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Abstract
Background: Growing interest in the application of natural language processing methods to
biomedical text has led to an increasing number of corpora and methods targeting protein-protein
interaction (PPI) extraction. However, there is no general consensus regarding PPI annotation and
consequently resources are largely incompatible and methods are difficult to evaluate.

Results: We present the first comparative evaluation of the diverse PPI corpora, performing
quantitative evaluation using two separate information extraction methods as well as detailed
statistical and qualitative analyses of their properties. For the evaluation, we unify the corpus PPI
annotations to a shared level of information, consisting of undirected, untyped binary interactions
of non-static types with no identification of the words specifying the interaction, no negations, and
no interaction certainty.

We find that the F-score performance of a state-of-the-art PPI extraction method varies on average
19 percentage units and in some cases over 30 percentage units between the different evaluated
corpora. The differences stemming from the choice of corpus can thus be substantially larger than
differences between the performance of PPI extraction methods, which suggests definite limits on
the ability to compare methods evaluated on different resources. We analyse a number of potential
sources for these differences and identify factors explaining approximately half of the variance. We
further suggest ways in which the difficulty of the PPI extraction tasks codified by different corpora
can be determined to advance comparability. Our analysis also identifies points of agreement and
disagreement in PPI corpus annotation that are rarely explicitly stated by the authors of the
corpora.

Conclusions: Our comparative analysis uncovers key similarities and differences between the
diverse PPI corpora, thus taking an important step towards standardization. In the course of this
study we have created a major practical contribution in converting the corpora into a shared
format. The conversion software is freely available at http://mars.cs.utu.fi/PPICorpora.
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Background
Natural language processing (NLP) methods have recently
been widely applied to improve access to the enormous
and rapidly growing amount of information that is avail-
able mainly in the biomedical research literature. Protein-
protein interactions (PPI) are the most widely studied
information extraction (IE) target in the BioNLP field,
with the key subproblem of protein name recognition
being the most commonly addressed task.

Recent shared tasks and studies of biomedical named
entities have increasingly clarified the concept of a protein
name, brought about a rough consensus on how to anno-
tate them, and established both the best-performing
entity name recognition methods and their performance
(see e.g. [1,2]). By contrast, little such standardization has
occurred for PPI. Proposed PPI extraction methods are
evaluated on test sets of widely differing sizes, domains
and annotation schemes, and the reported results vary
substantially, with, for example, recently proposed full
parsing-based methods reporting F-scores ranging at least
from 34% to 80% [3,4]. Even a shallow survey of PPI cor-
pora suffices to establish that their annotations differ
widely, yet no comparative study has so far been per-
formed to quantify these differences or identify their
source. Consequently, the BioNLP community faces a sit-
uation where it is difficult, if not impossible, to reliably
identify the best published methods and techniques due
to a lack of information on the comparability of their eval-
uated performance.

Lacking explicit, widely accepted definitions of PPI and
their annotation, the best way to approach these topics is
through the corpora produced by the groups studying PPI
extraction. By analyzing corpora it is possible to identify
points of agreement and disagreement regarding the defi-
nition of a protein-protein interaction and how they
should be annotated, thus taking a step toward reaching a
consensus on this topic. A comparative evaluation of PPI
extraction methods on the various corpora could also
complement broad single-corpus evaluation efforts such
as BioCreative [2] and help determine the extent to which
results of evaluations performed on different corpora are
comparable and improve the ability to evaluate and com-
pare methods for PPI extraction. This analysis and evalua-
tion is the aim of this study. We survey five biomedical
corpora manually annotated for PPI to identify their key
similarities and differences. We identify the “greatest com-
mon factor” level of PPI annotation that is capable of cap-
turing the main annotations of all the corpora, and we
introduce normalizing transformations from the various
corpora to a common format, thus allowing them to be
combined into a large, multi-domain PPI corpus. Using
the unified annotations and a re-implementation of a
recently proposed state-of-the-art PPI extraction method

as a benchmark, we perform an evaluation of the relative
difficulty of the PPI extraction tasks codified by the cor-
pora, providing the first quantitative comparative PPI cor-
pus analysis. We then proceed to study the properties of
the corpora contributing toward these differences, analyz-
ing the potential sources of divergence and their impor-
tance.

Results and discussion
In the following, we describe and present analysis results
of the five selected corpora: AIMed, BioInfer, HPRD50,
IEPA, and LLL. See the Materials and Methods section for
further details regarding the corpora, their selection, and
the evaluation methodology.

Characterization of the corpora
Table 1 summarizes many of the characteristics of the cor-
pora, determined by studying the publications and docu-
mentation describing the corpora as well as the corpora
themselves. We first briefly discuss these general proper-
ties and their relevance to the PPI extraction task before
proceeding to more detailed analyses. Note that while
many corpora contain annotation for a broader class of
entities than just proteins and a set of relationships
broader than interactions, we will use “PPI” to refer to all
of these annotations due to the pervasiveness of this term
in the literature.

All five corpora contain annotation identifying entities
such as proteins and genes in the text, but only LLL and
BioInfer contain information regarding the types of the
entities, and for LLL, this is limited to distinguishing
between genes and proteins. More importantly for use in
PPI extraction system development, only the AIMed and
BioInfer corpora aim to include exhaustive annotation of
entities of the types relevant to the corpus, while other
corpora have based entity annotation on lists of entity
names or named entity recognizer output.

The differences in interaction annotation are even greater
than those in entity annotation: in particular, only the
BioInfer and IEPA corpora contain information identify-
ing the words stating an interaction, all but HPRD50 spec-
ify the direction of interactions, BioInfer alone contains
complex or negative interactions, and only HPRD50
annotates different interaction certainties. Finally, BioIn-
fer is the only corpus to contain annotation for static
entity relations such as protein family membership. These
properties dictate the greatest common factor for the pur-
pose of unifying the corpora and evaluating them with a
shared methodology: undirected, untyped interactions of
non-static types with no text binding of words specifying
the interaction, no complex structure, no negations, and
no interaction certainty. We created custom software for
each corpus, filtering and transforming its data into such
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a unifying subset (see the Materials and Methods section
for more details). All results and discussion below con-
cern these transformed versions of the corpora. Unfortu-
nate as it may be that other information is discarded when
unifying the corpora, this level of annotation is also a
reflection of the state of the art in biomedical IE methods,
and doesn't presently limit the applicability of the result-
ing dataset.

PPI extraction performance
We next present evaluation results for the unified corpora
using two PPI extraction methods as benchmarks: a sim-
ple co-occurrence based method and RelEx [4], a full pars-
ing-based IE system with state-of-the-art performance.
Our use of these methods is not primarily intended as an
evaluation of these methods, but rather of the corpora. We
use the gold standard named entities as annotated in each
corpus with both methods.

The performance of the two methods on the various cor-
pora is given in Table 2. Note that for simple co-occur-
rence, all pairwise interactions are extracted, but all self-
interactions are missed — thus recall is trivially 100% for
corpora that have no self-interactions and lower for those
that do. Even though notable differences in F-score results
were expected, their magnitude is striking: for example, on
the LLL corpus F-score error is just 34%, while on AIMed
and BioInfer it is over 70%.

For RelEx, we find that F-score performance is better for all
corpora than for co-occurrence. We note that the perform-
ance of the two methods correlates closely (see Figure 1);
the relative reduction in F-score error from the co-occur-
rence method to RelEx is relatively consistent, ranging
from 21–32% between the different corpora. This high-
lights the value of applying a baseline method to establish
the relative difficulty of an extraction task. However, great
differences remain in performance between corpora: for
example, the use of the advanced method does not reduce
the over twofold increase in error from LLL to the AIMed
and BioInfer corpora. Given these results, it is clear that
differences stemming from the choice of corpus can be
substantially larger than differences in the performance of
PPI extraction methods. Indeed, the average absolute F-
score difference between the co-occurrence and RelEx
methods is just 13%, while the average difference between
pairs of these corpora as measured by RelEx is a remarka-

Table 1: Corpora

AIMed BioInfer HPRD50 IEPA LLL

size 1955 1100 145 486 77

Entity scope human P/G P/G/R and related human P/G Chemicals P/G
coverage all occurrences all occurrences NER system list of 16 names list of 116 names
types no 111 types (ontology) no no P/G

PPI types no no 68 types (ontology) no 3 types
binding no yes no yes no
directed no yes no yes yes
complex no yes no no no
negative no yes no no no
certainty no no yes no no

Legend:
Size: Number of sentences in the corpus
Entity scope: Types of the named entities identified in the corpus: (P)rotein, (G)ene, (R)NA
Entity coverage: Coverage of in-scope entity occurrences in each sentence
Entity types: Explicit identification of the type of the annotated named entity occurrences
PPI types: Explicit indication of the type of the annotated interactions
PPI binding: Identification of the specific text spans that entail the annotated interactions
PPI directed: Specification of the directionality of the interaction (typically identification of agent vs. patient roles)
PPI complex: Annotation includes nested or n-ary (for n > 2) interactions
PPI negative: Annotation of negative interactions
PPI certainty: Annotation of the levels of certainty, or speculativeness, of interactions

Table 2: PPI extraction performance

Corpus Co-occurrence RelEx
P R F P R F

AIMed 0.17 0.95 0.29 0.40 0.50 0.44
BioInfer 0.13 0.99 0.23 0.39 0.45 0.41
HPRD50 0.38 1.0 0.55 0.76 0.64 0.69
IEPA 0.41 1.0 0.58 0.74 0.61 0.67
LLL 0.50 1.0 0.66 0.82 0.72 0.77

(P)recision, (R)ecall, and (F)-score for the co-occurrence and RelEx 
methods on the various corpora.
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bly large 19%. Thus, here the choice of corpus has a larger
effect on the result than the choice between a naive PPI extrac-
tion method and an advanced one. This has the immediate
and important implication that results for methods evalu-
ated on different corpora should in general not be directly
compared, and suggests limits on how meaningful such
comparisons are when the comparability of the corpora
has not been established. This result can also be seen as
calling into question whether F-score is a meaningful per-
formance measure for PPI extraction, but we expect that
its position as a de facto standard is unlikely to be shaken.

Corpus statistics
In the following, we aim to identify some of the factors
behind the broadly diverging PPI extraction performance
between corpora. Table 3 shows a number of key statistics
measured from the corpora. We first note that while all
corpora except AIMed have at least one annotated entity
for each sentence, the fraction of sentences with no anno-
tated interactions varies from zero to more than two
thirds. This may reflect the corpus authors' different views
regarding the appropriate starting point for extraction, in
particular on how aggressively non-relevant sentences can
be filtered out. While the fraction of sentences without
interactions appears to be loosely connected to RelEx per-
formance, the correlation is not statistically significant.

More significantly, we observe that the average number of
annotated entities per sentence varies almost twofold
from just above two to more than four, translating to even
greater differences in the average number of entity pairs:
here we find e.g. an over fivefold difference between IEPA
and BioInfer. The average number of annotated interac-
tions per sentence also varies considerably, from just half
on AIMed to more than two on LLL. These last two statis-
tics are connected to co-occurrence based PPI extraction
performance through a simple relationship: the average
number of interactions divided by the average number of
entity pairs per sentence (below abbreviated I/EP) equals
the precision of the co-occurrence method evaluated
above. Further, as recall for this method can be approxi-
mated to be 1 (ignoring rare self-interactions),

 where p is precision

and r recall. I/EP correlates closely with RelEx perform-
ance, although due in part to the conservativeness of the
significance test we apply, this correlation is only weakly

significant (p ≈ 0.08). We propose that I/EP may serve as a
rough, easily computable baseline for determining the
comparative difficulty of PPI extraction tasks across cor-
pora. As more proteins are annotated, we would not
expect I to grow more than linearly, while EP grows quad-
ratically.

These results suggest that much of the difference between
the corpora is due to the simple factors I and EP, but do
not show it conclusively—it is possible that the correla-
tion with RelEx performance is due to other factors or only
coincidental. We can test the effect on RelEx performance
by removing from the annotation proteins for which there
is no interaction, thus reducing EP. The result of perform-
ing this filtering on the corpora is shown in Table 4 and
illustrated in Figure 2. The filtering results in a substantial
narrowing of RelEx performance differences between the
corpora, bringing the average difference down from 19%
to 11%. Thus, we find that annotation of proteins for which
there is no annotated interaction determines almost half of the
performance difference between corpora. Remarkably, filter-

F
pr

p r
=
+
≈ ( )2

2×I/EP / 1+I/EP ,

Table 3: Corpus statistics

Corpus Per sentence average number of Fraction of sentences with
Tokens Entities Entity pairs Interactions No entities No interactions

AIMed 25.2 2.2 3.0 0.5 18% 69%
BioInfer 31.3 4.2 9.4 1.3 ~0% 48%
HPRD50 26.1 2.8 3.0 1.1 0% 38%
IEPA 32.2 2.3 1.7 0.7 0% 37%
LLL 29.6 3.1 4.3 2.1 0% 0%

RelEx and co-occurrence F-scores for the five corporaFigure 1
RelEx and co-occurrence F-scores for the five cor-
pora
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ing also causes the simple co-occurrence method to out-
perform the more advanced method on all corpora except
LLL, where no entities are filtered. This further indicates
that evaluation on corpora that mainly include annota-
tion for interacting entities leads to a substantial bias
toward favoring methods that emphasize recall over pre-
cision. While the above analysis explains almost half of
the average performance difference between corpora, an
over 10% average pairwise difference remains. Further, a
pure statistical analysis cannot shed light onto the key
question of where the differences measured by the statis-
tics arise from. To illuminate these issues, we next proceed
to a qualitative analysis of the corpora.

Qualitative analysis
To examine how each of the five chosen corpora defines a
protein-protein interaction and to what extent the anno-
tations agree, a random sample of 50 interactions from
each corpus was examined by two annotators with exper-
tise in biology and corpus annotation. Each interaction
was analysed with respect to five aspects: type, directness,
explicitness, certainty, and polarity (defined in detail in
the Materials and Methods section).

Figure 3 shows the distribution of interaction types in the
various corpora across the BioInfer ontology — for defini-
tions of the types, see [5]. There are many similarities and
some important differences in the distributions. We note
that a clear majority of all interactions fall under the
Causal-Change subtree of the BioInfer ontology, with the
BioInfer corpus having the most exceptions to this rule.
The interactions in the Causal-Change subtree correspond
to events occurring as part of biochemical processes in liv-
ing cells as opposed to static, non-event relations such as
family membership and structural similarity. This sup-
ports our understanding that the corpora do not contain
notable annotation of static relations between entities,
with the exception of BioInfer, from which most static
relations were filtered. The most common specific type
were interactions related to a Change in the Physical prop-
erties of entities, with the IEPA corpus a notable outlier in
containing no interactions of this type. We observe that
the corpus type distributions, while surprisingly different,
appear to mostly follow the definitions of “interaction” in
the corpora, with e.g. IEPA interactions focusing on
Change in Amount and Dynamics (see the Corpora section).

To identify similarities in the type distributions of the cor-
pora, we evaluated the correlation of the interaction type
frequencies, using the non-cumulative counts (see Figure
3). This analysis suggests that the AIMed, BioInfer and
HPRD50 corpora have the most similar type distributions,
with IEPA and, to a lesser extent, LLL standing out with
different distributions. However, this clustering cuts
across any trends that could be seen in the PPI extraction

performance results, with HPRD50 in particular clustering
with IEPA and LLL on performance but with AIMed and
BioInfer with respect to types. This analysis does thus not
support the hypothesis that interaction type alone would
be a deciding factor for PPI extraction performance.

We now turn to the results of the analysis regarding the
directness, explicitness, certainty, and polarity of the cor-
pus interactions (see Table 5). The clearest universal trend
is that almost all annotated interactions in all analysed
corpora are positive; as noted above, explicitly marked
negative statements in BioInfer were filtered out prior to
analysis. Machine-learning based PPI extraction systems
trained and tested on such data will aim not to extract neg-
ative interactions, and several rule-based systems explic-
itly avoid their extraction (see e.g. [4,6]). Thus, omitting
negative statements is currently appropriate in evalua-
tion—systems should be evaluated with respect to their
intended coverage. We also observe that a great majority
of all annotated interactions in all corpora were definite.
However, in the light of the estimate of Light et al. [7] that
only 11% of sentences in PubMed abstracts contain spec-
ulation this is more likely due to the relative rarity of spec-
ulative statements than to a decision to avoid annotating
them. Indeed, the results suggest that all corpora annotate
speculative statements roughly as frequently as they
would be expected to appear.

By contrast to these aspects, the results for directness and
explicitness are less uniform. The greatest divergence is in
directness, where only very few interactions in IEPA are
direct, a clear minority in LLL, about half in BioInfer and
HPRD50, and a clear majority in AIMed. This reflects in
part the types of the annotated interactions, but it also
makes it clear that unlike some efforts to extract interac-
tion networks (e.g. [8]), the corpora do not aim to sepa-
rate direct interactions from indirect ones. The fraction of
explicit statements ranges from about half on AIMed to
almost 90% on IEPA, and here one might tentatively hope
to recognize a connection to PPI extraction performance,
with AIMed and BioInfer having low scores and the three
other corpora high scores on both metrics. However, this
correlation was not statistically significant, possibly in
part due to small sample size and the presence of con-
founding factors.

In conclusion, the qualitative analyses uncovered several
similarities and differences between the corpora with
respect to many of the analysed characteristics, identifying
some of the often unstated rules applied in PPI annota-
tion. Nevertheless, although we studied several poten-
tially relevant factors, the analysis did not identify a clear
reason for the remaining over 10% average PPI extraction
performance difference between corpora. These results
suggest that the remaining differences may, in fact, be
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largely due to idiosyncrasies of the corpora instead of gen-
eral properties. As an example of such a feature, we note
that approximately 5% of interactions in the AIMed cor-
pus are self-interactions (a single protein interacting with
itself), which the methods applied here do not attempt to
extract — and essentially no self-interactions occur in the
other corpora. Further regularities might also be uncov-
ered by the use of additional benchmark methods, and we
expect analysis applying machine-learning approaches to
be a particularly fruitful avenue of further research in com-
parative PPI corpus analysis.

Recommendations and best practices
The results of our evaluation underline the importance of
establishing the relative difficulty of the extraction tasks
represented by corpora. Based on these results, we
strongly recommend that corpus creators and PPI extrac-
tion method evaluations measure this difficulty by report-
ing performance for an established baseline method or,
minimally, simple corpus statistics such as I/EP. The use of
standard datasets, metrics, and evaluation protocols is
naturally also important. We further recommend evalua-
tion on several corpus resources: with the five corpora
considered in this study now available in a common for-
mat, we believe that future PPI extraction system evalua-
tions would be enhanced by reporting performance for all
of these corpora, thus obtaining broader insight into sys-
tem performance.

In corpus annotation, we would stress in particular the
value of annotation manuals or similar documentation
and the use of standoff annotation and XML formats in
making corpora accessible to users. Cohen et al. [9] dis-
cuss in detail these and other valuable recommendations
for corpus development based on an analysis of several
biomedical domain corpora. As one of the main out-
comes of this study, we established a clear relationship
between the annotation of non-interacting entities and
the performance of the PPI system: performance on cor-
pora that annotate all entities of the relevant type, argua-
bly a realistic model of the real PPI extraction task, was

considerably lower. Based on this finding, we recommend
the annotation of all relevant entities in subsequent cor-
pus development projects. Finally, in moving forward
from the current, relatively low level of shared corpus
annotation, we would like to emphasize the value of
annotating the direction of interactions as well as specific
annotation for negative statements of interactions. These
practices would benefit both evaluation and users of the
extracted interactions.

Conclusions
We have presented the first comparative evaluation of PPI
corpora, studying the AIMed, BioInfer, HPRD50, IEPA,
and LLL corpora. Our evaluation showed great divergence
in PPI extraction performance between corpora, finding
an average F-score difference of 19% for a recently pro-
posed extraction method. We studied the properties of the
corpora to identify factors causing these differences, and
established that approximately half of the performance
difference between corpora stems from the annotation
given to non-interacting entities. We also performed a
detailed qualitative analysis of the corpora, uncovering
notable differences in the distribution of interaction types
and identifying often-unstated points of agreement and
disagreement in annotation regarding negation, specula-
tive statements, the explicitness of annotated statements,
and the directness of the corpus interactions.

As a major practical contribution of this study, we have
defined a conversion for each corpus into a shared anno-
tation scheme, allowing the diverse PPI corpora to be
merged into a large, multi-domain corpus. The conversion
programs are freely available at http://mars.cs.utu.fi/PPI
Corpora.

Materials and methods
Corpora
For the survey, we selected freely available PPI corpora
with specifically identified named entities and manually
annotated interactions. We further required that negative
examples of PPI be either explicitly marked or that they
can be validly generated under the closed-world assump-
tion. These criteria are approximately minimal for evalua-
tion using the general type of extraction methods applied
in this study. We selected all corpora fulfilling these
requirements that we were aware of, including those that
were included at the time of selection in the public
resource collecting information regarding BioNLP corpora
maintained by Cohen et al. [9,10]. The following corpora
were selected: the large recently introduced PPI evaluation
corpora AIMed [11] and BioInfer [5], the HPRD50 corpus
annotated by Fundel et al. [4], the IEPA corpus [12], and
the PPI corpus produced for the LLL challenge [13]. In the
following, we briefly describe each of the corpora.

Table 4: PPI extraction performance on filtered corpora

Corpus Co-occurrence RelEx
P ΔP F ΔF P ΔP F ΔF

AIMed 0.53 0.36 0.68 0.39 0.85 0.45 0.63 0.19
BioInfer 0.53 0.40 0.70 0.47 0.78 0.39 0.57 0.16
HPRD50 0.64 0.26 0.78 0.23 0.93 0.17 0.76 0.07
IEPA 0.88 0.47 0.94 0.36 1.00 0.26 0.75 0.08
LLL 0.50 0.00 0.66 0.00 0.82 0.00 0.77 0.00

Precision and F-score for the co-occurrence and RelEx methods on 
the corpora with only entities that participate in an interaction 
preserved. Recall is not shown as it is unaffected by this modification. 
The Δ columns show absolute difference to results without filtering.
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AIMed is a corpus created for PPI extraction method com-
parison [11,14]. The corpus was created from 200
PubMed abstracts identified by the Database of Interact-
ing Proteins (DIP) [15] as containing protein-protein
interactions. The abstracts were subsequently manually
annotated for interactions between human genes and pro-
teins. In addition to the 200 PPI abstracts, further 30
abstracts containing no PPIs were added to the corpus as
negative examples. The current release of corpus consists
of 225 of these abstracts.

BioInfer was created as a corpus for training and testing PPI
extraction programs [5,16]. The corpus consists of sen-
tences from PubMed abstracts that contain at least one
pair of interacting proteins as defined by the Database of
Interacting Proteins. A random subset of these sentences
was annotated by the corpus authors for all entities of the
protein, gene and RNA types, as well as related entity types
such as processes and properties when these were
involved in annotated relationships. All of the interac-
tions between these entities were annotated, including
static relations.

The HPRD50 corpus was created as a test set for the RelEx
system [4,17]. It was created from sentences from 50
abstracts referenced by the Human Protein Reference
Database (HPRD). Human gene and protein names were
automatically identified in these sentences with the
ProMiner software. Direct physical interactions, regula-
tory relations and physical modifications between these
entities were then annotated.

The IEPA corpus [12,18] was constructed from sentences
from PubMed abstracts, each containing a specific pair of

co-occurring chemicals. The ten pairs of chemicals—the
majority of which were proteins—were chosen to repre-
sent diverse biological research topics. In each sentence,
interactions between the given two entities were manually
annotated, with an interaction being defined as “a direct or
indirect influence of one on the quantity or activity of the other”
[12].

The LLL corpus was created as the shared dataset for the
Learning Language in Logic 2005 (LLL05) challenge
[13,19]. The domain of LLL is gene interactions of Bacillus
subtilis. The interactions are defined as agent/target pairs,
where agent is a protein and target is a gene. The corpus
contains three types of interaction: explicit action, bind-
ing of a protein on the promoter of the target gene, and
membership in a regulon family.

Corpus conversion
The unified format to which the corpora were transformed
follows the standoff annotation principle, where the orig-
inal sentence text is preserved and the entities are identi-
fied through character offsets. The corpora in the unified
format are stored in XML files with a very simple structure.

The transformation of the corpora into the unified format
is a tedious process requiring significant efforts. This is
due to the often highly idiosyncratic native formats of the
corpora requiring the development of relatively complex
transformation programs and, in several cases, manual
intervention to resolve ambiguity present in the native
format. This work was in many cases very similar to the
refactoring efforts described in detail in [20].

The conversion for the BioInfer corpus was particularly
challenging due to its more complex interactions and
broader scope than either the other corpora or the extrac-
tion methods. To convert BioInfer, we removed interac-
tions annotated as negative, flattened nested entities,
transformed complex interactions into binary according
to a set of custom-developed rules so that only pairs of
entities take part in interactions, and finally narrowed the
set of interactions to the Causal-Change subtree of the Bio-
Infer relationship type ontology.

We provide the transformation programs for all of the cor-
pora under an open-source license, enabling other
researchers to access the five PPI corpora in this study in a
unified format [21].

Evaluation methods and metrics
We use the precision, recall and F-score metrics, which are
nearly universally applied in PPI extraction system evalu-
ation. However, these metrics can be measured in differ-
ent ways, potentially leading to considerably different

RelEx and co-occurrence F-scores for the filtered version of the corporaFigure 2
RelEx and co-occurrence F-scores for the filtered 
version of the corpora. Unfiltered results given in Figure 1 
shown in gray for reference.
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results. We measured extraction accuracy according to the
following rules:

No directionality: REL(P1,P2) is considered equivalent to
REL(P2,P1).

No interaction type: it is not necessary to identify the type
of an interaction.

Entity identity: REL(P1,P2) does not match REL(P1,P′2)
unless P2 = P′2, even if P2 and P′2 are different occurrences
of the same protein name.

Distribution of interaction types in the corpora as mapped to the BioInfer ontologyFigure 3
Distribution of interaction types in the corpora as mapped to the BioInfer ontology. In cases where the reason 
why an interaction was annotated could not be identified the supplemental Out of Ontology type was assigned. Empty cells rep-
resent zero count.

Legend

AIMed BioInfer HPRD50 IEPA LLL

Coverage % (cumulative)

Count (cumulative)

Count

All Interactions

100% 100% 100% 100% 100%

50 50 50 50 50

0 0 0 0 0

Out of Ontology

0% 2% 6% 4% 0%

0 1 3 2 0

0 1 3 2 0

Relationship

100% 98% 94% 96% 100%

50 49 47 48 50

0 6 2 3 3

IS_A

0% 2% 2% 0% 0%

0 1 1 0 0

0 1 1 0 0

PART_OF

0% 2% 0% 0% 0%

0 1 0 0 0

0 1 0 0 0

Causal

100% 82% 86% 90% 94%

50 41 43 45 47

0 0 0 0 0

Observation

0% 0% 2% 0% 0%

0 0 1 0 0

0 0 1 0 0

Change

100% 82% 86% 90% 94%

50 41 43 45 47

12 9 15 4 1

Condition

0% 0% 0% 0% 0%

0 0 0 0 0

0 0 0 0 0

Physical

70% 50% 32% 0% 22%

35 25 16 0 11

35 25 16 0 11

Dynamics

6% 10% 18% 48% 66%

3 5 9 24 33

3 5 9 24 33

Amount

0% 0% 2% 34% 2%

0 0 1 17 1

0 0 1 17 1

Location

0% 4% 4% 0% 2%

0 2 2 0 1

0 2 2 0 1

Table 5: Qualitative analysis results

Corpus Explicit Direct Definite Positive

AIMed 52% 72% 92% 98%
BioInfer 67% 45% 93% 100%
HPRD50 75% 53% 81% 92%
IEPA 86% 6% 92% 100%
LLL 73% 24% 94% 100%

Results of the analysis of 50 interactions per corpus with respect to 
their directness, explicitness, certainty, and polarity. Results are given 
as fraction of analysed interactions that were not out-of-ontology (see 
Figure 3) and were identified as having a given property by two 
annotators. Cases where annotators disagreed were counted as half a 
point.
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We applied a simple co-occurrence method and a full
parsing-based method, described in the following.

Co-occurrence method
One very simple PPI extraction method is to assign a rela-
tionship between all annotated entities co-occurring
within a sentence. While some corpora include self-inter-
actions (i.e. REL(P1,P1)), we do not extract such “co-occur-
rences” as this would have a detrimental effect on overall
extraction performance. Despite their simplicity, co-
occurrence methods have been successfully applied to
many information extraction tasks in the biomedical
domain (see e.g. [22]) and provide a relevant baseline for
more advanced methods.

RelEx
The RelEx method of Fundel et al. is a full parsing-based
PPI extraction method with state-of-the-art performance
[4]. Due to the generality of the system's concept of rela-
tion, it is not constrained to any specific subdomain of
PPI-interactions. The fact that RelEx is based on simple
principles and its performance has been tested on publicly
available datasets makes reimplementing it a feasible task.
RelEx is also purely rule-based and therefore does not
require per-domain training data, which is beneficial for
evaluating smaller corpora as the entire corpus can be
used for evaluation and results are not skewed by differing
amounts of training data. Three example interactions cor-
responding to the three RelEx rules are presented in Figure
4. For further details on the system we refer to [4].

We next give a brief overview of our implementation and
application of RelEx. Similarly to the setup described by
Fundel et al., we apply the MedPost tagger [23] and the
Stanford Lexicalized Parser (Version 1.5.1) [24] to gener-
ate a dependency parse graph for each sentence. Instead of
using an external noun-phrase chunker as in the original
implementation, we base the chunking on an analysis of
the dependency graph. The chunking information is
merged to the dependency graphs, which are then sub-
jected to parallel analysis according to the RelEx rules. The
rules extract possible interaction paths consisting of words
and dependencies that connect named entity pairs. In the
post filtering phase, relations that are deemed to be
negated as well as those that do not contain certain rela-
tion terms are filtered out. Lacking a published reference
implementation of RelEx, the performance of our system
diverges slightly from that of the original implementation
by Fundel et al. We do not believe this to affect the suita-
bility of our implementation for comparing the character-
istics of different PPI corpora.

Qualitative analysis
In this section we briefly define the methods and defini-
tions used to perform the qualitative corpus analysis. We

measured the distribution of the types of the annotated
interactions by mapping them into the BioInfer relation-
ship ontology. We used this ontology because of its broad
coverage of protein-protein interaction types [5] and
because its hierarchical structure allows aggregation of
types at various levels of specificity. We assigned to each
interaction the most specific applicable type. If no appro-
priate type was found, the interaction was marked out of
the ontology as the type Out of Ontology.

Directness indicates whether the interaction involves phys-
ical contact of the proteins. This definition follows that in
[8]. Explicitness reflects the way in which the interaction is
stated. An explicitly stated interaction is one that can be
understood without knowledge of biology-specific terms
and inference supported by external biological knowl-
edge. Certainty describes whether an interaction is stated
in a definite manner or speculatively, with qualifiers such
as may. We apply a binary distinction between speculative
and definite statements, following the guidelines in [7].
Polarity refers to whether the statement asserts the exist-
ence or the non-existence of an interaction. We annotate
negated statements following the annotation guidelines
in [25]. While there are no widely accepted standards for
annotating any of these aspects, we consider the guide-
lines referenced above as offering good candidates for
standardization.

Correlation estimate
Throughout the paper, correlation refers to Kendall's cor-
relation coefficient and the associated test with null
hypothesis being that the correlation coefficient equals
zero. The p value is computed using the standard Best and
Gipps algorithm as implemented in the R statistical pack-
age [26,27]. We use p = 0.05 as the cut-off value. We note
that these statistics are very conservative due to the fact
that they do not make any assumptions regarding the dis-
tribution of the results and do not consider their magni-
tude.
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