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Abstract

Background: Automated extraction of protein-protein interactions (PPI) is an important and
widely studied task in biomedical text mining. We propose a graph kernel based approach for this
task. In contrast to earlier approaches to PPl extraction, the introduced all-paths graph kernel has
the capability to make use of full, general dependency graphs representing the sentence structure.

Results: We evaluate the proposed method on five publicly available PPl corpora, providing the
most comprehensive evaluation done for a machine learning based PPl-extraction system. We
additionally perform a detailed evaluation of the effects of training and testing on different
resources, providing insight into the challenges involved in applying a system beyond the data it was
trained on. Our method is shown to achieve state-of-the-art performance with respect to

comparable evaluations, with 56.4 F-score and 84.8 AUC on the Almed corpus.

Conclusion: We show that the graph kernel approach performs on state-of-the-art level in PPI
extraction, and note the possible extension to the task of extracting complex interactions. Cross-
corpus results provide further insight into how the learning generalizes beyond individual corpora.
Further, we identify several pitfalls that can make evaluations of PPl-extraction systems
incomparable, or even invalid. These include incorrect cross-validation strategies and problems
related to comparing F-score results achieved on different evaluation resources. Recommendations

for avoiding these pitfalls are provided.

Background access through online interfaces to records of millions of
Information extraction from biomedical research publica-  research articles from the biomedical domain, with
tions has been a topic of intense research during recent  abstracts made available for many, and full texts for some
years [1-3]. Literature databases such as PubMed offer  of the papers. Potentially, this offers a researcher direct
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access to vast amounts of research knowledge. However,
locating the useful information can be challenging, a sim-
ple keyword search may still return many more articles
than a human being can process. This motivates the devel-
opment of tools for automating the extraction of informa-
tion from biomedical text.

A task of significant interest in biomedical natural lan-
guage processing is the automated protein-protein inter-
action (PPI) extraction. The most commonly addressed
problem has been the extraction of binary interactions,
where the system identifies which protein pairs in a sen-
tence have a biologically relevant relationship between
them. Proposed solutions include both hand-crafted rule-
based systems and machine learning approaches (see e.g.
[4]). A wide range of results have been reported for the
systems, but as we will show, differences in evaluation
resources, metrics and strategies make direct comparison
of the numbers presented problematic. Further, the results
gained from the BioCreative II evaluation, where the best
performing system achieved a 29% F-score [5], suggest
that the problem of extracting binary protein-protein
interactions is far from solved.

The public availability of large annotated PPI-corpora
such as Almed [4], BioInfer [6] and GENIA [7], provides
an opportunity for building PPI extraction systems auto-
matically using machine learning. A major challenge is
how to supply the learner with the contextual and syntac-
tic information needed to distinguish between interac-
tions and non-interactions. To address the ambiguity and
variability of the natural language expressions used to
state PPI, several recent studies have focused on the devel-
opment, adaptation and application of NLP tools for the
biomedical domain. Many high-quality domain-specific
tools are now freely available, including full parsers such
as that introduced by Lease and Charniak [8]. Addition-
ally, a number of conversions from phrase structure parses
to dependency structures that make the relationships
between words more directly accessible have been intro-
duced. These include conversions into representations
such as the Stanford dependency scheme [9] that are
explicitly designed for information extraction purposes.
However, specialized feature representations and kernels
are required to make learning from such structures possi-
ble.

Approaches such as subsequence kernels [10], tree kernels
[11] and shortest path kernels [12] have been proposed
and successfully used for relation extraction. However,
these methods lack the expressive power to consider rep-
resentations derived from general, possibly cyclic,
dependency graph structures, such as those generated by
the Stanford tools. The subsequence kernel approach does
not consider parses at all, and the shortest path approach
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is limited to representing only a single path in the full
dependency graph, which excludes relevant words even in
many simple cases (Figure 1). Tree kernels can represent
more complex structures, but are still restricted to tree rep-
resentations.

Lately, in the framework of kernel-based machine learn-
ing methods there has been an increased interest in
designing kernel functions for graph data. Building on the
work of Girtner et al. [13], graph representations tailored
for the task of dependency parse ranking were proposed
by Pahikkala et al. [14]. Though the proposed representa-
tions are not directly applicable to the task of PPI extrac-
tion, they offer insight in how to learn from dependency
graphs. We develop a graph kernel approach for PPI
extraction based on these ideas.

We next define a graph representation suitable for describ-
ing potential interactions and introduce a kernel which
makes efficient learning from a general, unrestricted graph
representation possible. Then we provide a short descrip-
tion of the sparse regularized least squares (sparse RLS)
kernel-based machine learning method we use for PPI-
extraction.

Further, we rigorously assess our method on five publicly
available PPI corpora. In addition to purely intrinsic eval-
uation using cross-validation on single corpora, we pro-
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Shortest path example. Stanford dependency parses
("collapsed") representation where the shortest path, shown
in bold, excludes important words.
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vide a broad cross-corpus evaluation to test how well an
extraction system trained on a given corpus will generalize
to the other corpora. We thus provide, to our knowledge,
the most comprehensive evaluation done with a machine
learning approach to PPl-extraction. Finally, we discuss
the effects that different evaluation strategies, choice of
corpus and applied metrics have on measured perform-
ance, and provide conclusions.

Methods

We next present our graph representation, formalize the
notion of graph kernels, and present our learning method
of choice, the sparse RLS.

Graph encoding of sentence structure

As in most recent work on machine learning for PPI
extraction, we cast the task as learning a decision function
that determines for each unordered candidate pair of pro-
tein names occurring together in a sentence whether the
two proteins interact. In the following, we first define the
graph representation used to represent an interaction can-
didate pair. We then proceed to derive the kernel used to
measure the similarities of these graphs.

We assume that the input of our learning method is a
dependency parse of a sentence where a pair of protein
names is marked as the candidate interaction for which an
extraction decision must be made. Based on this, we form
a weighted, directed graph that consists of two uncon-
nected subgraphs. One represents the dependency struc-
ture of the sentence, and the other the linear order of the
words (see Figure 2).

http://www.biomedcentral.com/1471-2105/9/S11/S2

The first subgraph is built from the dependency analysis.
One vertex and an associated set of labels is created in the
graph for each token and for each dependency. The verti-
ces that represent tokens have as labels the text and part-
of-speech (POS) of the token. To ensure generalization of
the learned extraction model, the labels of vertices that
correspond to protein names are replaced with PROT1,
PROT2 or PROT, where PROT1 and PROT? are the pair of
interest. The vertices that represent dependencies are
labeled with the type of the dependency. The edges in the
subgraph are defined so that each dependency vertex is
connected by an incoming edge from the vertex represent-
ing its governor token, and by an outgoing edge to the ver-
tex representing its dependent token. The graph thus
represents the entire sentence structure.

It is widely acknowledged that the words between the can-
didate entities or connecting them in a syntactic represen-
tation are particularly likely to carry information
regarding their relationship; Bunescu and Mooney [12]
formalize this intuition for dependency graphs as the
shortest path hypothesis. We apply this insight in two ways
in the graph representation: the labels of the nodes on the
shortest undirected paths connecting PROT1 and PROT2
are differentiated from the labels outside the paths using
a special tag. Further, the edges are assigned weights; after
limited preliminary experiments, we chose a simple
weighting scheme where all edges on the shortest paths
receive a weight of 0.9 and other edges receive a weight of
0.3. The representation thus allows us to emphasize the
shortest path without completely disregarding potentially
relevant words outside the path.

22 xsubJ IP 09
0.3 0.9
m%(°3prep [prep_vith| — o °3[ OQf-ﬁ
PROT1_IP| |interacts| |with| [PROT| |to| ([disassemble_IP| (PROT2_IP| (filaments_IP
NN_IP VBZ IN NN TO VB_IP NN_IP NNS_IP

ﬁﬁﬁﬁﬁfﬁfﬁ

PROT1| |interacts M |with M |PROT M B disassemble_M| [PROT2| (filaments_A
NN VBZ M IN M NN M TO_M VB_M NN NNS_A
Figure 2

Graph representation. Graph representation generated from an example sentence. The candidate interaction pair is

marked as PROT | and PROT?2, the third protein is marked as PROT. The shortest path between the proteins is shown in bold.
In the dependency based subgraph all nodes in a shortest path are specialized using a post-tag (IP). In the linear order subgraph
possible tags are (B)efore, (M)iddle, and (A)fter. For the other two candidate pairs in the sentence, graphs with the same struc-

ture but different weights and labels would be generated.
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The second subgraph is built from the linear structure of
the sentence. For each token, a second vertex is created
and the labels for the vertices are derived from the texts,
POS-tags and named entity tagging as above. The labels of
each word are specialized to denote whether the word
appears before, in-between, or after the protein pair of
interest. Each word node is connected by an edge to its
succeeding word, as determined by sentence order of the
words. Each edge is given the weight 0.9.

The all-paths graph kernel

We next formalize the graph representation and present
the all-paths graph kernel. This kernel can be considered
as a practical instantiation of the theoretical graph kernel
framework introduced by Girtner et al. [13]. Let V be the
set of vertices in the graph and £ be the set of possible
labels vertices can have. We represent the graph with an
adjacency matrix A € RIVI = IVl, whose rows and columns
are indexed by the vertices, and [A]; ; contains the weight

of the edge connecting v; € V and v; € V if such an edge
exists, and zero otherwise. Further, we represent the labels

as a label allocation matrix L e R“MV/ 5o that L;j=1ifthe
j-th vertex has the i-th label and L; ;= 0 otherwise. Because

only a very small fraction of all the possible labels are ever
assigned to any single node, this matrix is extremely
sparse.

It is well known that when an adjacency matrix is multi-
plied with itself, each element [A?]; ; contains the summed
weight of paths from vertex v; to vertex v; through one
intervening vertex, that is, paths of length two. Similarly,
for any length n, the summed weights from v; to v; can be
determined by calculating [A"]; ;. Since we are interested
not only in paths of one specific length, it is natural to
combine the effect of paths of different lengths by sum-
ming the powers of the adjacency matrices. We calculate
the infinite sum of the weights of all possible paths con-
necting the vertices using the Neumann Series, defined as

(I-A)'=1+A+A2 +...=ZA"
k=0
if |A| < 1 where |A] is the spectral radius of A [15]. From
this sum we can form a new adjacency matrix

W= (I-A)1-L

The final adjacency matrix contains the summed weights
of all possible paths connecting the vertices. The identity
matrix is subtracted to remove the paths of length zero,
which would correspond to self-loops. Next, we present
the graph kernel that utilizes the graph representation
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defined previously. We define an instance G representing
a candidate interaction as G = LWLT, where L and W are
the label allocation matrix and the final adjacency matrix
corresponding to the graph representation of the candi-
date interaction.

Following Girtner et al. [13] the graph kernel is defined as

£ 14
KG,G) =D GGl
i=1 j=1

where G' and G" are two instances formed as defined pre-
viously. The features can be thought as combinations of
labels from connected pairs of vertices, with a value that
represents the strength of their connection. In practical
implementations, the full G matrices, which consist
mostly of zeroes, are never explicitly formed. Rather, only
the non-zero elements are stored in memory and used
when calculating the kernels.

Scalable learning with Sparse RLS

RLS, also known as the least squares support vector
machine, is a state-of-the-art kernel-based machine learn-
ing method which has been shown to have comparable
performance to standard support vector machines
[16,17]. We choose the sparse version of the algorithm,
also known as subset of regressors, as it allows us to scale
up the method to very large training set sizes. Sparse RLS
also has the property that it is possible to perform cross-
validation and regularization parameter selection so that
their time complexities are negligible compared to the
training complexity. These efficient methods are analo-
gous to the ones proposed by Pahikkala et al. [18] for the
basic RLS regression.

We now briefly present the basic sparse RLS algorithm. Let
m denote the training set size and M = {1,..., m} an index
set in which the indices refer to the examples in the train-
ing set. Instead of allowing functions that can be
expressed as a linear combination over the whole training
set, as in the case of basic RLS regression, we only allow
functions of the following restricted type:

F)= ak (), (1)

i€eB

where k is the kernel function, x; are training data points,
a; € R are weights, and the set indexing the basis vectors B
c M is selected in advance. The coefficients a; that deter-
mine (1) are obtained by minimizing

3 - Y akex)) + 2 gk x), (@)
j=1

i€eB j,ieB
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where the first term is the squared loss function, the sec-
ond term is the regularizer, and 1 € R, is a regularization
parameter. All the training instances are used for deter-
mining the coefficient vector, but only a subset of them to
represent the learned hypothesis. The minimizer of (2) is
obtained by solving the corresponding system of linear
equations, which can be performed in O(m|B|?) time.

We set the maximum number of basis vectors to 4000 in
all experiments in this study. The subset is selected ran-
domly when the training set size exceeds this number.
Other methods for the selection of the basis vectors were
considered by Rifkin et al. [17], who however reported
that the random selection worked as well as the more
sophisticated approaches.

Results and discussion

We next describe the evaluation resources and metrics
used, provide a comprehensive evaluation of our method
across five PPI corpora, and compare our results to earlier
work. Further, we discuss the challenges inherent in pro-
viding a valid method evaluation and propose solutions.

Corpora and evaluation criteria

We evaluate our method using five publicly available cor-
pora that contain PPI interaction annotation: Almed [4],
Biolnfer [6], HPRD50 [19], IEPA [20] and LLL [21]. All the
corpora were processed to a common format using trans-
formations [22] that we have introduced earlier [23]. We
note that the version of the BioIlnfer used in this study dif-
fers from the one we considered in [23] and in [24]. This
is due to the fact that these studies used an early version of
the binarization rules [25] that transform the complex
relations of BioInfer to binary ones.

We parse these corpora with the Charniak-Lease parser
[8], which has been found to perform best among a
number of parsers tested in recent domain evaluations
[26,27]. The Charniak-Lease phrase structure parses are
transformed into the collapsed Stanford dependency
scheme using the Stanford tools [9]. We cast the PPI
extraction task as binary classification, where protein pairs
that are stated to interact are positive examples and other
co-occurring pairs negative. Thus, from each sentence,

n .
(2J examples are generated, where n is the number of

occurrences of protein names in the sentence. Finally, we
form the graph representation described earlier for each
candidate interaction.

In the single corpus tests we evaluate the method with 10-
fold document-level cross-validation on all of the cor-
pora. This guarantees the maximal use of the available
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data, and also allows comparison to relevant earlier work.
In particular, on the Almed corpus we apply the exact
same 10-fold split that was used by Bunescu et al. [10],
Giuliano et al. [28], Van Landeghem et al. [29], and pos-
sibly some of the other studies which do not explicitly
state which split was used. In cross-corpus tests we use
each of the corpora in turn to train an extraction system,
and test the system on the four remaining corpora.

Performance is measured according to the following crite-
ria: interactions are considered untyped, undirected pair-
wise relations between specific protein mentions, that is,
if the same protein name occurs multiple times in a sen-
tence, the correct interactions must be extracted for each
occurrence. Further, we do not consider self-interactions
as candidates and remove them from the corpora prior to
evaluation. The majority of PPI extraction system evalua-
tions use the balanced F-score measure for quantifying the
performance of the systems. This metric is defined as

2 . . _
F= p—f::, where p is precision and r recall. Likewise, we

provide F-score, precision, and recall values in our evalu-
ation. It should be noted that F-score is very sensitive to
the underlying positive/negative pair distribution of the
corpus - a property whose impact on evaluation is dis-
cussed in detail below. As an alternative to F-score, we also
evaluate the performance of our system using the area
under the receiver operating characteristics curve (AUC)
measure [30]. AUC has the important property that it is
invariant to the class distribution of the used dataset. Due
to this and other beneficial properties for comparative
evaluation, the usage of AUC for performance evaluation
has been recently advocated in the machine learning com-
munity (see e.g. [31]). Formally, AUC can be defined as

it ¥ Hixi-yj)
AUC = i=1 ~j=1 ) ,
mym_

where m, and m_are the numbers of positive and negative

examples, respectively, and x;,..., x,, are outputs of the

system for the positive, and y,,...,y,, for the negative

examples, and

1, ifr>0
H(r)=<0.5, ifr=0
0, otherwise.
The outputs are real valued and can be thought of as

inducing a ranking, where the examples considered to be
most likely to belong to the positive class should receive
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the highest output values. The measure corresponds to the
probability that given a randomly chosen positive and
negative example, the system will be able to correctly dis-
tinguish which one is which.

Performance on the individual corpora

The performance of our method on the five corpora for
the various metrics is presented in Table 1. For reference,
we show also the performance of the co-occurrence (or all-
true) baseline, which simply assigns each candidate into
the interaction class. The recall of the co-occurrence
method is trivially 100%, and in terms of AUC it has a per-
formance of 50%, the random baseline. All the numbers
in Table 1, including the co-occurrence results, are aver-
ages taken over the ten folds. One should note that
because of the non-linearity of the F-score measure, the
average precision and recall will not produce exactly the
average F. Further, calculating the co-occurrence numbers
as averages over the folds leads to results that differ
slightly compared to the approach where the co-occur-
rence statistic is calculated over all the data pooled
together.

The results hold several interesting findings. First, we
briefly observe that on the Almed corpus, which has
recently been applied in numerous evaluations [32] and
can be seen as an emerging de facto standard for PPI extrac-
tion method evaluation, the method achieves an F-score
performance of 56.4%. As we argue in more detail below,
this level of performance is comparable to the state-of-the-
art in machine learning based PPI extraction. For the other
large corpus, Biolnfer, F-score performance is somewhat
higher, at 61%. Second, we observe that the F-score per-
formance of the method varies strikingly between the dif-
ferent corpora, with results on IEPA and LLL
approximately 20 percentage units higher than on Almed
and 15 percentage units higher than on Biolnfer, despite
the larger size of the latter two. In our previous work we
have observed similar results with a rule-based extraction
method [23]. As a broad multiple corpus evaluation using
a state-of-the-art machine learning method for PPI extrac-
tion, our results support and extend the key finding that F-
score performance results measured on different corpora
cannot, in general, be meaningfully compared.
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The co-occurrence baseline numbers indicate one reason
for the high F-score variance between the corpora. The F-
score metric is not invariant to the distribution of positive
and negative examples: for example, halving the number
of negative test examples is expected to approximately
halve the number of false positives at a given recall point.
Thus, the greater the fraction of true interactions in a cor-
pus is, the easier it is to reach high performance in terms
of F-score. This is reflected in co-occurrence results, which
range from 30% to 70% depending on the class distribu-
tion of the corpus.

This is a critical weakness of the F-score metric in compar-
isons involving different corpora as, for example, the frac-
tion of true interactions out of all candidates is 50% in the
LLL corpus but only 17% in Almed. By contrast to the
large differences in performance measured using F-score,
we find that for the distribution-invariant AUC measure
the performance for all of the corpora falls in the range of
80-85%. The results provide an argument in favor of
applying the AUC metric instead of, or in addition to, F-
score. AUC is also more stable in terms of variance.

The similar performance in terms of AUC for corpora with
as widely differing sizes as LLL and BiolInfer allows for two
alternative interpretations. First, it might be that past a rel-
atively modest number of examples, increasing corpus
size has little effect on the performance of the method.
Alternatively, it might be the case that the larger corpora,
while having more training data available, are also more
difficult to learn than the smaller corpora. We explore the
issue further by calculating learning curves on the corpora,
using AUC as the performance measure (see Figure 3). For
each corpus five folds are set aside as the test set, and the
rest of the data is incrementally added to the training set
to test how increase in training data affects the perform-
ance.

The learning curves support the latter interpretation. If the
datasets all represented equally difficult tasks with respect
to distinguishing randomly drawn positive instances from
negatives, we would expect the curves to roughly overlap.
The fact that they are to a large extent separate indicates
that there are large differences in the difficulty of the

Table I: Evaluation results. Counts of positive and negative examples in the corpora and (P)recision, (R)ecall, (F)-score and AUC for

the graph kernel, with standard deviations provided for F and AUC.

Statistics Graph Kernel co-occ

Corpus #POS. #NEG. P R OF AUC Oauc P F

AlMed 1000 4834 52.9% 61.8% 56.4% 5.0% 84.8% 2.3% 17.8% 30.1%
Biolnfer 2534 7132 56.7% 67.2% 61.3% 5.2% 81.9% 4.9% 26.6% 41.7%
HPRD50 163 270 64.3% 65.8% 63.4% 11.4% 79.7% 6.3% 38.9% 55.4%
IEPA 335 482 69.6% 82.7% 75.1% 7.0% 85.1% 5.1% 40.8% 57.6%
LLL 164 166 72.5% 87.2% 76.8% 17.8% 83.4% 12.2% 55.9% 70.3%
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Figure 3

Learning curves. Learning curves for the five corpora. The
scale is logarithmic with respect to the amount of training
data.

learning tasks represented by the different corpora. On
Almed and Biolnfer it takes significantly more data to
reach the same performance than on the three smaller cor-
pora HPRD50, LLL and IEPA: For example, performance
on the latter three with 100 training examples exceeds the
performance on Biolnfer with ten times as much training
data.

Cross-corpus performance

The cross-corpus evaluation aims to shed light on a ques-
tion of fundamental importance in training machine
learning based PPl-extraction systems: Will the learned
models generalize beyond the specific characteristics of
the data they were trained on? The types of named entities
annotated, the definition of what exactly constitutes an
interaction and the relative positive/negative distributions
of pairs can vary significantly over different corpora. Thus
it is not obvious that a system trained on a given corpus
will perform well on data which is not from the same cor-
pus. As discussed in [33], applying text mining tools
beyond the development data can lead to disappointing
results.

http://www.biomedcentral.com/1471-2105/9/S11/S2

We explore this issue through a cross-corpus evaluation of
our method. Five extraction systems are trained, one on
each corpus, and they are each tested on the four remain-
ing corpora. Leave-one-document-out cross-validation on
the training corpus is used for parameter value selection.
Our evaluation extends the recent results of Van Lan-
deghem et al. [29], who conducted cross-corpus experi-
ments on four of the corpora considered in this study.
Their finding was that models trained on a combination
of three of the corpora often did not perform well on
terms of F-score, when tested on the remaining corpus.

We start by considering the AUC results of the cross-cor-
pus evaluation (see Table 2), as the metric normalizes
away much of the differences resulting from differing pos-
itive/negative distributions and threshold selection strate-
gies, thus providing a more stable view of performance.
We notice that the performance varies significantly
depending on the training and test corpus. Unlike in the
single corpus evaluations the results are scattered, ranging
from 61% to 83% AUC. On the large corpora the trained
extraction systems in all cases perform clearly worse than
the cross-validation performance. However, on the two
smallest corpora this is not so. On HPRD50 systems
trained on Almed and IEPA actually give better perform-
ance than the results from cross-validating on the corpus.
On LLL the models trained on Biolnfer and IEPA do
almost as well as the cross-validation results on the cor-
pus. These results suggest that a larger amount of training
data can compensate for the differences in corpus annota-
tion strategies to a large extent. Random chance may also
be a factor here, as observed previously in the large vari-
ances in cross-validation results on the smallest corpora.

One relevant question that can be answered from the
cross-corpus experiments is which of the corpora provides
the best resource for training from a generalization per-
spective. However, it is not entirely straightforward to
meaningfully summarize these results: simple averages
over results on the very different resources carry little
meaning. Instead, we provide a simple, rough indicator of
generalization potential by ranking the corpora separately
according to the results on each of the other corpora. The
rankings are presented in Table 2. Though the rankings do
differ over different test corpora, overall they roughly fol-

Table 2: Cross-corpus results measured with AUC. AUC results for cross-corpus testing. Rows correspond to training corpora and

columns to test corpora.

Almed rank Biolnfer rank HPRD50 rank IEPA rank LLL rank avg. rank
Almed - - 67.7% 2 82.4% I 76.1% 2 77.8% 3 2
Biolnfer 77.8% | - - 75.2% 3 79.3% I 83.3% I 1.5
HPRD50 72.5% 2 61.8% 3 - - 74.9% 3 64.0% 4 3
IEPA 70.2% 3 72.2% I 80.0% 2 - - 82.5% 2 2
LLL 61.8% 4 61.0% 4 69.4% 4 74.8% 4 - - 4
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low the size of the corpora. On average models trained on
the largest corpus, Biolnfer, perform best. Next in this
ranking the second and third largest corpora, Almed and
IEPA share a rank. The second worst performing models
are trained on the second smallest corpus HPRD50, and
the lowest performing ones on the smallest dataset, LLL.
Unsurprisingly, the more training data available the better
the performance is. A surprising result is the high perform-
ance of systems trained on IEPA, the corpus being an
order of magnitude smaller than Almed or Biolnfer.

Next, we consider the results using the F-score measure. In
Table 3 results for which the threshold separarating posi-
tive and negative classes has been selected on the training
corpus are shown. In some cases the results are on a simi-
lar level to those gained in the single corpus cross-valida-
tion experiments. This holds true for example with
models trained on Almed or IEPA, and tested on the
HPRD50 corpus. However, there are several cases where
the performance is disastrously low. Most strikingly, three
out of four results gained when using Almed for training
fall below the results one would achieve with the naive co-
occurrence baseline. We observe that even in these cases
the AUC results are still competitive. This gives rise to the
assumption that the problem is in the threshold selection.
The learned models do have the property that they tend to
assign higher values for the positive than for the negative
examples, but the approach of selecting the suitable
threshold on training data for separating the two classes
fails utterly in some cases. We further observed that avoid-
ing the task of threshold selection altogether by setting it
simply to zero yielded no better results.

In Table 4 we provide the optimal F-score results, choos-
ing the positions from the precision/recall curves that
would lead to highest F-scores. Many of the results are
now greatly increased, with no result falling below the
naive co-occurrence baseline. Further, the relative ranking
order of the results is the same as that induced by the AUC
scores. It is now clear that one can not necessarily rely on
the approach of choosing the threshold according to what
works on the training set when doing cross-corpus learn-
ing. This is perhaps due to the large differences in the
underlying positive/negative distributions of the corpora.
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The differences mean breaking the basic assumption
made by the majority of machine learning methods, that
the training and test examples are identically distributed.
As can be seen from the statistics presented in Table 1, the
examples are clearly not identically distributed over the
corpora, at least with respect to outputs.

One approach for selecting which examples to assign to
positive and which to negative classes could be selecting
the threshold according to the the relative positive/nega-
tive distribution of the test set. To estimate this in a prac-
tical setting, one may have to sample and manually check
examples from the test set. In Table 5 are presented the F-
score results gained when assigning to positive class such
a fraction of the test examples that corresponds to the rel-
ative frequency of positive examples in the test corpus. In
all the cases the results are within a few percentage units
of the optimal values, indicating that this simple heuristic
allows the worst disasters observed in the cross-corpus
tests to be avoided. However, there are several cases where
the result achieved with this approach is lower than when
choosing the threshold on the training data.

To conclude, the cross-corpus learning results support the
assumption that the learned models generalize beyond
the corpora they were trained on. Still, results are gener-
ally lower when testing a method against a corpus differ-
ent from that on which it was trained. We observe that the
systems trained on larger corpora tend to perform better
than the ones trained on smaller ones, as is to be expected.
The results achieved with the IEPA as a training corpus are
surprisingly competitive, considering how much smaller
it is than the two larger corpora. Choosing a threshold for
separating the positive and negative classes proves to be a
challenging issue, as a threshold chosen on the training
corpus may not work at all on another.

Performance compared to other methods

We next discuss the performance of our method com-
pared to other methods introduced in the literature and
the challenges of meaningful comparison, where we iden-
tify three major issues.

Table 3: Cross-corpus results measured with F-score and threshold chosen on training set. F-score results for cross-corpus testing with
the thresholds chosen on the training set. Rows correspond to training corpora and columns to test corpora. A denote the difference
between the F-score result and the result achieved with the optimal threshold.

Almed A Biolnfer A HPRD50 A IEPA A LLL A
Almed - - 24.9% 22.2% 64.6% 4.4% 22.9% 44.5% 17.7% 56.8%
Biolnfer 44.2% 3.0% - - 63.6% 0.3% 64.5% 3.5% 76.4% 1.6%
HPRD50 40.9% 1.3% 27.2% 15.3% - - 56.3% 8.8% 45.5% 22.4%
IEPA 38.4% 0.7% 47.0% 4.7% 65.6% 1.9% - - 77.0% 0.6%
LLL 32.6% 0.7% 42.2% 0.3% 58.3% 1.5% 63.9% 1.0% - -
Page 8 of 12
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Table 4: Cross-corpus results measures with F-score and optimal
thresholds. F-score results for cross-corpus testing with the
optimal thresholds. Rows correspond to training corpora and
columns to test corpora.

Almed Biolnfer HPRD50 IEPA LLL
Almed - 47.1% 69.0% 67.4%  74.5%
Biolnfer 47.2% - 63.9% 68.0%  78.0%
HPRD50 42.2% 42.5% - 65.1%  67.9%
IEPA 39.1% 51.7% 67.5% - 77.6%
LLL 33.3% 42.5% 59.8% 64.9% -

First, as indicated by the results above, differences in the
makeup of different corpora render cross-corpus compar-
isons in terms of F-score essentially meaningless. As F-
score is typically the only metric for which results are
reported in the PPI extraction literature, we are limited to
comparing against results on single corpora. We consider
the Almed and Biolnfer evaluations to be the most rele-
vant ones, as these corpora are sufficiently large for train-
ing and reliably testing machine learning methods. As the
present study is, to the best of our knowledge, the first to
report machine learning method performance on Bioln-
fer, we will focus on Almed in the following comparison.

Second, the cross-validation strategy used in evaluation
has a large impact on measured performance. The pair-
based examples can break the assumption of the training
and test sets being independent of each other, as pairs
generated from the same sentence, and to a lesser extent
from the same document, are clearly not independent.
This must be taken into account when designing the
experimental setup (see e.g. [18] for further discussion).
In earlier system evaluations, two major strategies for
defining the splits used in cross-validation can be
observed. The approach used by Bunescu and Mooney
[10], which we consider the correct one, is to split the data
into folds on the level of documents. This guarantees that
all pairs generated from the same document are always
either in the training set or in the test set. Another
approach is to pool all the generated pairs together, and
then randomly split them to folds. To illustrate the signif-
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icance of this choice, consider two interaction candidates
extracted from the same sentence, e.g. from a statement of
the form "P, and P, [...] P;", where "[...]" is any statement
of interaction or non-interaction. Due to the near-identity
of contexts, a machine learning method will easily learn to
predict that the label of the pair (P;, P;) should match that
of (P,, P;). However, such "learning" will clearly not gen-
eralize. This approach must thus be considered invalid,
because allowing pairs generated from the same sentences
to appear in different folds leads to an information leak
between the training and test sets. Setre et al. [32]
observed that adopting the latter cross-validation strategy
on Almed could lead up to 18 F-score percentage unit overes-
timation of performance. For this reason, we will not con-
sider results listed in the "False 10-fold cross-validation"
table (2b) of Seetre et al. [32].

With these restrictions in place, we now turn to compari-
son with relevant results reported in related research, sum-
marized in Table 6. Among the work left out of the
comparison we note the results of Bunescu and Mooney
[10], who reported a performance of 54.2% F on Almed.
Though they used the same cross-validation strategy as the
one used in our experiments, their results are not compa-
rable to the ones included in the Table 6. They applied
evaluation criteria where it is enough to extract only one
occurrence of each mention of an interaction from each
abstract, while the results shown were evaluated using the
same criteria as applied here. The former approach can
produce higher performance: the evaluation of Giuliano
et al. [28] includes both alternatives, and their method
achieves an F-score of 63.9% under the former criterion,
which they term One Answer per Relation in a given Doc-
ument (OARD).

The best performing system, that of Miwa et al. [34], com-
bines the all-paths graph kernel, implemented based on
the description we provided in [24], together with other
kernels. Their results can be considered as a further valida-
tion about the suitability of the graph kernel for PPI-
extraction. Our implementation of the all-paths method
outperforms most of the other studies using similar eval-

Table 5: Cross-corpus results measured with F-score and thresholds based on the distribution of test set. F-score results for cross-
corpus testing with the thresholds chosen according to the positive/negative distribution of the test set. Rows correspond to training
corpora and columns to test corpora. A denote the difference between the F-score result and the result achieved with the optimal

threshold.

Almed A Biolnfer A HPRD50 A IEPA A LLL A
Almed - - 44.7% 2.4% 65.6% 3.4% 63.9% 3.5% 70.1% 4.4%
Biolnfer 42.6% 4.6% - - 62.0% 1.9% 66.9% 1.1% 75.6% 2.4%
HPRD50 39.1% 3.1% 40.0% 2.5% - - 63.3% 1.8% 58.5% 9.4%
IEPA 33.5% 5.6% 48.4% 3.3% 66.3% 1.2% - - 77.4% 0.2%
LLL 26.5% 6.8% 38.7% 3.8% 54.0% 5.8% 63.0% 1.9% - -
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Table 6: Comparison on Almed. (P)recision, (R)ecall, (F)-score
and AUC results for methods evaluated on Almed with the
correct cross-validation methodology. Note that the best
performing method, introduced by Miwa et al. [34], also utilizes
the all-paths graph kernel.

P R F AUC
Miwa et al. [34] - - 63.5% 87.9%
Miyao et al. [35] 54.9% 65.5% 59.5% -
Giuliano et al. [28] 60.9% 57.2%  59.0% -
All-paths graph kernel 529% 61.8% 564% 84.8%
Satre et al. [32] 64.3% 44.1%  52.0% -
Mitsumori et al. [39] 542% 42.6% 47.7% -

Van Landeghem et al. [29] 49% 44% 46% -
Yakushiji et al. [40] 33.7%  33.1%  33.4% -

uation methodology, with the exceptions being the
approaches Miyao et al. [35] and Giuliano et al. [28].

Miyao reports choosing in the experiments always the
optimal point from the precision/recall curve, an
approach we observe would raise our results around the
same level. The results of Giuliano et al. are somewhat sur-
prising, as their method does not apply any form of pars-
ing but relies instead only on the sequential order of the
words. This brings us to our third point regarding compa-
rability of methods. As pointed out by Setre et al. [32], the
Almed corpus allows remarkably different "interpreta-
tions" regarding the number of interacting and non-inter-
acting pairs. For example, where we have identified 1000
interacting and 4834 non-interacting protein pairs in
Almed, in the data used by Giuliano there are eight more
interacting and 200 fewer non-interacting pairs. The cor-
pus can also be preprocessed in a number of ways. In par-
ticular we noticed that whereas protein names are always
blinded in our data, in the data used by Giuliano protein
names are sometimes partly left visible. As Giuliano has
generously made his method implementation available
[36], we were able to test the performance of his system on
the data we used in our experiments. This resulted in an F-
score of 52.4%.

Finally, there remains an issue of parameter selection. For
sparse RLS the values of the regularization parameter A
and the decision threshold separating the positive and
negative classes must be chosen, which can be problem-
atic when no separate data for choosing them is available.
Choosing from several parameter values the ones that give
best results in testing, or picking the best point from a pre-
cision/recall curve when evaluating in terms of F-score,
will lead to an over-optimistic evaluation of performance.
This issue has often not been addressed in earlier evalua-
tions that do cross-validation on a whole corpus. We
choose the parameters by doing further leave-one-docu-
ment-out cross-validation within each round of 10-fold-
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cross-validation, on the nine folds that constitute the
training set.

As a conclusion, we observe the results achieved with the
all-paths graph kernel to be state-of-the-art level. How-
ever, differences in evaluation strategies and the large var-
iance exhibited in the results make it impossible to state
which of the systems considered can be expected in gen-
eral to perform best. We encourage future PPI-system eval-
uations to report AUC and F-score results over multiple
corpora, following clearly defined evaluation strategies, to
bring further clarity to this issue. For further discussion on
resolving the challenges of comparing biomedical relation
extraction results we refer to [37].

Conclusion

In this paper we have proposed a graph kernel approach
to extracting protein-protein interactions, which captures
the information in unrestricted dependency graphs to a
format that kernel based learning algorithms can process.
The method combines syntactic analysis with a represen-
tation of the linear order of the sentence, and considers all
possible paths connecting any two vertices in the resulting
graph. We demonstrate state-of-the-art performance for
the approach. All software developed in the course of this
study is made publicly available at [22].

A cross-corpus evaluation is performed to test whether an
extraction system will work beyond the corpus it was
trained on. We observe this to be the case, though results
are generally worse than when training and testing on
data from the same corpus. Having a larger amount of
data available leads to better performance. Extraction sys-
tems trained on the largest corpora work on the smallest
ones in some cases as well as systems trained on data
directly from the smaller corpora themselves.

We identify a number of issues which make results
achieved with different evaluation strategies and resources
incomparable, or even incorrect. In our experimental
design we consider the problems related to differences
across corpora, the effects different cross-validation strate-
gies have, and how parameter selection can be done. Our
recommendation is to provide evaluations over different
corpora, to use document-level cross-validation and to
always select parameters on the training set.

We draw attention to the behavior of the F-score metric
over corpora with differing pair distributions. The higher
the relative frequency of interacting pairs is, the higher the
performance can be expected to be. This is noticed both
for the graph kernel method and for the naive co-occur-
rence baseline. Indeed, the strategy of just stating that all
pairs interact leads to as high a result as 70% F-score on
one of the corpora. We consider AUC as an alternative
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measure that does not exhibit such behavior, as it is invar-
iant to the distribution of pairs. The AUC metric is much
more stable across all the corpora, and never gives better
results than random for approaches such as the naive co-
occurrence.

Though we only consider binary interactions in this work,
the graph representations have the property that they
could be used to represent more complex structures than
pairs. The availability of corpora that annotate complex
interactions, such as the full Biolnfer and GENIA, makes
training a PPI extraction system for extracting complex
interactions an important avenue of future research (see
[38] for further discussion). However, how to avoid the
combinatorial explosion following from considering tri-
plets, quartets etc. remains an open question. Also, the
performance of the current approaches may need to be yet
improved before extending them to recognize complex
interactions.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

AA designed the graph kernel, implemented it with the
help of JB, and had the main responsibility for experi-
ments. AA, FG, JB and SP explored suitable features and
their representations. TP provided the sparse RLS algo-
rithms and advice on kernel design. AA was the main
author of the manuscript with contributions from all
other authors, all of whom read and approved the final
version.

Acknowledgements

We would like to thank Razvan Bunescu, Claudio Giuliano and Rune Satre
for their generous assistance in providing us with data, software and infor-
mation about their work on PPl extraction. Further, we thank CSC, the
Finnish IT center for science, for providing us extensive computational
resources. This work has been supported by the Academy of Finland and
the Finnish Funding Agency for Technology and Innovation, Tekes.

This article has been published as part of BMC Bioinformatics Volume 9 Sup-
plement | I, 2008: Proceedings of the BioNLP 08 ACL Workshop: Themes
in biomedical language processing. The full contents of the supplement are
available online at http://www.biomedcentral.com/1471-2105/9?issue=S| |

References

I. Hirschman L, Park JC, Tsuijii J, Wong L, Wu CH: Accomplishments
and challenges in literature data mining for biology. Bioinfor-
matics 2002, 18(12):1553-1561.

2. Cohen KB, Hunter L: Natural language processing and systems
biology. In Artificial intelligence methods and tools for systems biology,
Volume 5 of Computational Biology Springer; 2004:147-173.

3. Zweigenbaum P, Demner-Fushman D, Yu H, Cohen KB: Frontiers
of biomedical text mining: current progress. Briefings in Bioin-
formatics 2007, 8(5):358-375.

4, Bunescu R, Ge R, Kate R, Marcotte E, Mooney R, Ramani A, Wong Y:
Comparative Experiments on Learning Information Extrac-
tors for Proteins and their Interactions. Artificial Intelligence in
Medicine 2005, 33(2):139-155.

20.

21.

22.
23.

24.

25.

26.

27.

http://www.biomedcentral.com/1471-2105/9/S11/S2

Hunter L, Lu Z, Firby ], Baumgartner WA, Johnson HL, Ogren PV,
Cohen KB: OpenDMAP: An open-source, ontology-driven
concept analysis engine, with applications to capturing
knowledge regarding protein transport, protein interactions
and cell-specific gene expression. BMC Bioinformatics 2008, 9:78.
Pyysalo S, Ginter F, Heimonen J, Bjérne ], Boberg J, Jarvinen J, Salako-
ski T: Biolnfer: A Corpus for Information Extraction in the
Biomedical Domain. BMC Bioinformatics 2007, 8(50):.

Kim JD, Ohta T, Tsujii J: Corpus annotation for mining biomed-
ical events from literature. BMC Bioinformatics 2008, 9:10.

Lease M, Charniak E: Parsing Biomedical literature. In Proceed-
ings of the Second International Joint Conference on Natural Language
Processing, Lecture notes in computer science Springer; 2005:58-69.

de Marneffe MC, MacCartney B, Manning CD: Generating Typed
Dependency Parses from Phrase Structure Parses. Proceed-
ings of the Fifth International Conference on Language Resources and Eval-
uation 2006:449-454.

Bunescu R, Mooney R: Subsequence Kernels for Relation
Extraction. In Advances in Neural Information Processing Systems 18
MIT Press; 2006:171-178.

Zelenko D, Aone C, Richardella A: Kernel methods for relation
extraction. Journal of Machine Learning Research 2003, 3:1083-1106.
Bunescu R, Mooney R: A shortest path dependency kernel for
relation extraction. In Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in Natural Language
Processing Association for Computational Linguistics; 2005:724-731.
Girtner T, Flach PA, Wrobel S: On Graph Kernels: Hardness
Results and Efficient Alternatives. In Proceedings of the Sixteenth
Annual Conference on Learning Theory and Seventh Annual Workshop on
Kernel Machines, Lecture Notes in Artificial Intelligence Springer;
2003:129-143.

Pahikkala T, Tsivtsivadze E, Boberg ), Salakoski T: Graph Kernels
versus Graph Representations: a Case Study in Parse Rank-
ing. Proceedings of the Fourth Workshop on Mining and Learning with
Graphs 2006:181-188.

Meyer CD: Matrix analysis and applied linear algebra Society for Industrial
and Applied Mathematics; 2000.

Suykens JAK, Vandewalle |: Least Squares Support Vector
Machine Classifiers. Neural Processing Letters 1999, 9(3):293-300.
Rifkin R, Yeo G, Poggio T: Regularized Least-squares Classification, Vol-
ume 190 of NATO Science Series Ill: Computer and System Sciences Vol-
ume chap 7. 10S Press; 2003:131-154.

Pahikkala T, Boberg ), Salakoski T: Fast n-Fold Cross-Validation
for Regularized Least-Squares. Proceedings of the Ninth Scandina-
vian Conference on Artificial Intelligence, Otamedia 2006:83-90.

Fundel K, Kuffner R, Zimmer R: RelEx-Relation extraction using
dependency parse trees. Bioinformatics 2007, 23(3):365-371.
Ding J, Berleant D, Nettleton D, Wurtele E: Mining MEDLINE:
abstracts, sentences, or phrases? Proceedings of the Pacific Sympo-
sium on Biocomputing 2002:326-337.

Nédellec C: Learning language in logic — genic interaction
extraction challenge. Proceedings of the 4th Learning Language in
Logic Workshop 2005:31-37.
Conversions for five PPl corpora
pora]

Pyysalo S, Airola A, Heimonen J, Bjorne J, Ginter F, Salakoski T: Com-
parative Analysis of Five Protein-protein Interaction Cor-
pora. BMC Bioinformatics 2008, 9(Suppl 3):S6.

Airola A, Pyysalo S, Bjorne |, Pahikkala T, Ginter F, Salakoski T: A
Graph Kernel for Protein-Protein Interaction Extraction.
Proceedings of the Workshop on Current Trends in Biomedical Natural Lan-
guage Processing 2008:1-9.

Heimonen J, Pyysalo S, Ginter F, Salakoski T: Complex-to-pairwise
mapping of biological relationships using a semantic network
representation. Proceedings of the Third International Symposium on
Semantic Mining in Biomedicine 2008:45-52.

Clegg AB, Shepherd A: Benchmarking natural-language parsers
for biological applications using dependency graphs. BMC Bio-
informatics 2007, 8:24.

Pyysalo S, Ginter F, Laippala V, Haverinen K, Heimonen J, Salakoski T:
On the unification of syntactic annotations under the Stan-
ford dependency scheme: A case study on Biolnfer and
GENIA. In Proceedings of the Workshop on Biological, translational and
clinical language processing Association for Computational Linguistics;
2007:25-32.

[http://mars.cs.utu.fi/PPICor

Page 11 of 12

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/9?issue=S11
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17977867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17977867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15811782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15811782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15811782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18237434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18237434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18237434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17291334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17291334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18182099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18182099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142812
http://mars.cs.utu.fi/PPICorpora
http://mars.cs.utu.fi/PPICorpora
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18426551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18426551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18426551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17254351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17254351

BMC Bioinformatics 2008, 9(Suppl 11):S2

28.

29.

30.

31

32

33.

34.

35.

36.
37.

38.

39.

40.

Giuliano C, Lavelli A, Romano L: Exploiting Shallow Linguistic
Information for Relation Extraction From Biomedical Liter-
ature. Proceedings of the | Ith Conference of the European Chapter of
the Association for Computational Linguistics 2006.

Van Landeghem S, Saeys Y, Peer Y Van de, De Baets B: Extracting
Protein-Protein Interactions from Text using Rich Feature
Vectors and Feature Selection. Proceedings of the Third Interna-
tional Symposium on Semantic Mining in Biomedicine 2008:77-84.

Hanley JA, McNeil B]: The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology
1982, 143:29-36.

Bradley AP: The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition
1997, 30(7):1145-1159.

Saxtre R, Sagae K, Tsuijii J: Syntactic features for protein-protein
interaction extraction. Second International Symposium on Lan-
guages in Biology and Medicine short papers 2007.

Caporaso ]G, Deshpande N, Fink JL, Bourne PE, Cohen KB, Hunter
L: Intrinsic Evaluation of Text Mining Tools May Not Predict
Performance on Realistic Tasks. Proceedings of Pacific Symposium
on Biocomputing 2008:640-651.

Miwa M, Szetre R, Miyao Y, Ohta T, Tsujii J;: Combining Multiple
Layers of Syntactic Information for Protein-Protein Interac-
tion Extraction. Proceedings of the Third International Symposium on
Semantic Mining in Biomedicine 2008:101-108.

Miyao Y, Sxtre R, Sagae K, Matsuzaki T, Tsujii J: Task-oriented
Evaluation of Syntactic Parsers and Their Representations.
Proceedings of the 46th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies 2008:46-54.

java Simple Relation Extraction [http://tcc.itc.it/research/tex
tec/tools-resources/jsre.html]

Pyysalo S, Setre R, Tsuijii J, Salakoski T: Why Biomedical Relation
Extraction Results are Incomparable and What to do about
it. Proceedings of the Third International Symposium on Semantic Mining
in Biomedicine 2008:149-152.

Bjorne J, Pyysalo S, Ginter F, Salakoski T: How Complex are Com-
plex Protein-protein Interactions? Proceedings of the Third Inter-
national Symposium on Semantic Mining in Biomedicine 2008:125-128.
Mitsumori T, Murata M, Fukuda Y, Doi K, Doi H: Extracting Pro-
tein-Protein Interaction Information from Biomedical Text
with SVM. [EICE — Transactions on Information and Systems 2006,
E89-D(8):2464-2466.

Yakushiji A, Miyao Y, Tateisi Y, Tsujii ]: Biomedical information
extraction with predicate-argument structure patterns. Pro-
ceedings of the First International Symposium on Semantic Mining in Bio-
medicine 2005:60-69.

http://www.biomedcentral.com/1471-2105/9/S11/S2

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7063747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7063747
http://tcc.itc.it/research/textec/tools-resources/jsre.html
http://tcc.itc.it/research/textec/tools-resources/jsre.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Graph encoding of sentence structure
	The all-paths graph kernel
	Scalable learning with Sparse RLS

	Results and discussion
	Corpora and evaluation criteria
	Performance on the individual corpora
	Cross-corpus performance
	Performance compared to other methods

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

