class of
models has often been used in the field of computational
biology [3,8-13] in the past few years. Many approaches
have been proposed to learn the structure of Bayesian net-
works [14]. Structure learning algorithms are generally
based on a search within a set of candidate structures. The
underlying idea is to discover the BN that best fits the
available data. A scoring metric is required to assess the
quality of each candidate structure with respect to the
data.

To undertake the search in the huge space of BN structures
[15], deterministic heuristics like greedy search [16] or the
K2 algorithm [17] have been proposed. However, since
the problem of structure learning is known to be NP-hard
[18], stochastic heuristics like MCMC [19,20] or Evolu-
tionary Programming [21] are usually preferred. They are
supposed to overcome some limitations of deterministic
search strategies, such as local optimality and dependence
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on the initial solution. In this work, we developed Evolu-
tionary Algorithms (EA) to learn network structures and
we applied our strategies to learn a regulatory network,
called the insulin network, introduced by [22] to serve as
a benchmark problem in reverse-engineering of regula-
tory networks. We studied various implementations of EA
dedicated to BN structure optimisation and showed that
EA enhanced by a niching strategy, called Deterministic
Crowding, performed a pertinent exploration of the
search space.

Modelling gene regulatory networks with Bayesian
networks

In this paper, gene regulatory networks are represented by
(BN). Formally, BN are defined by a tuple (G, P). G is a
Directed Acyclic Graph (DAG) where nodes are random
variables X = {X;,....X,,} and the edges encode the condi-
tional (in)dependencies between these variables. The
graph topology defines a set of parents for each node i :
Pa;. Here, the random variables correspond to gene
expression levels, reflecting mRNA concentrations while
edges represent the interactions between parent variables
(regulators) and child variables (regulee). We must
emphasise that with this kind of model, no loops can be
represented. This induces a strong restriction in our mod-
elling, but several works [4,23] have shown that these
approaches are successful in capturing a good part of the
regulation characteristics.

According to the Markov assumption, which states that
each node is independent of its non-descendants given its
parents, we can factorise the joint probability distribution
P(X,, X,, ..., X)) using the product of probability distribu-
tions of the X;'s given their parents Pa;

P(X) = Pe(X) = [ | e (] Pa;) (1)
i=1

P (X;| Pa;) is the conditional probability distribution of X;
given its parents in G or the marginal distribution when
Pa; = . In this study, we use discrete random variables to
model the gene expression levels and non-parametric
modelling (e.g. Conditional Probability Tables or CPT) to
represent the conditional probabilities. CPT present at
least two main advantages. They enable representation of
any complex regulatory interactions without requiring fix-
ation of the nature of the interactions before learning and
they also lead to very simple maximum likelihood estima-
tors. The parametrisation of the BN relies on the coeffi-

cients of the CPT : { 8}, } with k, a given state of variable

X;, and | a given configuration of its parental set Pg;
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Po(X; =k | Pa; =1)={0),}

In this work, the Bayes Net Toolbox (BNT) [24] was used in
order to create, manipulate and learn BN.

Structure learning as an optimisation problem

In this part, we present a general and classical approach
for BN structure learning often called the score and search
method.

To identify both structure G and parameters given a sam-
ple of size s, D = (x1,...x%) of n random variables X =
{X;,...X,}, we first need to define a scoring metric that
evaluates how the structure and the parameters fit the
data. In the case of biological networks, it is not possible
to state what is the true cost function at stake. In order to
infer the model from data, we know from the learning the-
ory that the scoring metric should incorporate a term
responsible for data fitting and a term that controls the
complexity of the model.

The Bayesian Information Criterion (BIC) fulfils these
requirements and offers a simple way to evaluate a BN
structure. BIC was first defined by Schwarz in 1978 as a
general proposal for estimating the complexity of a statis-
tical model. Considering G, the set of all possible DAGs
containing the aforementioned n variables, the best DAG

structure G can be determined by selecting in G the
graph structure G that minimizes the BIC:

G = argmin {~2log P(D | G, 0) + K¢ log(s)}

where 6 is the maximum likelihood estimate of 0, the set

of parameters of model G : 6 = argmax,P(D | G,6) and K
the number of free parameters of model G.

For the class of models that we chose and given the i.i.d.
data, the likelihood can be expressed as follows

P(D|G,6) = HHHei’kNgk
i k 1

with exponent N, being the number of co-occurrences of
both X; = k and Pa(X;) = | in the data. Therefore, the BIC

can be rewritten as follows:

BIC(G) = Z 2 Z —2ka log(QiIk) + Ké log(s)
l

i k
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with K. the number of parameters in the CPT of X,. éllk
is the maximum likelihood estimate of Oilk . The P latter
can be computed by ka /Nf where Nf = Zk ka is the

number of times the X;'s parental configuration equals ] .
Since it relies on frequencies, computing these estimators
from data is straightforward. This allows to dedicate most
of the computational time to the exploration of the struc-
ture space. Note that the BIC can be read as the sum of
local scores: one local score only depends on the parental
set of the node for which it is computed.

To achieve BIC minimization, an appropriate search in
the space of candidate graphs has to be defined. To avoid
testing all of the possible graphs, searches based on appro-
priate heuristics are usually preferred. In this work, we use
Evolutionary Algorithms to explore the solution space.
Various implementations of EA are described as well as
their qualitative and quantitative performances assessed
on bio-realistic data. Finally, a comparison with classical
structure learning algorithms is given. The next section
introduces these methods and the results of the testing.

Results and discussion

Learning Bayesian network structures with evolutionary
algorithms

In this work, we propose to use EA [25,26] to design reg-
ulatory network structures such as BN structures. The
search for the BN structure, which minimizes the Bayesian
Information Criterion (BIC), is implemented through a
steady state genetic algorithm whose synopsis can be
found below:

e Initialisation : A population of BN structures is ran-
domly generated and then evaluated according to a fitness
function

® Repeat until a stopping criterion is satisfied :

1. Pick two genitors at random from the population : P1
and P2

2. Produce a pair of offspring by recombining P1 and P2 :
C1and C2

3. Mutation may be applied to promote diversity : C1 and
C2 undergo random edges additions or deletions

4. Evaluate C1 and C2 by computing their fitness function

5. Discard two individuals from the current population to
recover the initial population size. To favour the survival
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of good candidate models, a selection scheme based on
the chosen fitness function is used.

Structure representation and recombination

In EAs, candidate models are coded with (binary) vectors
called chromosomes. Here, their constituents are termed
EA-genes. Practically, EA-genes can take on multiple val-
ues from any finite alphabet.

Evolving BN structures is a hard task and DAGs encoding
turns out to be a crucial issue. Two global strategies can be
considered regarding this question: direct and indirect
searches.

Indirect search [27,28] performed the search in the set of
precedence orders of the DAG nodes, when direct search
works directly in the set of DAGs. A precedence order
defines the set of potential parents for each node. For
instance, a node X; must precede a node X; in this prece-
dence order to be a parent of X; in the graph. We chose the

second alternative and directly evolved BN structures as
performed in [29-32]. Since the search is conducted
directly over the space of DAG, we faced the classical prob-
lem of producing infeasible solutions (digraph with
cycle). A first answer is given in [33] to deal with this situ-
ation. EA-genes coding elementary edges of both genitors
are put together and then injected in the future offspring
according to some specific rules in order to maintain fea-
sibility and increase the amount of information in the
new Bayesian network [32]. An alternative approach is
proposed in [31] by allowing the production of cyclic
digraphs and arbitrarily assigning them a low score. In this
paper, we considered the acyclicity constraint a posteriori
using a repair function to remove cycles from new candi-
date structures (this process is detailed in the Methods sec-
tion). Moreover, we set an upper bound on the number of
potential parents per node to 10, which limited the fre-
quency of cycle appearance. Indeed, for each X; the

number of parameters Gilk to estimate and store in the cor-

responding conditional probability table grows exponen-
tially as a function of the number of parents of X;. For

computational convenience, we chose to limit the size of
the parental sets. Therefore, offspring produced by recom-
bination had to respect both the acyclicity and the maxi-
mum in-degree constraints.

We focused on a generic pair-wise recombination method
to perform the search in the space of BN structures. We
used uniform crossover exchanging randomly selected
EA-genes between two genitor chromosomes. An
exchange rate parametrises the proportion of GA-genes
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that will be passed from one genitor to another during
recombination. Since this process is symmetric, the
exchange rate ranges between 0 and 0.5. Recombination
efficiency depends on its ability to manipulate meaning-
ful information units. We considered two different cod-
ings of BN structures making use of different types of EA-
genes.

Link Recombination

First, we considered a link-chromosome. This is a ternary
vector where each EA-gene ¢; (with i # j) can take three
values : 0 if there is no edge between X;and X;, 1 if X; > X;,
-1 if X; —> X;. This compact representation relies on mean-
ingful information units which represent elementary
interactions between nodes pairs.

Parental Recombination

We also considered the parental-chromosome previously
used in [31]. A parental-chromosome is composed of a
sequence of n GA-genes, each of them corresponding to a
parental list Pa; (with j € {1,..,n}). The scoring metric we
used to evaluate BN structures can be expressed as the
summation of local scores assessing the parental lists.
Thus, the search for a high fitted BN structure can be
achieved by finding proper associations of high scoring
parental lists. From a biological point of view, one may
assume that Pa; represent sets of regulators acting jointly
on the transcriptional activity of gene X; which justifies
exchanging it as a whole.

Maintaining the diversity in the population of solutions

A fundamental characteristic of EAs is their ability to
search the DAG space from multiple points in parallel.
However, as the algorithm goes along, the chromosomes
of the population may become very similar. Population
homogenisation may prevent the crossover operator from
exploring new portions of the solution space.

A common approach to fight fast homogenisation is the
mutation operator which introduces diversity by means of
random edge additions and deletions among candidate
models. This allows the algorithm to escape from local
minima and exploration of new area in the search space.

Alternatively, niching approaches tend to maintain diver-
sity by limiting the scope of selection processes to subsets
of similar individuals. In this study, we used Deterministic
Crowding (DC) [34], a crowding method [35] that takes
place after reproduction and provides a restricted replace-
ment scheme among similar individuals: each offspring
replaces the most similar genitor if it is fitter. Further
details regarding Deterministic Crowding are provided in
the Method section.
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Mutation and DC occur at two different steps of the clas-
sical process of GA. We will compare results obtained with
mutation and/or Deterministic Crowding. When DC is
not applied, we used an elitist replacement strategy: off-
spring replace the two worst individuals of the population
if they have higher scores.

Benchmark and evaluation metrics

In order to evaluate the performance of a structure learn-
ing algorithm, we need to measure its ability to recover
the true structure of the regulatory network. Currently
there is no gold standard that serves as a benchmark for
evaluation, including both real static data and full knowl-
edge of existing pathways. When introducing a new
approach, modellers classically use artificial data to test
the algorithm in various conditions of size of the simu-
lated samples.

We considered the synthetic model proposed in Le et al.
[22], which is a bio-realistic Bayesian network based on
established knowledge on the insulin regulatory network
with a moderate size (35 discrete random variables) and
complexity (parsimonious topology). This insulin DAG is
the reference graph for the study. We generated samples
with various numbers of measures for the 35 genes.

Prior to defining the evaluation metrics that measure the
learning performance, it must be noted that BIC is a
Markov equivalent scoring metric; therefore, it yields the
same score for any DAG belonging to the same equiva-
lence Markov class, i.e. encoding the same statistical
model [36]. Formally, an equivalence Markov class is rep-
resented by a partially directed acyclic graph (PDAG). It
gathers all of the DAGs with the same graph skeleton
(undirected structure) and the same set of immoralities
[37]. Since the learning process can not discriminate
between Markov equivalent DAGs on the basis of only
observed data, the analyses were performed on the PDAG
containing the best DAG obtained for each run. In the
evaluation of the learning process, the best PDAG we
found was compared with the PDAG corresponding to the
reference model.

As in [22], the metrics used are sensitivity (—2

D+ i ), specifi-

tp A
il ). A true

positive (tp) is an edge which appears both in the learnt
graph and the reference graph, with the same orientation
if it is oriented in the learnt graph. An undirected edge in
the learnt graph is considered as a true positive even if it is
directed in the reference graph since no speculation is
made regarding its orientation. A true negative (tn) is the

city ( tanp ), and positive predictive value (
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absence of any edge between two specific nodes in both
the learnt and true graphs.

However, the specificity did not appear to be relevant. The
introduction of an upper bound on the number of parents
per node as well as the constraint on the network com-
plexity in the BIC ensured the generation of parsimonious
solutions. Since both the learnt and the reference network
structures presented a small number of edges, the number
of true negatives was always very high in comparison with
the number of negatives (tn + fp) and therefore the specif-
icity was not discriminative.

Finally, we only retained sensitivity and positive predictive
value as quality metrics since the computation duration
(up to a few hours on a conventional desktop) will always
be short compared to the months which are necessary to
achieve a biological experiment. The aim of genetic regu-
lation network learning is to provide clues for gene/pro-
tein interaction discovery which have to be biologically
validated. Therefore, one has to ensure a high ppv to avoid
unnecessary costly and time consuming experiments.

In the next section, the performances of the EA optimisa-
tion depending on the recombination strategies and
diversity preservation methods are first reported. Second,
the most promising EA implementation we have found is
compared with alternative learning algorithms like greedy
search, K2 and MCMC algorithms.

Exploring the search space with evolutionary algorithms
A comparison of various evolutionary approaches

First, we compare the ability of an evolutionary algorithm
to recover the true structure of the reference network
depending on the recombination strategy it employs and
the use of mutation and/or Deterministic Crowding. The
results are expressed in terms of sensitivity and ppv in Table
1. The empirical means and standard deviations of the
quality metrics are computed from 10 runs. The 10 runs
were performed on 10 different i.i.d. training samples of
size 300. The size 300 has been chosen as a balance
between the small sample size of real data that we can
hope for and the standard in BN learning.

The population size was set to 200 DAGs and the stopping
criterion of the algorithm is the following: no improve-
ment occurs during at least 1000 iterations.

We report the ability of link and parental recombination
to explore the search space for a high (0.4) and a low (0.1)
of the exchange rate: rows 1 and 2 are devoted to link
recombination results, while rows 3 and 4 present the
parental-recombination results. In each table, results are
reported in various conditions: neither mutation nor
niching (column 1), use of mutation (column 2), use of
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Table I: Comparison of the sensitivity and positive predictive value of various evolutionary strategies

NoDC/NoMut NoDC/Mut DC/NoMut DC/Mut
Recombination SENS. PPV SENS. PPV SENS. PPV SENS. PPV
Link R. (High Rate) 43+4 6l 12 6l 6 58+8 63+3 84+5 68 + 4 74+8
Link R. (Low Rate) 187 18+8 42+8 22+8 68+ 4 82+9 68 4 80+ 6
Parental R. (High Rate) 237 26+ 8 567 38+4 48 =3 68+ 10 66 * 4 69+ 6
Parental R. (Low Rate) 125 12+5 336 14 +4 6l +4 796 60 +2 637

We report the ability of link and parental recombination to explore the search space for high (0.4) and low (0.1) exchange rates. Results for link-
recombination with high and low exchange rates are respectively presented in rows | and 2. Results for parental-recombination with high and low
exchange rates are respectively shown in rows 3 and 4. In the first column (NoDC/NoMut), we consider the results for these various
recombination strategies when neither mutation nor Deterministic Crowding were used. We only use mutation or Deterministic Crowding in
column 2 (NoDC/Mut) and column 3 (DC/NoMut), respectively. Mutation and Deterministic Crowding are used jointly in column 4 (DC/Mut). In a
given cell, the figures correspond to the results obtained across 10 runs performed on different and independent datasets with a size of 300. These
results are presented as the mean * the standard deviation of the sensitivity (SENS.) and positive predictive value (PPV) across the ten runs. For the

sake of clarity, they are expressed as percentages.

deterministic crowding (column 3) and use of both (col-
umn 4). When mutation is used, it is characterized by a
small mutation rate implying about 2 edges modifications
per DAG.

Considering the first columns of Table 1, we can see that
for both link and parental recombination, the higher the
exchange rate, the better the results. This was expected
since a higher exchange rate favours a higher mix of EA-
genes among candidate models. Thus, the exploration of
the search space is accelerated through the generation of a
wider variety of candidate models. For a given exchange
rate, link-recombination outperforms parental-recombi-
nation. It performs recombination at a finer level (ele-
mentary interactions) than parental-recombination
which, by manipulating large subsets of conditional
(in)dependencies, explores the search space more slowly.

Adding the mutation operator (Columns 2) increases the
sensitivity we obtain with every recombination methods.
This improvement is particularly important for the less
effective ones. For a low exchange rate, mutation allows
attainment of new graph topologies that would not be
considered due to the slow mix of EA-genes. For parental-
recombination, each EA-gene can take on a huge number
of values depending on the large number of parental lists
that each node can admit. Since these parental lists are
exchanged globally, they will be maintained unchanged
during recombination. The mutation operator appears to
be necessary to modify them and to explore new configu-
rations of parental lists.

Using Deterministic Crowding (Columns 3) also
increases the sensitivity of the recombination methods,
especially for those with a low exchange rate. However,
while the mutation operator fails to improve the ppv,
Deterministic Crowding significantly increases this qual-
ity metric for all recombination methods and parameter

values. Finally, the differences we previously observed
among them tended to vanish. This improvement comes
from the ability of Deterministic Crowding to prevent
homogenisation of the population and delay the conver-
gence of the algorithm. This allows even the less effective
recombination strategies to pursue searches toward better
minima.

Finally, adding the mutation operator to the Determinis-
tic Crowding (Columns 4) leads to balanced results: we
observe a moderate sensitivity improvement and a loss of
ppv for the high exchange rate. It must be noted that the
various evolutionary approaches we previously compared
do not perform the same number of fitness function eval-
uations until reaching convergence. The biggest difference
is related to the use of niching. In our experiments, an EA
with link-recombination, a high exchange rate, a small
mutation probability and using the Deterministic Crowd-
ing performs between 40000 and 50000 function evalua-
tions. The same EA without Deterministic Crowding
requires between 20000 and 30000 function evaluations.
Considering these values are of the same order, the condi-
tions of a fair comparison are granted for these algo-
rithms.

DC significantly improves the learning process and its per-
formances clearly balance the absence of mutation. Since
using both mutation and DC does not yield better overall
results than using DC alone, the need for random modifi-
cation could be discussed. However, for the remaining
part of this paper, we chose to use both. DC improvement
is obviously of greater benefit for recombination methods
which usually fail to efficiently explore the solution space.
In order to get a better understanding of the improvement
promoted by this niching technique, we propose to study
its effect on the homogenisation of the population. For
this purpose, we use an adapted visualisation method: the
Kernel Principal Component Analysis (KPCA).
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Visualization of the effect of Deterministic Crowding during learning
The impact of Deterministic Crowding on the exploration
of the DAG space can also be evaluated by visualizing how
much the DAG structures produced by the two different
evolutionary strategies differ. For this purpose, we used
Kernel Principal Components Analysis (KPCA) intro-
duced by Scholkopf et al. [38] to project DAGs in 2D
space. KPCA consists of applying the standard PCA in a
feature space endowed with some kernel k as an inner
product. A kernel £ is a similarity function that is positive
semi-definite. KPCA provides one way to apply PCA to
complex objects for which a kernel can be defined. Ker-
nels between graphs were introduced by Gaertner in [39].
Particularly, he proposed the direct product kernel based
on the direct product graph.

Given two directed graphs noted G, and G,, we define E,
as the adjacency matrix of their direct product graph G, x
G,, given by the element by element product of the adja-
cency matrices of G, and G,: V(i,j) € {1,...m}2, E_(ij) =
A4(ij)A,(ij), where A; and A, are respectively the adja-
cency matrices of G, and G,.

The direct product kernel k_ is defined by :

k (G, Gy) = iii?]z: = iexp BE,

i,j=1 n=0 i,j=1

where m is the number of vertices of the graphs, S e R
and exp is matrix exponential.

We chose the normalised version of the previous kernel:

kx(G1,G2)
JEx(G1,G1)kx(G2,G2)
Reducing the visualization in a 2D space implies some

loss of information, but it provides an understandable
picture and relevant trends of the population behaviour.

k;wrm(clr G,)=

During the learning process, the population of BN struc-
tures is recorded every 2000 generations. In order to
emphasize the evolution of their distribution from one
generation to the next, we apply KPCA to the individuals
of two consecutive recorded populations (e.g. population
at generation 2000 and 4000).

We present the evolution of candidate solutions for EA
depending on the application of niching, for link and
parental recombination with a high exchange rate. To
avoid interferences with niching regarding the control of
fast homogenisation, the mutation operator was disabled.
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For these tests, we used the SVM and Kernel Methods Mat-
lab Toolbox [40].

The first and second column of Figure 1 represent the evo-
lution of the population distribution when link-recombi-
nation is used with and without niching, respectively.
These results are particularly interesting since they closely
correlate with the quality of the solutions achieved by the
EA. In the absence of niching, the population quickly con-
verges toward a few points (only 4 different solutions
were left after 6000 generations), while with niching the
population maintained many distinct solutions until con-
vergence. The distributions of the solutions for an FA
using parental recombination are depicted in Figure 2
with and without niching in the first and second columns,
respectively. In this case, the effect of niching is striking
since the population of the EA without niching converges
towards a unique point before 4000 generations. Due to
niching, the population can preserve a large and heteroge-
neous population over more than 10000 generations.

Niching postpones population homogenisation and,
more interestingly, preserves heterogeneous repartition
even after convergence is reached. With such a setup, EA
performs a more extensive search of the solution space. At
this point, the only question left is the choice of the
recombination method. Indeed, if link-recombination
with a high exchange rate yields the best results in most
cases, Deterministic Crowding seems to reduce most of
the differences between the two recombination methods.
Therefore, the efficiency of link and parental recombina-
tion for a high exchange rate was studied by plotting their
learning curves.

Introducing the learning curve

The learning curves were built as follows: algorithms were
tested for samples with increasing sizes ranging from 50 to
400 cases with a step size of 50. For each sample size, tests
were performed on 10 different and independent datasets.
We used the same datasets for every algorithm under
study. Results are plotted according to the sensitivity and
the ppv metric. Each point corresponding to a given sam-
ple size, represents the mean value and the standard devi-
ation for one of these quality measurements across the 10
runs of the algorithms.

The learning curves are given for both parental and link
recombination depending on the Crowding implementa-
tion. For both recombination strategies, we kept a high
exchange rate and mutation was applied.

As one can see, for both ppv (Figure 3 [A1, A2]) and sensi-
tivity (Figure 3 [B1, B2]), link recombination (in red)
always performs better than parental-recombination (in
blue), even if this difference is much more significant
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populations were recorded every 2000 generations and after the algorithm's convergence. Each plot represents the graphs of
two populations sampled consecutively. The graphs of both populations are represented as points on a 2D map using Kernel

Principal Composant Analysis.

Page 8 of 14

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:91 http://www.biomedcentral.com/1471-2105/9/91

Niching No Niching
4 6
Gen.=0
0 ‘R
A1 L 0 W | B1
o
Gen.=0
-8 -6
-4 0 8 -8 0 8
3 - 6
08y 0o .
; DE”Z%;%:DED %
Biad 0
0 Dnmﬂugésu a8
A2 n:gj”n” T & ) BZ
mﬂgf%u;un | I
T 7 Gen.=4000
Gen.=2000 |
-4 A \ \ \ -6 S —
-6 0 6 -10 0 8
6 1
A3 gl v it el e ol . | B3
M * *,‘,,,;:y} EN .. s *!s | |
;iivg ke P :*, 5, 1 L
o PR | I Gen.=4642
Gen.=6000 e
-6 -1
-6 0 6 -1 0 1
4 “i 1
’ . Gen.=10340 | '
Ad 0 e o2k ] 0! . ] B4
e Y | |
=100 ’ Gen.=4642
-5 . il . . . 1 s
-6 0 6 -1 0 1

Figure 2

Evolution of the EA for a genetic algorithm with parental-recombination. These figures show the evolution of the
distribution of the population during the learning process using parental-recombination with niching (Al-A4) and without nich-
ing (B1-B4). The populations were recorded every 2000 generations and after the algorithm's convergence. Each plot repre-
sents the graphs of two populations sampled consecutively. The graphs of both populations are represented as points on a 2D
map using Kernel Principal Composant Analysis.
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Comparison of the learning curves of parental-recombination and link-recombination. For each learning algo-
rithm, the results of the comparison of the graph learnt for various sample sizes and the reference graph are expressed in
terms of positive predictive value (Al and A2) and sensitivity (Bl and B2). Figures Al and B| show the results obtained without
niching, while Figures A2 and B2 show the results obtained with niching. The color coding is blue for parental-recombination
and red for link-recombination. For each sample size, tests are performed on |0 different and independent datasets. The same
datasets are used for every EA. Each point along the curves, which correspond to a given sample size, represents the mean
value and the standard deviation of the quality measurement across the 10 runs of the algorithms.

without niching (Figure 3 [Al, B1]) than with niching  The resulting evolutionary algorithm will be compared to
(Figure 3 [A2, B2]). other classical structure learning methods for validation.

Considering these results, we chose link-recombination
with a high exchange rate and used both mutation and
Deterministic Crowding for the remainder of this paper.
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Comparison with other structure learning algorithms
Introduction to the structure learning algorithms used for comparison
The EA with the setup described above was compared with
state of the art and widely used optimisation methods in
the field of BN structure learning. The performances of
these methods were assessed according to ppv and sensitiv-
ity learning curves which were built as described previ-
ously.

First we considered classical search and score methods:
greedy search and K2 [17] algorithms. The greedy hill-
climbing search procedure examines all possible local
modifications of the curent DAG, relying on edge addi-
tion, deletion, and reversal. In each step it applies the one
that leads to the biggest BIC improvement and respects
the acyclicity constraint. Like the EA, this algorithm is ran-
domly initialized.

K2 [17] is a deterministic DAG builder. Starting from a
graph with no edges, for each vertex, it adds incrementally
the parent whose addition most decreases the BIC of the
resulting structure. The algorithm stops these additions
when adding a single parent do not decrease the BIC any-
more. To deal with the acyclicity constraint and reduce
drastically the size of the search space, K2 assumes a prec-
edence order on the variables is available. It intends to
add as parents only variables which precede the target
node in this ordering. As we will see thereafter, this prior
information is a crucial advantage.

We also tested a Markov Chain Monte Carlo (MCMC)
method [19,22]. Instead of focusing on a single solution
optimizing the scoring metricc MCMC samples from the
posterior probability distribution of the model P(G|D),
which can be approximated with the BIC. Starting from a
randomly generated DAG, MCMC constructs a Markov
Chain following the Metropolis-Hastings algorithm. After
a large number of steps, a state (a DAG in our case) of this
chain can be considered as a sample from P(G|D). We per-
formed 44000 steps and only keeps the last 4000 as sam-
ples. Each of these DAGs is processed to obtain the
corresponding PDAG. These ones are then used to build a
single consensus graph by only keeping likely edges that
were present in over 50% of them.

Note that the three algorithms we just introduced were set
up to respect the constraint on the maximum number of
parents per node we imposed to the EA, i.e. parental sets
containing more than 10 parents were forbidden.

Finally, we considered full and partial constraint-based
methods: the Three Phase Dependency Analysis algorithm
(TPDA) [41] and the Max-Min Hill Climbing Bayesian
network structure learning algorithm (MMHC) [42].
These approaches build the networks by assessing the con-

http://www.biomedcentral.com/1471-2105/9/91

ditional independencies (CI) among the attribute of the
data. In this work, we used a classical hypothesis test to
assess the CI : the y2-test. We chose the value of 0.05 as a
threshold to decide if two variables were conditionally
independent.

TPDA is an algorithm that uses an information-theoretic
analysis to learn Bayesian network structures from data. It
allows for effectively learning a partially directed acyclic
graph, requiring only polynomial numbers of conditional
independence tests in typical cases.

MMHC relies on a hybrid approach: it combines con-
straint-based and search and score technics. MMHC first
constructs the skeleton of a Bayesian network using CI
tests in a way similar to the famous PC algorithm [43]. It
then performs a greedy hill-climbing search to orient the
edges. This second phase of the algorithm uses the Baye-
sian Dirichlet metric [44] with uniform prior to assess the
candidate solutions. For these experiments, we used the
implementations of K2 and MCMC available in BNT [24].
The greedy hill-climbing algorithm came from the BNT
Structure Learning Package [45]. For the TPDA and MMHC
algorithms, we used the implementations proposed in
Causal Explorer [46].

Numerical results

The plots of the sensitivity and ppv against the sample size
are given in Figure 4 for all algorithms. For both ppv and
sensitivity, the TPDA algorithm yields the worst results.
Because of the lack of data, constraint-based methods
seems to fail in identifying conditional independencies
and therefore, in discovering relevant edges. Since it also
relies on CI tests for building the skeleton of the network,
the MMHC algorithm achieves similar sensitivity results to
TPDA. However, it shows much better ppv results. Indeed,
it produces less false positives thanks to the greedy search
procedure it uses to perform better edges orientation. Of
course, with a finer tuning of the threshold for the CI tests,
it should be possible to increase the performances of these
algorithms. However, with this setting, they are beaten by
search and score methods, excepted for MMHC's ppv which
remains higher.

Since greedy search is a deterministic heuristic which con-
verges towards local optima around the initial point, it
usually achieves poor performances. The MCMC algo-
rithm, which relies on an alternative and more efficient
strategy, gives better results.

The EA outperforms the MCMC, greedy search and TPDA
algorithms for both the sensitivity and the ppv metrics. The
MCMC performance curves depend on the cut-off value
used to build the consensus graph. This makes its compar-
ison to other methods difficult. However the large differ-
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Comparison of the learning curves of six different structure learning algorithms. For each learning algorithm, the
results of the comparison of the graph learnt for various sample sizes and the reference graph are expressed in terms of posi-
tive predictive value (A) and sensitivity (B). The color coding is green for Greedy search, blue for MCMC, black for K2, dashed
black for MMHC, magenta for TPDA, and red for EA. For each sample size, tests are performed on 10 different and independ-
ent datasets. The same datasets are used for every algorithm. Each point along the curves, which correspond to a given sample
size, presents the mean value and the standard deviation of the quality measurement across the 10 runs of the algorithm.

ence between the EA and the MCMC ppv curves guarantee
that EA performances are better. We note that for small
dataset sizes, MMHC remains close to EA in terms of ppv.

Finally, K2 is the only algorithm which shows clearly bet-
ter ppv results than EA. This was expected since K2 natu-
rally generates less false positives than any other method.
Indeed, prior knowledge is particularly critical when
learning from small datasets and, due to node ordering,
K2 performs the search in a smaller space including a lim-
ited amount of possible edges.

Since the numbers of fitness function evaluations per-
formed by the EA, MCMC, and greedy hill-climbing algo-
rithms are of the same order (tenth of thousands) the
comparisons of performances are fair. This question is
pointless for K2, TPDA and MMHC which are not stochas-
tic heuristics. Therefore, we cannot consider a restart pro-
cedure even if the number of function evaluations
performed by K2 and MMHC (during the greedy hill-
climbing phase) is significantly smaller.

Conclusion

In this work, we present an evolutionary approach to
undertake the hard task of learning gene regulatory net-
works from a reasonable amount of observational data.
To perform this study, we use synthetic gene expression
data sampled from a bio-realistic model of glucose

homoeostasis. This model contains a realistic number of
nodes and mimics the stochastic behaviour of biological
systems. We study the robustness of the learning process
with respect to the internal randomness of the EA and the
variability of the learning datasets. We study the feasibility
of structure learning from reasonably small datasets since
gathering even hundreds of microarrays is very difficult.

We first compare various evolutionary strategies in order
to find the one which achieves the best structure learning.
We show that recombining edges (link-recombination)
with a high exchange rate is the best reproduction strategy
for the problem at hand. The niching method provides us
with the most critical enhancement of the evolutionary
approach. We confirm the ability of deterministic crowd-
ing to postpone convergence and to preserve diversity in
order to allow an extensive search in the space of BN struc-
tures. Finally, we validate our evolutionary approach by
comparing it with various state of the art learning algo-
rithms. EA outperforms the greedy hill-climbing, MCMC,
TPDA, and MMHC algorithms, while K2 yields less false
positives than EA. This is expected since K2 is not a fair
competitor and only considers a restricted set of potential
parents for each node.

Evolutionary learning is a promising framework for the
inference of gene regulation networks. An interesting
extension may be expected through the study of a more
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elaborated version of crowding methods, making use of a
similarity metric between network structures, such as ker-
nels on graphs. Another perspective of this work is to
apply this approach to learn the structure and parameters
of dynamical bayesian network [47]. Indeed, as soon as a
discrete representation of the dynamic model and a fitness
function are available, EA can be applied as we proposed
for the static BN.

We illustrate the good performance of EA to infer regula-
tion networks when few learning data are available. With
recent developments in EA, like Estimation of Distribu-
tion Algorithms that offer means to integrate exogenous
information, these algorithms are a very promising way to
cope with this very difficult task.

Methods

Repair process

Regardless of the type of codings we use to represent can-
didate solutions as well as the methods we use to manip-
ulate them, recombination always results in two DAGs
exchanging a subset of their elementary interactions
(edges). After recombination, both genitor solutions
present various modifications of their topology which can
be expressed through edge additions or deletions. Edge
deletions are systematically accepted and applied first to
make room in the graph for subsequent additions. Edge
additions are rejected if they break either the acyclicity or
the maximum in-degree constraints. In this case, we try to
add these edges in the opposite direction, by considering
both constraints again. We are aware that by reversing the
edges we cannot add in the first place, we still biases the
recombination process. However, we estimate that simply
suppressing them would be even worse, resulting in an
important loss of connectivity among candidate BN struc-
tures.

To avoid the use of a time consuming cycle detection
method, we apply the approach of Giudicci [48]: cycle
insertions are detected according to an ancestor matrix
which describes the set of predecessors for each vertex: to
add an edge from X; to X, one has to ensure that there is
no path from X; to X;. We maintain an ancestor matrix for
each DAG in the population. These matrices are updated
every time a modification occurs in the corresponding
DAG due to the recombination or the mutation.

Deterministic Crowding

Recombination relies on the exchange of a subset of EA-
genes between two genitor chromosomes. Consequently,
each offspring inherited the majority of its EA-genes from
one of the genitor chromosomes, which will be called the
main contributor. In addition, only EA-genes coming from
the secondary contributor are modified during the repair
process. Therefore, we can easily determine which "geni-

http://www.biomedcentral.com/1471-2105/9/91

tor" is the most similar to a given "child" after recombina-
tion, by considering the one from which it inherited the
majority of its topological characteristics. Finally, we
make the assumption that mutation will not change this
similarity. This can be verified by computing the Ham-
ming distance between each child and its genitors. In prac-
tice, this appears to be useless since mutation is designed
to perform only very few modifications in the offspring
(about one or two edge additions or deletions per DAG).
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