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Abstract
Background: The Clinical E-Science Framework (CLEF) project has built a system to extract
clinically significant information from the textual component of medical records in order to support
clinical research, evidence-based healthcare and genotype-meets-phenotype informatics. One part
of this system is the identification of relationships between clinically important entities in the text.
Typical approaches to relationship extraction in this domain have used full parses, domain-specific
grammars, and large knowledge bases encoding domain knowledge. In other areas of biomedical
NLP, statistical machine learning (ML) approaches are now routinely applied to relationship
extraction. We report on the novel application of these statistical techniques to the extraction of
clinical relationships.

Results: We have designed and implemented an ML-based system for relation extraction, using
support vector machines, and trained and tested it on a corpus of oncology narratives hand-
annotated with clinically important relationships. Over a class of seven relation types, the system
achieves an average F1 score of 72%, only slightly behind an indicative measure of human inter
annotator agreement on the same task. We investigate the effectiveness of different features for
this task, how extraction performance varies between inter- and intra-sentential relationships, and
examine the amount of training data needed to learn various relationships.

Conclusion: We have shown that it is possible to extract important clinical relationships from
text, using supervised statistical ML techniques, at levels of accuracy approaching those of human
annotators. Given the importance of relation extraction as an enabling technology for text mining
and given also the ready adaptability of systems based on our supervised learning approach to other
clinical relationship extraction tasks, this result has significance for clinical text mining more
generally, though further work to confirm our encouraging results should be carried out on a larger
sample of narratives and relationship types.
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Background
Natural Language Processing (NLP) has been widely
applied in biomedicine, particularly to improve access to
the ever-burgeoning research literature. Increasingly, bio-
medical researchers need to relate this literature to pheno-
typic data: both to populations, and to individual clinical
subjects. The computer applications used in biomedical
research therefore need to support genotype-meets-phe-
notype informatics and the move towards translational
biology. This will undoubtedly include linkage to the
information held in individual medical records: in both
its structured and unstructured (textual) portions.

The Clinical E-Science Framework (CLEF) project [1] is
building a framework for the capture, integration and
presentation of this clinical information, for research and
evidence-based health care. The project's data resource is
a repository of the full clinical records for over 20000 can-
cer patients from the Royal Marsden Hospital, Europe's
largest oncology centre. These records combine structured
information, clinical narratives, and free text investigation
reports. CLEF uses information extraction (IE) technology
to make information from the textual portion of the med-
ical record available for integration with the structured
record, and thus available for clinical care and research.
The CLEF IE system analyses the textual records to extract
entities, events and the relationships between them. These
relationships give information that is often not available
in the structured record. Why was a drug given? What were
the results of a physical examination? What problems
were not present? The relationships extracted are consid-
ered to be of interest for clinical and research applications
downstream of IE, such as querying to support clinical
research. The approach taken by the CLEF IE system is one
that combines the use of existing terminology resources
with supervised Machine Learning (ML) methods. Models
of clinical text are trained from human annotated exam-
ple documents – a gold standard – which can then be
applied to unseen texts. The human-created annotations
of the gold standard documents capture examples of the
specific content that the IE system is required to extract,
providing the system with focussed knowledge of the task
domain, alongside the broader domain knowledge pro-
vided by more general terminology resources. The advan-
tage of this approach is that the system can be adapted to
other clinical domains largely through the provision of a
suitable gold standard for that domain, for retraining the
system, rather than through the creation of new special-
ised software components or some major exercise in
knowledge engineering.

The approach taken to entity extraction in the CLEF IE sys-
tem has been described in detail elsewhere [2]. This paper
focusses instead on relationship extraction in the CLEF IE
system. Our approach uses Support Vector Machine

(SVM) classifiers to learn these relationships. The classifi-
ers are trained and evaluated using novel data: a gold
standard corpus of oncology narratives, hand-annotated
with semantic entities and relationships. We describe a
range of experiments that were done to aid development
of the approach, and to test its applicability to the clinical
domain. We train classifiers using a number of different
features sets, and investigate their contribution to system
performance. These sets include some comparatively sim-
ple text-based features, and others based on a linguistic
analysis, including some derived from a full syntactic
analysis of sentences. Clinically interesting relationships
may span several sentences, and so we compare classifiers
trained for both intra- and inter-sentential relationships
(spanning one or more sentence boundaries). We also
examine the influence of training corpus size on perform-
ance, as hand annotation of training data is the major
expense in supervised machine learning. Finally, we inves-
tigate the impact of imperfect entity recognition on rela-
tion extraction performance, by comparing relation
extraction done over perfect gold-standard entities to that
done over imperfect recognised entities. The paper is an
expanded version of [3], but extends that paper with a
more detailed description of our relation extraction
approach, a more thorough discussion of our earlier
experimental results, and a report of some additional
experiments and their results (specifically those concern-
ing syntactically-derived features and the impact of imper-
fect entity recognition).

Previous work
Extracting relations from natural language texts began to
attract researchers' attention as a task in its own right dur-
ing the evolution of information extraction challenges
that took place as part of the Message Understanding Con-
ferences (MUCs) (see e.g. [4]), though of course extraction
of relational information from text is a part of any attempt
to derive meaning representations from text and hence
significantly predates MUC. Specifically, relation extrac-
tion emerged as a stand-alone task in MUC-7 [5], i.e.
requiring participants to extract instances of the
employee_of, product_of, and location_of relations,
holding between organisations and persons, artefacts and
locations respectively, from newswire text. The introduc-
tion of this task was part of the factorisation of complex
event extraction tasks (for events such as terrorist attacks
or joint ventures) that had dominated earlier MUCs, into
component tasks that were easier to address and evaluate
and would be of relevance in multiple domains (examples
of other component tasks factored out in this evolution
are named entity recognition and co-reference resolu-
tion). The best score obtained on blind test data on this
relation extraction task was 75.6% F1-measure (67% pre-
cision, 86% recall), where participants had to recognise
automatically the entities standing in the relation as well
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[4]. At the time of MUC-7 the approach adopted by most
researchers was to analyse training examples by hand and
author patterns to match contexts which expressed the rel-
evant relation. However, even at that time the move away
from manually authored extraction patterns towards
trainable systems that learned rules or statistical patterns
from data was underway, with one participating system
(not the highest scoring) using a technique based on auto-
matically augmenting a statistical parser with task specific
semantic information obtained from shallow semantic
annotation of a training corpus [6].

Since the MUC evaluations there has been increasing
work on relation extraction, far more than can be
reviewed here. This work can be characterised along sev-
eral dimensions: the text type (e.g. newswire, scientific
papers, clinical reports); the relations addressed (e.g. part-
of, located-in, protein-protein interaction); the tech-
niques used (e.g. knowledge-engineering rule-based tech-
niques, supervised learning techniques); whether it was
carried out in the context of a shared task challenge for
which publicly available task definitions, annotated cor-
pora and evaluation software exist (e.g. the ACE relation
extraction challenges [7], the LLL genic interaction extrac-
tion challenge [8], the BioCreative-II protein-protein
interaction task [9]). We concentrate on the points in this
space closest to our own work. There has been little work
on relation extraction from clinical texts, presumably
because of the difficulty in getting access to texts of this
type. In the work carried out to date, extraction of rela-
tionships from clinical text is usually carried out as part of
a full clinical IE system. Several such systems have been
described. They generally use a syntactic parse with
domain-specific grammar rules. The Linguistic String
project [10] used a full syntactic and clinical sub-language
parse to fill template data structures corresponding to
medical statements. These were mapped to a database
model incorporating medical facts and the relationships
between them. MedLEE [11], and more recently BioM-
edLEE [12] used a semantic lexicon and grammar of
domain-specific semantic patterns. The patterns encode
the possible relationships between entities, allowing both
entities and the relationships between them to be directly
matched in the text. Other systems have incorporated
large-scale domain-specific knowledge bases. MEDSYN-
DIKATE[13] employed a rich discourse model of entities
and their relationships, built using a dependency parse of
texts and a description logic knowledge base re-engi-
neered from existing terminologies. MENELAS[14] also
used a full parse, a conceptual representation of the text,
and a large scale knowledge base. Note that all these
approaches are knowledge-engineering approaches, based
on manually authored grammars, lexicons and ontolo-
gies. While supervised machine learning has also been
applied to clinical text, its use has generally been limited

to entity recognition. The Mayo Clinic text analysis system
[15], for example, uses a combination of dictionary
lookup and a Naïve Bayes classifier to identify entities for
information retrieval applications. To the best of our
knowledge, statistical methods have not been previously
applied to extraction of relationships from clinical text.

By contrast there has been extensive work on relation
extraction from biomedical journal papers and abstracts.
Much early work in this area and some recent work as well
has been done within the hand-written rule base/knowl-
edge engineering paradigm. For example [16-20] all aim
to identify gene/protein interactions using simple co-
occurrence heuristics or linguistic rules of varying degrees
of sophistication to parse sentences and then map syntac-
tic arguments or dependency relations of domain specific
verbs into relational structures. Not all the attention has
been on protein-protein interactions: [21] discusses such
an approach for extracting causal relations between
genetic phenomena and diseases and [22] discusses an
extension of this approach to a broad range of relations in
pharmacogenetics.

In current work on relation extraction more broadly, how-
ever, the dominant trend is using supervised ML tech-
niques to train relation classifiers on human annotated
texts. Training examples are typically relation instances
expressed as a relation type associated with a linked pair
of typed entity mentions tagged in a text. The result is a
relation classifier capable of recognising relations in
entity-tagged text. Approaches differ chie fly according to
the ML algorithms and the features employed. Keeping to
applications within biomedicine, researchers have
explored maximum entropy approaches [23], conditional
random fields [24] and rule learning methods such as
boosted wrapper induction and RAPIER[25] and inductive
logic programming [26]. SVMs have been used for rela-
tion extraction, but not extensively in biomedical applica-
tions (though see [27]); examples include [28-30]. We use
SVMs due to their generally high performance at classifi-
cation tasks, as it is in these terms that we have recast rela-
tion extraction. A wide range of features have been
explored for use by supervised ML approaches to relation
extraction in biomedical applications. Given a sentence
(or text) containing entity mentions whose relationships
are to be determined, features investigated have included:
orthographic and lexical features of the words between
entity mentions and possibly outside the context as well
[23,24,27]; part-of-speech and other shallow syntactic fea-
tures of these words [27]; syntactic information, typically
dependency parse information, about the grammatical
relations between entity mentions [31]. While all
researchers use orthographic and lexical features, the util-
ity of syntactic information remains a topic of debate and
one to which the current study contributes.
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Methods
Relationship schema
The CLEF IE system extracts entities, relationships and
modifiers from text. By entity, we mean some real-world
thing, event or state referred to in the text: the drugs that
are mentioned, the tests that were carried out, etc. Modifi-
ers are words that qualify an entity in some way, referring
e.g. to the laterality of an anatomical locus, or the nega-
tion of a condition ("no sign of in ammation"). Entities
are connected to each other and to modifiers by relation-
ships: e.g. linking a drug entity to the condition entity for
which it is indicated, linking an investigation to its results,
or a negating phrase to a condition. Note that we treat
negation as a modifier word, together with its relationship
to a condition. This is in contrast to others (for example
[32]), who identify negated diseases and findings as com-
plete expressions.

The entities, modifiers, and relationships are described by
both a formal XML schema, and a set of detailed defini-
tions. These were developed by a group of clinical experts,
working in collaboration with a computational linguist,

through an iterative process, until acceptable agreement
was reached. Entity types are manually mapped to types
from the Unified Medical Language System (UMLS)
semantic network [33], each CLEF entity type being
mapped to several UMLS types. Relationship types are
those felt necessary to capture the essential clinical
dependencies between entities referred to in patient doc-
uments, and to support CLEF end user applications. The
schema is described further in [34].

Each relationship type is constrained to hold only
between pairs of specific entity types, e.g. the has_location
relation can hold only between a Condition and a Locus.
Some relationships can hold between multiple type pairs.
The full set of relationships and their argument types are
shown in Table 1, with a description and examples of
each. The schema is shown graphically in Figure 1.

Some of the relationships considered important by the
clinical experts were not obvious without domain knowl-
edge. For example, in

Table 1: Relationship types and examples.

Relation type First argument type Second argument type Description Examples

has_target Investigation 
Intervention

Locus Relates an intervention or an 
investigation to the bodily 
locus at which it is targeted.

• This patient has had a 
[arg2] lymph node [arg1] 
biopsy
• ... he does need a [arg2] 
groin [arg1] dissection

has_finding Investigation Condition Result Relates a condition to an 
investigation that 
demonstrated its presence, 
or a result to the 
investigation that produced 
that result.

• This patient has had a 
lymph node [arg1] biopsy 
which shows [arg2] 
melanoma
• Although his [arg1] PET 
scan is [arg2] normal ...

has_indication Drug or device 
Investigation 
Intervention

Condition Relates a condition to a drug, 
intervention, or investigation 
that is targeted at that 
condition.

• Her facial [arg2] pain was 
initially relieved by [arg1] 
co-codamol

has_location Condition Locus Relationship between a 
condition and a locus: 
describes the bodily location 
of a specific condition.

• ... a biopsy which shows 
[arg1] melanoma in his right 
[arg2] groin
• Her [arg2] facial[arg1] pain 
was initially relieved by co-
codamol

negation_modifies Negation sig nal Condition Relates a condition to its 
negation or uncertainty about 
it.

• There was [arg1] no 
evidence of extra pelvic 
[arg2] secondaries

laterality_modifies Laterality signal Locus Intervention Relates a bodily locus or 
intervention to its sidedness: 
right, left, bilateral.

• ... on his [arg1] right[arg2] 
second toe
• [arg1] right[arg2] 
thoracotomy

sub_location_modifie
s

Sub-location signal Locus Relates a bodily locus to 
other information about the 
location: upper, lower, extra, 
etc.

• [arg1] extra[arg2] pelvic

Relationship types, their argument type constraints, a description and examples. Each example shows a single relation of the given type. Arguments 
are underlined and preceded by their argument number.  (Adapted from the CLEF Annotation Guidelines, http://nlp.shef.ac.uk/clef/)
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He is suffering from nausea and severe headaches. Dolas-
teron was prescribed.

domain knowledge is needed to identify the
has_indication relation between the drug "Dolasteron"
and the "nausea" condition. As in this example, many
such relationships are inter-sentential.

A single real-world entity may be referred to several times
in the same text. Each of these co-referring expressions is
a mention of the entity. The schema includes encoding of
co-reference between different textual mentions of the
same entity. For the work reported in this paper, however,
co-reference is ignored, and each entity mention is treated
as a different entity. Relationships between entities can be
considered, by extension, as relationships between the
single mentions of those entities. We return to this issue
below.

Gold standard corpus
The schema and definitions were used to hand-annotate
the entities and relationships in oncology narratives, to
provide a gold standard for system training and evalua-
tion. By "narrative" we mean letters, notes, and summa-
ries written by the oncologist, describing the patient's
care. Most are very loosely structured, and may be

described as consisting of general language with a high
terminology content, rather than consisting of formulaic
sublanguage or boilerplate. Approval to use this corpus
for research purposes within CLEF was obtained from the
Thames Valley Multi-centre Research Ethics Committee
(MREC). The corpus comprises 77 narratives, which were
carefully selected and annotated according to a best prac-
tice methodology, as described in [34]. Narratives were
selected by randomised and stratified sampling from a
larger population of 565 000 documents, along various
axes such as purpose of narrative and neoplasm. Narra-
tives were annotated by two independent, clinically
trained, annotators, and then a consensus annotation cre-
ated by a third. We refer to the corpus as C77. Corpora of
this small size are not unusual in supervised machine
learning, and reflect the expense of hand annotation.

Annotators were asked to first mark the mentions of enti-
ties and modifiers, and then to consider each in turn,
deciding if it had relationships with mentions of other
entities. Although the annotators marked co-reference
between mentions of the same entity, they were asked to
ignore this for relationship annotation. Both the annota-
tion tool and the annotation guidelines enforced the cre-
ation of relationships between mentions, not entities. The
gold standard is thus analogous to the style of relationship

The relationship schemaFigure 1
The relationship schema. The relationship schema, showing entities (rectangles), modifiers (ovals), and relationships 
(arrows).
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extraction reported here, with relations being assigned
between entity mentions, ignoring co-reference. Annota-
tors were further told that relationships could span multi-
ple sentences, and that it was acceptable to use clinical
knowledge to infer when a relationship existed. Counts of
all relationships annotated in C77 are shown in Table 2,
sub-divided by the number of sentence boundaries
spanned.

Relationship extraction
Our system is built using the GATE NLP toolkit, which is
an architecture allowing language processing applications
to be constructed as a pipeline of processing components
[35]. Documents are passed down this pipeline, being
analysed by each component in turn, with the results of
this analysis being available to later components. The sys-
tem is shown in Figure 2, and is described below.

Narratives are first pre-processed using standard GATE
modules. Narratives were tokenised, sentences found with
a regular expression-based sentence splitter, part-of-
speech (POS) tagged, and morphological roots found for
word tokens. Each token was also labelled with a more
generic POS tag, consisting of the first two characters of
the full POS tag. This takes advantage of the Penn Tree-
bank tagset used by GATE's POS tagger, in which related
POS tags share the first two characters. For example, all six
verb POS tags start with the letters "VB". We will refer to
this as a "generalised" POS tag.

After pre-processing, mentions of entities within the text
are annotated. In the experiments reported, unless other-
wise stated, we assume perfect entity recognition, as given
by the entities in the human annotated gold standard
described above. Our results are therefore higher than
would be expected in a system with automatic entity rec-
ognition. It is useful and usual to fix entity recognition in
this way, to allow tuning specific to relationship extrac-
tion, and to allow the isolation of relation-specific prob-

lems. Ultimately, however, relation extraction does
depend on the quality of entity recognition. To illustrate
this, we provide a comparison with relations learned from
automatic entity recognition, in the Results section.

Classification
We treat clinical relationship extraction as a classification
task, training classifiers to assign a relationship type to an
entity pair. An entity pair is a pairing of entities that may or
may not be the arguments of a relation. For a given docu-
ment, we create all possible entity pairs within two con-
straints. First, entities that are paired must be within n
sentences of each other. For all of the work reported here,
unless stated, n ≤ 1 (crossing 0 or 1 sentence boundaries).
Second, we constrain the entity pairs created by argument
type [36]. For example, there is little point in creating an
entity pair between a Drug or device entity and a Result
entity, as no relationships exist between entities of these
types, as specified by the schema. Entity pairing is carried
out by a GATE component developed specifically for clin-
ical relationship extraction. In addition to pairing entities
according to the above constraints, this component also
assigns features to each pair that characterise its lexical
and syntactic qualities (described further in the following
section). The classifier training and test instances consist
of entity pairs. For training, an entity pair which corre-
sponds to the arguments of a relationship present in the
gold standard is assigned that relationship type as its class
– or the class null if there is no corresponding gold stand-
ard relation. The classifier builds a model of these entity
pair training instances, from their features. In classifier
application, entity pairs are created from unseen text,
under the above constraints. The classifier assigns one of
our seven relationship types, or null, to each entity pair.

We use SVMs as trainable classifiers, as these have proved
to be robust and efficient for a range of NLP tasks, includ-
ing relation extraction. We use an SVM implementation
developed within our own group, and provided as part of

Table 2: Relationship counts in the gold standard.

Sentence boundaries between arguments

0 1 2 3 4 5 6 7 8 9 >9

has_finding 265 46 25 7 5 4 3 2 2 2 0
has_indication 139 85 35 32 14 11 6 4 5 5 12
has_location 360 4 1 1 1 1 1 0 0 0 4
has_target 122 14 4 2 2 4 3 1 0 1 0
laterality_modifies 128 0 0 0 0 0 0 0 0 0 0
negation_modifies 100 1 0 0 0 0 0 0 0 0 0
sub_location_modifies 76 0 0 0 0 0 0 0 0 0 0
Total 1190 150 65 42 22 20 13 7 7 8 16
Cumulative total 1190 1340 1405 1447 1469 1489 1502 1509 1516 1524 1540

Count of relations in 77 gold standard documents, sub-divided by the number of sentence boundaries between relations.
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the GATE toolkit. This is a variant on the original SVM
algorithm, SVM with uneven margins, in which classifica-
tion may be biased towards positive training examples.
This is particularly suited to NLP applications, in which
positive training examples are often rare. Full details of
the classifier are given in [37]. We used the implementa-
tion "out of the box", with default parameters as deter-
mined in experiments with other data sets.

The SVM with uneven margins algorithm is a binary clas-
sifier. Thus to apply it to a multi-class problem requires
mapping the problem to a number of binary classification
problems. There are several ways in which a multi-class
problem can be recast as binary problems. The common-
est are one-against-one in which one classifier is trained for
every possible pair of classes, and one-against-all in which
a classifier is trained for a binary decision between each
class and all other classes, including null, combined. We
have carried out extensive experiments (not reported
here), with these two strategies, and have found little dif-
ference between them for our data. We have chosen to use
one-against-all, as it needs fewer classifiers (for an n class
problem, it needs n classifiers, as opposed to n(n - 1) = 2
for one-against-one).

The resultant class assignments by multiple binary classi-
fiers must be post-processed to deal with ambiguity. In
application to unseen text, it is possible that several classi-
fiers assign different classes to an entity pair (test
instance). To disambiguate these cases, the output of each
one-against-all classifier is transformed into a probability,
and the class with the highest probability is assigned. Re-
casting the multi-class relation problem as a number of
binary problems, and post-processing to resolve ambigui-
ties, is handled by the GATE Learning API.

Features for classification
The SVM classification model is built from lexical and syn-
tactic features assigned to tokens and entity pairs prior to
classification. We use features developed in part from
those described in [29] and [38]. These features are split
into 15 sets, as described in Table 3.

The tokN features are POS and surface string taken from a
window of N tokens on each side of both paired entities.
For N = 6, this gives 48 features. The rationale behind
these simple features is that there is useful information in
the words surrounding the two mentions, that helps
determine any relationship between them. The gentokN

The relationship extraction systemFigure 2
The relationship extraction system. The relationship extraction system, as a GATE pipeline.
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features generalise tokN to use morphological root and
generalised POS. The str features are a set of 14 surface
string features, encoding the full surface strings of both
entity mentions, their heads, their heads combined, the
surface strings of the first, last and other tokens between
the mentions, and of the two tokens immediately before
and after the leftmost and rightmost mentions respec-
tively. The pos, root, and genpos feature sets are similarly
constructed from the POS tags, roots, and generalised POS
tags of the entity mentions and their surrounding tokens.
These four feature sets differ from tokN and gentokN, in
that they provide more fine-grained information about
the position of features relative to the paired entity men-
tions.

For the event feature set, entities were divided into events
(Investigation and Intervention) and non-events (all oth-
ers). Features record whether an entity pair consists of two
events, two non-events, or one of each, and whether there
are any intervening events or non-events. This feature set
gives similar information to atype (semantic types of argu-
ments) and inter (intervening entities), but at a coarser
level of typing. The feature sets allgen and notok are com-
binations of the above feature sets, as specified by the
descriptions in Table 3.

For the final two feature sets shown in Table 3, we used
the Stanford Parser [39] to parse the C77 corpus. This
parser generates a dependency analysis, consisting of a
graph of syntactic relations amongst sentence tokens. The
feature set dep consists of 16 features derived from the
parse, which are only computed when the entities appear
in the same sentence (and otherwise take value null). The
features encode characteristics of the dependency path
connecting the paired entities, of the immediate left con-

text in the dependency analysis of the leftmost entity, and
of the corresponding right context of the rightmost entity.
The syndist set adds two further features, which firstly
count the number of links on the dependency path con-
necting the paired entities and the number of tokens
between the two entities, and then maps these values to
labels NEAR, MIDDLE and FAR, to reduce data sparseness.

Evaluation methodology
We use the standard evaluation metrics of Recall and Pre-
cision, which are defined in terms of true positive (TP),
false positive (FP) and false negative (FN) matches
between relations recorded in a system annotated response
document and a gold standard key document. A response
relation is a true positive if a relation of the same type, and
with the exact same arguments, exists in the key. Corre-
sponding definitions apply for false positive and false
negative. Counts of these matches are used to calculate
Recall (R) and Precision (P) scores, as defined below. The
harmonic mean of these two values provides a single com-
bined indicator of performance. This metric, known as F1,
as also defined below.

We used a standard ten-fold cross validation methodol-
ogy in our experiments. Various tables given later report
the results of these experiments, showing recognition
scores for the different relation types and for relation rec-
ognition overall. The scores for individual relations are
produced by computing the P, R and F1 scores for each
relation type on each fold, and then macro-averaging
these values (i.e. computing their simple mean) across the
folds to give the corresponding relation-specific cross-val-

R
TP

TP FN
P

TP
TP FP

F
PR

P R
=

+
=

+
=

+
1

2

Table 3: Feature sets for learning.

Feature set Size Description

tokN 8N Surface string and POS of tokens surrounding the arguments, windowed -N to +N, N = 6 by default
gentokN 8N Root and generalised POS of tokens surrounding the argument entities, windowed N to +N, N = 6 by default
atype 1 Concatenated semantic type of arguments, in arg1-arg2 order
dir 1 Direction: linear text order of the arguments (is arg1 before arg2, or vice versa?)
dist 2 Distance: absolute number of sentence and paragraph boundaries between arguments
str 14 Surface string features based on Zhou et al [29], see text for full description
pos 14 POS features, as above
root 14 Root features, as above
genpos 14 Generalised POS features, as above
inter 11 Intervening mentions: numbers and types of intervening entity mentions between arguments
event 5 Events: are any of the arguments, or intevening entities, events?
allgen 96 All above features in root and generalised POS forms, i.e. gen-tok6+atype+dir+dist+root+genpos+inter+event
notok 48 All above except tokN features, others in string and POS forms, i.e. atype+dir+dist+str+pos+inter+event
dep 16 Features based on a syntactic dependency path.
syndist 2 The distance between the two arguments, along a token path and along a syntactic dependency path.

Feature sets used for learning relationships. The table is split into non-syntactic features, combined non-syntactic features, and syntactic features. 
The size of a set is the number of features in that set.
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idated score. This approach can produce results that may
at first sight seem anomalous, e.g. cases where the F1 score
for a given relation does not fall between the P and R
scores. Overall scores for relation recognition are pro-
duced by first micro-averaging scores for the different rela-
tion types within the fold, i.e. simply adding their counts
for true-positives, false-negatives and false-positives, and
using these summed values to compute P and R values
directly. The resulting combined scores are then macro-
averaged across folds to produce the cross-validated over-
all scores.

The metrics do not say how hard relationship extraction
is. We therefore also provide Inter Annotator Agreement
(IAA) scores from the creation of the gold standard. The
IAA measures the level of agreement between the two
annotators who independently annotated each text to
produce its double annotation. It is equivalent to scoring
one annotator against the other using the F1 metric (i.e.
treating one annotation as key and the other as response).

IAA scores are not directly comparable here to system
extraction scores, as relationship annotation is a slightly
different task for the human annotators. The relationship
extraction system is given entities, and finds relationships
between them. Human annotators must find both the
entities and the relationships. Where one human annota-
tor fails to find a particular entity, they can never find its
relationships. The raw IAA score does not take this into
account: if an annotator fails to find an entity, they will
also be penalised for all relationships with that entity. We
therefore give a Corrected IAA (CIAA) in which annotators
are only compared on those relations for which they have
both found the entities involved. In our results, we give
both IAA and CIAA, for each relation type and for rela-
tions overall. As our results will show, it is clear that it is
difficult for annotators to reach agreement on relation-
ships, some more so than others. Further, lower values for
IAA than for CIAA show this difficulty is compounded
massively by lack of agreement on entities. The level of
agreement that is achieved between annotators is often
seen as providing an upper bound for what can be expected
of system performance. The situation here however is
complicated by the fact that the gold standard used in
training and evaluation is produced by a further consen-
sus process, so that gold standard annotations may exhibit
a greater degree of regularity, reliability and correctness
than can be expected of the output of any one annotator,
making it at least possible for the system to score higher
on some relation than the observed annotator agreement
level.

A second basis for evaluating system performance is com-
parison against baseline scores for the given task, which are
scores that can be achieved using some quite simplistic

method. Baseline scores can be viewed as providing a (rea-
sonable) lower bound for performance, and the improve-
ment over the baseline is a measure of the benefit
achieved by using a more complex approach. For classifi-
cation tasks, a common baseline is to assign to all mem-
bers of a group of instances the most common class found
for that group within the gold standard. A baseline
method for relation extraction will begin with the set of
possible entity pairs for each document, as discussed ear-
lier for our relation recognition method proper, where the
possible entity pairs are restricted to only those whose
entities are of suitable types, and which occur in the same
or adjacent sentences, and each entity pair assigned as
their class either a relation type from the gold standard or
the value null. An obvious baseline approach is to subdi-
vide this overall set of instances (i.e. possible pairs) into
subsets in terms of the types of the two entities, and for
each subset to determine the most common class and
assign this as the default to all instances in the subset. If
the most common class is null, then all the entity pairs
will be treated as unrelated.

More complicated baseline methods might use further cri-
teria for subdividing the possible entity pairs into subsets
for which most common classes are computed. In this
paper, we also consider baselines using the left-right order
of the two entities or whether they appear in the same sen-
tence or not. Going too far along this route, however, can
lead to more complicated methods that do not obviously
deserve the title 'baseline', and can involve the work that
is most naturally done by machine learning methods
being laboriously reproduced as a manual feature engi-
neering task.

Results and discussion
Feature selection
We next report experiments regarding the features most
useful for relation extraction, using the features sets
described in Table 3. We divide the discussion between
the case of features sets that do not use syntactic parse
information and those that do.

Non-syntactic features
The first group of experiments reported looks at the per-
formance of relation extraction with non-parse feature
sets. We followed an additive strategy for feature selection:
starting with basic features, we added further features one
set at a time. We measured the performance of the result-
ing classifier each time we added a new feature set. Results
are shown in Table 4. The initial classifier used a
tok6+atype feature set. Addition of both dir and dist fea-
tures give significant improvements in all metrics, of
around 10% F1 overall, in each case. This suggests that the
linear text order of arguments, and whether relations are
intra-or inter-sentential is important to classification.
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Addition of the str features also give good improvement in
most metrics, again 10% F1 overall. Addition of part-of-
speech information, in the form of pos features, however,
leads to a drop in some metrics, overall F1 dropping by
1%. Unexpectedly, POS seems to provide little extra infor-
mation above that in the surface string. Errors in POS tag-
ging cannot be dismissed, and could be the cause of this.
The existence of intervening entities, as coded in feature
set inter, provides a small benefit. The inclusion of infor-
mation about events, in the event feature set, is less clear-
cut.

We were interested to see if generalising features could
improve performance, as this had benefited our previous
work in entity extraction. We replaced all surface string
features with their root form, and POS features with their
generalised POS form. This gave the results shown in col-
umn allgen. Results are not clear cut, in some cases better
and in some worse than the previous best. Overall, there
is no difference in F1. There is a slight increase in overall

recall, and a corresponding drop in precision – as might
be expected.

Both the tokN, and the str and pos feature sets provide
surface string and POS information about tokens sur-
rounding and between related entities. The former gives
features from a window around each argument. The latter
two provide more positional information. Do these two
provide enough information on their own, without the
windowed features? To test this, we removed the tokN fea-
tures from the full cumulative feature set, corresponding
to column +event of Table 4. The results, in column
notok, show no clear change in performance, with some
relationships improving, and some worsening. Overall,
there is a 1% improvement in F1.

It appears that the bulk of performance is attained
through entity type and distance features, with some con-
tribution from positional surface string information. Per-
formance is between 1% and 9% lower than CIAA for

Table 4: Performance by feature set, non-syntactic features.

Relation Metric tok6+ atype +dir +dist +str +pos +inter +event allgen notok

has_finding P 44 49 58 63 62 64 65 63 63
R 39 63 78 80 80 81 81 82 82
F1 39 54 66 70 69 71 72 71 71

has_indication P 37 23 38 42 40 41 42 37 44
R 14 14 46 44 44 47 47 45 47
F1 18 16 39 39 38 41 42 38 41

has_location P 36 36 50 68 71 72 72 73 73
R 28 28 74 79 79 81 81 83 83
F1 30 30 58 72 74 76 75 77 76

has_target P 9 9 32 63 57 60 62 60 59
R 11 11 51 68 67 67 66 68 68
F1 9 9 38 64 60 63 63 63 62

laterality_modifies P 21 38 73 84 83 84 84 86 86
R 9 55 82 89 86 88 88 87 89
F1 12 44 76 85 83 84 84 84 85

negation_modifies P 19 54 85 81 80 79 79 77 81
R 12 82 97 98 93 92 93 93 93
F1 13 63 89 88 85 84 85 83 85

sub_location_modifies P 2 2 55 88 86 86 88 88 87
R 1 1 62 94 92 95 95 95 95
F1 1 1 56 90 86 89 91 91 90

Overall P 33 38 50 63 62 64 65 64 64
R 22 36 70 74 73 75 75 76 76
F1 26 37 58 68 67 69 69 69 70

Variation in performance by feature set, non-syntactic features. Features sets are abbreviated as in Table 3. For the first seven columns, features 
were added cumulatively to each other. The next two columns, allgen and notok, are as described in Table 3.
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each relationship, with a best overall F1 of 70%, com-
pared to a CIAA of 75%.

Syntactic features
The remaining feature selection experiments look at the
impact of using features derived from a dependency parse
analysis of the clinical texts made using the Stanford
parser [39], which is a dependency parser that has been
developed principally in relation to newswire texts.
Despite the very different genre of our clinical texts, which
are heavily laden with medical language, we did not
attempt to adapt the Stanford parser to the domain, hop-
ing rather that we could still benefit from exploiting what-
ever dependency analysis the parser is able to produce.

Table 5 reiterates the +event column of Table 4, corre-
sponding to the accumulation of all non-syntactic feature
sets, and gives results for augmenting this set with the syn-

tactic features of dep and then also syndist. The syntactic
features contribute mainly to finding the has_indication
and negation_modifier relations, with an improved F1 of
around 4% for each, while retaining performance for
other relations. Overall we see a 3% increase in F1 to 72%,
a step closer to the CIAA of 75%. The results illustrate that
the SVM classifiers can exploit the more abstract informa-
tion of underlying dependency relations, to generalise
beyond the surface information of token strings and dis-
tances.

Given that the dependency analyses produced by the
parser do not cross sentence boundaries (i.e. they are anal-
yses of individual sentences), and since our syntactically-
derived features are only computed for entities in the
same sentence, we can expect their use to have a positive
impact only on the discovery of intra-sentential relations.
We found that a system using the syntactic feature set
+syndist and applied to only the intra-sentential relations
achieves an F1 of 77% (with P = 70%, R = 84%), as com-
pared to a system using the non-syntactic feature set
+event on the same intra-sentential subset of relations
(corresponding to the n <1 column of Table 6), i.e. giving
a 2% improvement in F1 overall.

Sentences spanned
Table 2 shows that although intra-sentential relations
account for a clear majority (77%) of relationships, 23%
are inter-sentential, with 10% of all relationships holding
between entities in adjacent sentences. If we consider a
relationship to cross n sentence boundaries, then the clas-
sifiers described above have mostly been trained on rela-
tionships crossing n ≤ 1 sentence boundaries, i.e. with
arguments in the same or adjacent sentences. What effect
does including more distant relationships have on per-
formance? To investigate this question, we trained classi-
fiers for the subset of relationships found under a number
of different distance conditions, in all cases using the
cumulative feature set +event from Table 4, producing the
results shown in Table 6. The first column shows results
for a classifier of purely inter-sentential relations, for the
case 1 ≤ n ≤ 5 (which covers 85% of all inter-sentential
relations), which can be seen to perform badly for the
relations for which the approach applies. (Note that some
relations occur across sentence boundaries either rarely or
not at all, and so have been discounted in the results.) The
next two columns compare classifiers trained on only
intra-sentential relationships (n < 1) and those spanning
up to one boundary (n ≥ 1). The latter shows that even
inclusion of relationships in adjacent sentences produces
a 6% drop in overall F1 as compared to the purely intra-
sentential case. Performance continues to drop as more
inter-sentential relationships are included, as the remain-
ing columns show.

Table 5: Performance by feature set, syntactic features.

Relation Metric +event +dep +syndist

has_finding P 65 73 74
R 81 77 77
F1 72 71 74

has_indication P 42 42 43
R 47 37 37
F1 42 38 39

has_location P 72 74 73
R 81 86 86
F1 75 79 78

has_target P 62 65 71
R 66 63 66
F1 63 62 64

laterality_modifies P 84 89 89
R 88 84 90
F1 84 85 89

negation_modifies P 79 85 85
R 93 97 93
F1 85 90 88

sub_location_modifies P 88 90 93
R 95 95 95
F1 91 92 94

Overall P 65 71 71
R 75 74 74
F1 69 72 72

Variation in performance by feature set, syntactic features. The first 
column shows the cumulative +event system from Table 4. The next 
two columns show the effect of cumulatively adding syntactic features 
to this system. Syntactic features are as described in Table 3.
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A preliminary analysis of the data suggests that the further
apart the related entities are, the more likely that clinical
knowledge is required to extract the relationship, and
such knowledge is clearly not available to the extraction
approach described.

Size of training corpus
The provision of sufficient training data for supervised
learning algorithms is a limitation on their use. We exam-
ined the effect of training corpus size on relationship
extraction. We selected subsets consisting of 25 and 50
documents from the C77 corpus, itself comprising 77 nar-
ratives, to produce sub-corpora that we refer to as C25 and
C50, respectively. We trained two classifiers on these new
corpora, again using the cumulative feature set +event, to

give the results shown in Table 7. The table also shows the
counts of the training instances for each relation type in
the different corpora. Overall, performance improves as
training corpus size increases (F1 rising from 63% to
69%), as expected. It is notable, however, that the per-
formance for some relations (negation_modifies and
has_location) appears to have plateaued even with this
limited amount of training data, although it remains pos-
sible that a further increase in size may improve perform-
ance.

Extracting relations over extracted entities
The experiments described so far assume perfect entity rec-
ognition, using the entities of the gold standard as input
to the relation extraction process, both for training and

Table 6: Performance by sentences.

Number of sentence boundaries between arguments

inter- intra- inter- and intra-sentential

Relation Metric 1 ≤ n ≤ 5 n <1 n ≤ 1 n ≤ 2 n ≤ 3 n ≤ 4 n ≤ 5

has_finding P 24 68 65 62 60 61 61
R 18 89 81 79 78 78 77
F1 18 76 72 69 67 68 67

has_indication P 18 49 42 42 36 32 30
R 17 59 47 42 42 39 38
F1 16 51 42 39 37 34 33

has_location P n/a 74 72 73 72 72 72
R n/a 83 81 81 81 82 82
F1 n/a 77 75 76 75 76 76

has_target P 3 64 62 59 60 59 58
R 1 75 66 64 62 61 61
F1 2 68 63 61 60 60 59

laterality_modifies P n/a 86 84 86 86 86 87
R n/a 89 88 88 88 87 88
F1 n/a 85 84 85 86 85 86

negation_modifies P n/a 80 79 79 80 80 80
R n/a 94 93 91 93 93 93
F1 n/a 86 85 84 85 86 85

sub_location_modifies P n/a 89 88 88 89 89 89
R n/a 95 95 95 95 95 95
F1 n/a 91 91 91 91 91 91

Overall P 22 69 65 64 62 61 60
R 17 83 75 73 71 70 70
F1 19 75 69 68 66 65 65

Variation in performance, by number of sentence boundaries (n) crossed by a relationship. For all cases, the cumulative feature set +event of Table 
4 was used. For the inter-sentential-only classifier 1 ≤ n ≤ 5, the score fields for some relations are marked as n/a (not applicable). This is because 
some relations are either absent from the inter-sentential data (i.e. only ever appear intra-sententially), or are so rare that they do not appear in all 
training/test folds, and so a macro-average cannot be computed across the folds.
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testing. This move is useful in allowing us to isolate the
complexities of relation extraction from the vagaries of
imperfect entity recognition when the method for per-
forming the former task is under development. In opera-
tional use of the IE system, however, the limitations of
entity recognition will impact the performance of relation
extraction. To get a measure of this effect, we evaluated the
system when applied to test data containing imperfect,
extracted entities. The entity recognition approach is as
described in [2], using a combination of lexical lookup

and supervised ML. Lexical lookup uses the Termino ter-
minology resource [40]. A Termino database is loaded
with terms from the UMLS Metathesaurus [33]. Finite
state recognisers are compiled from this database, and
used to annotate terms in texts. These terms, together with
a number of token-level features, are then used to train
SVM classifiers: one for each entity type. This approach
has been evaluated using ten fold cross validation over the
C77 corpus (described above), achieving an overall F1 for
entity recognition of 71%, macro-averaged across folds
(full results are given in [2]).

We again used ten-fold cross validation to evaluate rela-
tion extraction with extracted entities. For each of the ten
testing folds, the corresponding nine folds of gold stand-
ard data were used to train both an entity recognition
model and a relation recognition model, the latter again
using the +event feature set. The entity recognition model
was then applied to the test fold to produce a version con-
taining the recognised entities, and the relation recogni-
tion model applied to this version, i.e. using the
recognised entities as the basis for creating the set of pos-
sibly-related entity pairs, to which the relation classifiers
are applied. The relation results are then scored against the
gold standard version of the test fold, with overall scores
being macro-averaged across folds, as reported in Table 8.
As anticipated, precision for relation recognition over
extracted entities generally matches that over gold stand-
ard entities, but recall of relations suffers badly, with the
overall F1 dropping from 70% to 48%. Performance does,
however, remain close to IAA (Table 9), which measures
an analogous human task in which annotators must find
both entities and relations. Clearly, good relation extrac-
tion depends on good entity recognition.

The relation models used in this evaluation were trained
over texts containing gold standard entities. For relation
extraction over test data containing imperfect recognised
entities, however, it may be that better performance
would result with models also trained over data contain-
ing imperfect entities, but this issue can only be answered
empirically.

Summary of key results
Table 9 provides a summary of the key performance fig-
ures for the overall system, showing results for the best
system configuration using only non-syntactic features
(notok) and for the best one using syntactic features
(+syndist). For most relation types, the syntactic system
outperforms the non-syntactic one, with a macro-aver-
aged F1 that is higher by 2–4%, (the exception being a 2%
drop for the has_indication relation), giving a 2% increase
in F1 overall. The table also provides scores for a baseline
approach (to be detailed shortly) and for inter-annotator
agreement, in both IAA and CIAA variants. We can see that

Table 7: Performance by corpus size.

Corpus size

Relation Metric C25 C50 C77

has_finding Count 91 216 311
P 66 63 65
R 74 74 81
F1 67 67 72

has_indication Count 91 117 224
P 22 25 42
R 30 31 47
F1 23 25 42

has_location Count 127 199 364
P 72 71 72
R 76 80 81
F1 73 74 75

has_target Count 51 90 136
P 65 49 62
R 60 65 66
F1 59 54 63

laterality_modifies Count 57 73 128
P 77 78 84
R 69 68 88
F1 72 69 84

negation_modifies Count 34 67 101
P 78 79 79
R 80 93 93
F1 78 84 85

sub_location_modifies Count 30 43 76
P 64 91 88
R 64 85 95
F1 64 86 91

Overall Count 481 805 1340
P 62 63 65
R 65 71 75
F1 63 66 69

Variation in performance by training corpus size. The "Count" row 
gives the number of training instances of a relation type, for the given 
corpus. The cumulative feature set +event of Table 4 was used.
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IAA scores fall well below the system scores for all relation
types, with an overall IAA of 47% compared to the overall
system best of 72%, which shows simple IAA to be too
pessimistic as an indicator of the likely upper bound of
system performance, as expected. In contrast, CIAA scores
are fairly close to, and mostly above, the system scores
(the sole exception being a +syndist system score for
has_target that is 1% above CIAA).

The baseline scores in the table are for a baseline system
assigning different default relations to possibly-related
entity pairs based on the types of the two entities, plus
their left-right order and whether they appear in the same
sentence or not. Other baselines were tried where only
one of the latter two criteria, or neither, was used, but
these showed much worse performance. The baseline
scores were produced directly over the gold standard, i.e.
with the set of possibly-related entity pairs being com-
puted from the gold standard entities. For some relation
types (e.g. has_target), we see F1 scores of 0%, showing

that no correct instances of the relation were assigned. For
some other relation types, however, this baseline
approach works quite well, e.g. for has_finding we get a
baseline F1 of 70%, which compares to a best system per-
formance of 74% and a CIAA of 80%, whilst for
negation_modifies we get a baseline F1 of 88%, which
equals the best system performance and falls not far below
the CIAA of 93%. Overall, however, the baseline method
performs much worse than the best system, giving a
macro-averaged F1 of 41% against a best system F1 of
72% and a CIAA of 75%. The simplest baseline, using
only the types of the two entities, was found to score 0%
for all measures (which followed from it having a null
default for all cases).

Conclusion
We have shown that it is possible to extract clinical rela-
tionships from text, using a supervised machine learning
approach. IAA scores suggest that the task is difficult, but
our system performs well, achieving an overall F1 of 72%,

Table 8: Performance over extracted entities.

Relation Metric gold standard entities extracted entities

has_finding P 63 62
R 82 32
F1 71 41

has_indication P 44 44
R 47 27
F1 41 32

has_location P 73 68
R 83 49
F1 76 55

has_target P 59 47
R 68 39
F1 62 41

laterality_modifies P 86 83
R 89 76
F1 85 74

negation_modifies P 81 81
R 93 53
F1 85 60

sub_location_modifies P 87 71
R 95 24
F1 90 31

Overall P 64 63
R 76 40
F1 70 48

Performance of relation extraction over automatically extracted entities, compared to relation extraction using perfect gold standard entities. For 
relation extraction, the cumulative feature set +event of Table 4 was used.
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just 3% below corrected IAA. Although reasonable per-
formance is achieved using quite simple surface/token-
based features, our experiments indicate a real gain from
using also features based on the more complex linguistic
analysis provided by a dependency parser. We believe that
this work has implications for clinical text mining more
generally, given the success of our approach and its adapt-
ability for other clinical domains, though further work to
confirm our encouraging results should be carried out on
a larger sample of narratives and relationship types. The
technology used has proved scalable. The full CLEF IE sys-
tem, including automatic entity recognition, is able to
process a document in sub-second time on a commodity
workstation. We have used the system to extract 6 million
relations from over half a million patient documents, for
use in downstream CLEF applications.

Availability
The software described is open source and can be down-
loaded as part of GATE [41], except for the entity pairing
component, which will be released shortly. We are cur-

rently preparing a UK research ethics committee applica-
tion, for permission to release our annotated corpus.
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