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Abstract

Background: Bio-ontologies are key elements of knowledge management in bioinformatics. Rich
and rigorous bio-ontologies should represent biological knowledge with high fidelity and
robustness. The richness in bio-ontologies is a prior condition for diverse and efficient reasoning,
and hence querying and hypothesis validation. Rigour allows a more consistent maintenance.
Modelling such bio-ontologies is, however, a difficult task for bio-ontologists, because the necessary
richness and rigour is difficult to achieve without extensive training.

Results: Analogous to design patterns in software engineering, Ontology Design Patterns are
solutions to typical modelling problems that bio-ontologists can use when building bio-ontologies.
They offer a means of creating rich and rigorous bio-ontologies with reduced effort. The concept
of Ontology Design Patterns is described and documentation and application methodologies for
Ontology Design Patterns are presented. Some real-world use cases of Ontology Design Patterns
are provided and tested in the Cell Cycle Ontology. Ontology Design Patterns, including those
tested in the Cell Cycle Ontology, can be explored in the Ontology Design Patterns public
catalogue that has been created based on the documentation system presented (http:/
odps.sourceforge.net/).

Conclusions: Ontology Design Patterns provide a method for rich and rigorous modelling in bio-
ontologies. They also offer advantages at different development levels (such as design,
implementation and communication) enabling, if used, a more modular, well-founded and richer
representation of the biological knowledge. This representation will produce a more efficient
knowledge management in the long term.
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Background

Ontologies are engineering artefacts that can formally rep-
resent the concepts and their relationships within a given
knowledge domain. They can provide a computationally
processable conceptual representation of our current
understanding of reality, as described within the informa-
tion we hold. Bio-ontologies (ontologies that represent
concepts from life sciences and, in particular, from molec-
ular biology) are becoming increasingly important [1].
Bio-ontologies play a central role in bioinformatics: they
act as knowledge bases, database integrators, shared
vocabularies, and more [1]. Many bio-ontologies are
available through the Open Biomedical Ontologies
(OBO) project [2], with the Gene Ontology (GO) [3]
being the most important example.

Bio-ontologies are implemented in different Knowledge
Representation (KR) languages, differing in properties
that can be described along the following axes:

¢ Syntax: what constitutes a well formed statement.

e Semantics: what well formed statements mean, often
defined as the set of concrete situations (models) that are
consistent with a sentence or set of sentences.

¢ Expressiveness: ability of the language to distinguish dif-
ferent kinds of concrete situations—something that can
be called “precision”.

® Reasoning: answering some semantic based query, such
as determining if one statement follows from another.
Reasoning is performed by a program called a “reasoner”.

The most used KR languages in bioinformatics are OBO
[4] and/or OWL [5]. OWL has three sub-languages,
depending on the expressivity: OWL-Lite, OWL-DL and
OWL-Full. OWL-Full is the most expressive type, and rea-
soning results are not warranted. The expressiveness of a
KR language can be exploited to produce rich bio-ontolo-
gies, that is, bio-ontologies that represent the knowledge
most accurately, precisely and comprehensively, with the
highest possible resolution. Rich bio-ontologies are ame-
nable to more diverse interactions with biologists, for
example when querying. A rich bio-ontology can also
facilitate more interesting reasoning, for example to
obtain new hypotheses from biological knowledge. Pres-
ently, however, bio-ontologies mainly tend to be lean, as
opposed to rich, due to the gap between the potential of
KR techniques and their actual implementation in bio-
ontologies. Most bio-ontologies do not come close to
using all the expressiveness of the selected KR language
[6], even if that language has limitations in its ability to
fully describe the biological domain knowledge [7]. As a
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result, only a limited part of the domain knowledge is cap-
tured.

Another problem with current bio-ontologies is the lack
of rigour (use of strict, explicit and well defined seman-
tics). Rigour ensures a sound structure and hence a more
robust development and maintenance over time. Despite
efforts to improve the rigour of some bio-ontologies [8-
10], rigorous modelling is not general practice within bio-
ontologies.

The modelling effort required for obtaining a rich and rig-
orous bio-ontology is usually too demanding for many
bio-ontologists, as they are usually biologists with a lim-
ited training in either ontology development or the KR
language used for the ontology's representation. If, how-
ever, we are to improve the knowledge management in
bioinformatics and move from lean to rich bio-ontolo-
gies, the bio-ontologies must be built by expert biologists
who really know the vital subtleties of the knowledge
domain. This tension between modelling best practice
and modelling skills [11] is a fundamental barrier for
progress in bio-ontologies, as the bio-ontologists only
rarely use the whole power of KR languages.

One way to help bio-ontologists to model in a rich and
rigorous manner is to provide them with “cookbook reci-
pes” named Ontology Design Patterns (ODPs). ODPs are
a development paradigm analogous to Software Design
Patterns (SDPs) [12], widely used in OOP. A SDP is a
proven solution to a known modelling problem that
repeatedly appears when designing different software sys-
tems. Moreover, SDPs offer an “off the shelf” solution for
the programmer: for example, in the case of the Model-
View-Controller SDP a method for implementing graphi-
cal interfaces is provided. We propose that ODPs offer
similar advantages to the bio-ontologists.

Structures similar to ODPs have already been used in
ontologies and appear in the literature. There are, how-
ever, still open issues, such as documentation, representa-
tion, application methods, detection of application
targets, etc. In addition, whole areas of biological knowl-
edge lack ODPs. The work presented here begins to tackle
those issues by providing a definition and classification of
ODPs, methodologies for spotting application targets for
ODPs in bio-ontologies, methodologies for applying
ODPs, a documentation system and an ODPs public cat-
alogue [13]. Some examples of ODPs that have been used
on the Cell Cycle Ontology (CCO) are presented as use
cases (Sequence ODP [14] and Upper Level Ontology
ODP [15]).
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Results

Definition and classification of ODPs

ODPs are solutions to modelling problems that help the
bio-ontologist to better use the expressivity and rigour of
the KR language of choice. ODPs are examples of solu-
tions, rather than abstract solutions that are instantiated
in different systems, unlike SDPs. Thus, the bio-ontologist
uses the ODP as a guide and is able to recreate the ODP in
the concrete bio-ontology that it is being built.

ODPs are used as samples of knowledge. For example, a
bio-ontologist may want to model biological regulation,
which can only be positive or negative. What constructs
does OWL, for example, offer to create such a model of
regulation and how can the bio-ontologist combine
them? The answer is to use the Value Partition ODP [16]
as a sample (Figure 1; for the UML to OWL mapping used
in Figures 1, 2, 6, 7, 8, 9 and 10, see Figure 4). The Value
Partition ODP consists of a covering axiom and disjoint
axioms that allow the values a parameter may take to be
captured precisely. For example, a person can only be tall
or short, but not both; the Value Partition ODP also
makes the property by which an object ‘bears’ the value
functional—so an object only has that property once.
Since regulation can only be positive or negative (in this
view of the world), this Value Partition ODP should be
used (Figure 2).

ODPs are in principle abstract and implementation inde-
pendent. We focus on OWL to provide a framework for
direct implementation, adequate expressivity and ease of
sharing. ODPs could be described in a more abstract for-
malism (such as First Order Logic) but that would
decrease usability. ODPs can be classified according to
their complexity, granularity, usability, popularity, etc.
Here, we classify them according to the way they are used:

¢ Extensional ODPs: ODPs that provide ways of extending
the limits of the chosen KR language. Some ODPs can be
used to overcome those limitations and present a suitable
representation of the knowledge domain that needs to be
captured. For example OWL cannot be used to express
exceptions [7,17] or n-ary relationships [7], and there are
ODPs to work around those limitations (Exception ODP
[18] and N-ary Relationship ODP [19]).

e Good practice ODPs: ODPs that are used to ensure a
modelling good practice. These ODPs are used to produce
more modular, efficient and maintainable ontologies,
tackling already known pitfalls of ontology engineering
such as hard-coding of multiple subsumptions [20].
Examples include Normalisation ODP [21], Value Parti-
tion ODP [16] and Upper Level Ontology ODP [15].
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¢ Domain Modelling ODPs: ODPs that are used to model
a concrete part of the knowledge domain. They can be
defined as “signature” ODPs: each knowledge domain has
its peculiarities and these ODPs are used to model those
peculiarities. Biological knowledge sometimes differs
from other domains because of contingency, symmetry,
different levels of complexity interacting with each other,
emergent properties, etc. Examples include List ODP [22],
Adapted SEP ODP [23], Sequence ODP [14] and Species
ODP [24].

Extensional and Good Practice ODPs are common to all
ontologies. Domain Modelling ODPs are more specific to
the knowledge domain (in this case, biological knowl-
edge), but they can also be used in other domains.

Applying ODPs

An important aspect of ODPs is understanding when it is
appropriate to apply a particular ODP. Ideally, the situa-
tion in which it is appropriate to apply an ODP should be
apparent to a bio-ontologist; the ODP should be self
explanatory in terms of documentation (for example
when exploring the ODPs public catalogue presented bel-
low). The bio-ontologist can, however, be guided using
competency questions such as the ones described in Table
1. These and other questions will be used to form a deci-
sion tree that will guide a bio-ontologist towards an
appropriate ODP. These questions can be supplemented
with material on the types of entity that can be involved
and the kinds of relationships they have with other enti-
ties, eventually being refined down to the granularity of
semantics used in the ODP itself.

Once chosen, the main method for applying an ODP is to
recreate completely or in part the structure of the example
ODP in the ontology, optionally reusing (“importing” in
OWL parlance) parts of the example ODP. The user can be
guided in the process with wizards, for example using the
wizards provided by the CO-ODE project [25] for the Pro-
tégé ontology editor [26].

Another method of applying ODPs is to use condition
matching. The Ontology Processing Language (OPL) is a
syntax that allows conditions to be defined for matching
classes in an ontology written in OWL. The classes
matched have transformations applied on them that
change axioms or annotation values. Thus OPL can be
used to create ODPs in an ontology, by defining and ODP
as the changes to be made when a match happens.

The matching condition can be of two types:
e Syntactic condition: the condition relies on a string

value. Thus, the class name or any annotation value, such
as label or comment, can be used to try to match the con-
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Structure of the Value Partition ODP, in UML. The
covering axiom (the class parameter is equivalent to the
union of classes value_I to value_n) ensures that when a
new class is added, it is added as a subclass of the values;
thus, no new values can be added.

dition. The condition can be a given value (e.g. cell differ-
entiation) or a regular expression (e.g. (.+?)
(differentiation)).

e Semantic condition: the condition relies on the seman-
tic structure of the ontology—the ODP is applied to any
classes matching a class expression. For example, a condi-
tion can be defined so as to match any class that is sub-
sumed by the class expression located_in all
(Chromosome or (part_of some Chromosome)) (in
other words, any class that has the expression located_in
all (Chromosome or (part_of some Chromosome)) as a
necessary condition). A semantic condition can be as
complex as the user wishes (using any of OWL's expressiv-
ity) as the reasoner [27,28] will process the ontology and
retrieve any matched classes.

OPL is partially based on the Manchester OWL Syntax
[29] and SPARQL [30], and it is available as a standalone
application [31] or as a Protégé plugin [32]. The OPL
commands are written in a flat file by the user and the
OPL program parses the file, selecting classes and apply-
ing the changes defined, creating a new ontology. ODPs
can be codified in the defined changes, and human-read-
able explanations can be written in comments. Thus, the
ODPs are stored in a flat file for direct application,
together with any comments bio-ontologists might find of
interest. Therefore, ODPs can be applied at any time, to
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Figure 2

UML diagram of the application of the Value Parti-
tion ODP. The Value Partition is used to model biological
regulation, which can only be either positive or negative, by
applying the ODP described in Figure | to an actual bio-
ontology.

any ontology, by running the OPL program, and are per-
sistently stored (Figure 3).

Documenting ODPs

The documentation system proposed in this research is
inspired by the original SDPs documentation system [12],
with some changes; the basic system is essentially the
same, relying on some predetermined sections with which
each ODP must be described; name, structure, etc. In the
case of ODPs the sections are different, and some of them
are optional (Table 2). An implementation of the docu-
mentation system is available as an ODPs public cata-
logue [13]. The catalogue is directly implemented in
OWL: each ODP is described in an ontology, using anno-
tation properties for the sections that describe the ODP.
The semantics of the ODP are directly expressed in the
ontology, allowing for importing the ODPs and sharing
the ODPs together with all the information codified in the
annotation properties. Each Ontology is translated to
HTML by an script (OWL2HTML) and the URL of the
ontology is automatically generated from the URI of the
ontology. The whole catalogue can be downloaded [33]
and generated locally from the OWL files by running the
OWL2HTML script. The catalogue is open for suggestions
and corrections, and any user can propose new ODPs to
be added using the mailing lists and forums provided by
Sourceforge [33].

SDPs and ODPs are described in a different manner in a
documentation system. SDPs are described with UML in a
generic manner, and then the instances of the SDP are
applied in the programming language of choice. In con-
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SELECT ?x WHERE ?x label regulation;
ADD ?x equivalentTo (positive or negative);
ADD positive disjointWith negative;

# Value Partition ODP in OPL format

Figure 3

Extract of an OPL flat file, to be processed by the
OPL program. The program reads the flat file and per-
forms the actions in the ontology. The statements end with ;
and the comments (starting with #) are not processed, ?x is
equivalent to “any class”. The statements to be processed in
this example are a SELECT statement followed by two
ADD statements. When parsing, the program will select any
class that has the value regulation in its label annotation
property. The ADD statements are applied to any matching
classes obtained from the SELECT statement. It will add
two axioms to any matching class: the first axiom sets the
matching class to be equivalent to the union of the (already
existing) classes positive and negative. The second state-
ment makes those classes disjoint. The resulting structure is
the recreation of the Value Partition ODP.

trast, there is no easy, graphical, complete and established
language a la UML for describing ODPs, because there is
not such a language for KR languages. As a consequence,
ODPs have to be described using instances: the model,
rather than being a generic structure like in SDPs, is an
instance that implicitly describes the generic structure.

The absence of a language that can describe the same
structure in different KR languages makes it very difficult
to develop a suitable graphical representation for ontolo-
gies. In the case of the ODPs public catalogue UML has
been chosen in the hope that better languages will be
developed. Despite having certain advantages (standard,
already widely used and with available tooling) and hav-
ing been designed as a general purpose modelling lan-
guage, UML lacks native structures for a straightforward
representation of OWL. Therefore, the UML representa-
tion is not compact enough and it is too complex. The
UML to OWL mapping used in the public ODPs public
catalogue is the one proposed in [34] (Figure 4). OWLViz
[35] is also used for simple subsumption hierarchies.

Use of ODPs on the Cell Cycle Ontology

In the context of the FP6 project DIAMONDS [36], an
ontology is being developed to represent the knowledge
about the cell cycle [37]. This application ontology, called
Cell Cycle Ontology [38], comprises data from a number
of resources such as GO, Relations Ontology (RO) [39],
IntAct [40], NCBI taxonomy [41], UniProt [42] as well as
data from DIAMONDS partners. The resulting CCO is
designed to provide a richer view of the cell cycle regula-
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OWL AXIOM UML NOTATION
Existential restriction over R
property R with filler C
Universal restriction over

1::allValuesF R
property R with filler C

C1 subclass of C2 [>{c2

Equivalent classes

Cl and C2
Intersection of classes
Cl1 and C2

1

____________________

Union of classes
Cl and C2

__________ | T N T T er 1

I
Disjoint classes
Cl and C2
1

R e A A e e e LT o 1

Figure 4

Simple mapping of OWL to UML. Not all the possible
OWL axioms are included. R: property, C: class.

tory process, in particular by accommodating the intrinsic
dynamics of this process. For that purpose, three major
components are considered: the (persistent) entity itself,
its spatial localization, and its temporal localization. CCO
provides a test bed for the development of new
approaches and tools necessary to create a fully-fledged
knowledge base. This knowledge base is expected to ena-
ble deployment of advanced reasoning approaches for
knowledge discovery and hypotheses generation. CCO
supports four model organisms: human (Homo sapiens),
Arabidopsis (Arabidopsis thaliana), Baker's yeast (Saccharo-
myces cerevisiae) and Fission yeast (Schizosaccharomyces
pombe). There is an ontology file for each of the four
model organisms and the file is available in several for-
mats [43]: OBO [4], OWL-DL [5], XML, DOT [44] and
GML [45]. Presently, CCO holds more that 20,000 con-
cepts (more than 1,000 bio-molecules and over 9,000
interactions) and more than 20 types of relationships. At
present, two ODPs have been applied in CCO: the
Sequence ODP and the Upper Level Ontology ODP.

The Sequence ODP [14] is used in CCO to model the cell
cycle (Figure 5). The cell cycle is modelled as a sequence
of events, starting in the phase G1, followed by S, G2 and
finally M [46]. For the sake of simplicity, only the
described steps of a standard cell cycle are considered, not
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S

G2

Figure 5

Simplified model of cell cycle. This simplified view of the
cell cycle is assumed when modelling it using the Sequence
ODP. The model, however, suffices to represent many facts
about the cell cycle.

considering the other steps (that also might play impor-
tant roles) or variations such as endoreduplication.

There are other sequences of events that in principle can
be modelled in the same manner, such as metabolic path-
ways. This ODP is a “trimmed down” version of another
ODP, the List ODP [22]. The List ODP is a much more
complex structure in which the exact order of items is very
important, whereas in the Sequence ODP the only aspect
modelled is what happens after or before a given event.
For example, the Sequence ODP cannot be used to com-
pare different sequences of events. The sequence ODP
(Figure 6) makes use of the relationships precedes and
preceded_by from RO, both being transitive. It also uses
two relationships not present in RO, namely
immediately_precedes (subproperty of precedes) and
immediately_preceded_by (subproperty of
preceded_by), both being functional.

When the ODP is applied to CCO (Figure 7), each phase
of the cell cycle is immediately_preceded_by a phase and
immediately_precedes another phase, only one in both
cases, due to the fact that immediately_preceded_by and
immediately_precedes are functional. Any phase that is
immediately_preceded_by one phase is also assumed to
be preceded_by the same phase, because preceded_by is
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a superproperty of immediately_preceded_by. The same
applies to immediately_precedes and precedes.

The use of the Sequence ODP allows to do flexible queries
against the ontology. For example, if a given interaction
occurs at M, and a query is defined to retrieve anything
that happens after S (Figure 8), a reasoner will retrieve the
interaction (and any interaction occurring at G2, as both
G2 and M are preceded by S). This is due to the transitivity
of preceded_by, which is assumed to relate the pertinent
phases by the reasoner (even if it is not explicitly stated in
the ontology) because it is the superproperty of the actual
property that has been used to assert the relationship in
the model, immediately-preceded_by. However, if the
user is only interested in something happening just after S
(G2 but not M), immediately_preceded_by should be
used instead.

The Upper Level Ontology ODP [15] (Figure 9) can be
used to facilitate modelling through its basic ontological
distinctions. A principle application of upper level ontol-
ogies is to integrate different ontologies. This can be done
because an upper level ontology makes distinctions
between classes, independent of any particular domain:
the classes in it represent types of concepts, such as phys-
ical entity, process, etc. For example, if an ontology that
describes processes needs to be integrated, it can be done
so under the class process. The classes of the upper level
ontology are generally created according to philosophical
criteria such as continuants vs. occurrents. Therefore, the
use of an upper level ontology is controversial, because
there are many flavours of philosophical approach and
the bio-ontologist may follow a particular view of the
world that will highly influence the structure of the bio-
ontology. In the case of CCO an upper level ontology has
been created (Figure 10) to include classes from other
ontologies such as the whole Cell Cycle subontology
from GO. The use of an upper level ontology also helps to
ensure a good modelling practice, as different kinds of
classes (processes, molecules) are created in separate dis-
joint subtrees, resulting in a cleaner model.

Discussion

Figure 11 shows a simplified overview of prior attempts to
provide solutions similar to ODPs; for the sake of brevity,
the “W3C Best Practices” are assumed to be equivalent to
the patterns described in [47-57] (see bellow).

Even if ODPs have already been documented in the liter-
ature, they have not been explicitly mentioned as such
until recently [58-60]. In [60] they are mentioned as part
of some ontology building methodologies, without fur-
ther analysis such as documentation and application. The
idea of CODePs (Conceptual Design Patterns) [58,59] is
close to ODPs, but they differ in the level of granularity of
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Figure 6
UML diagram of the Sequence ODP

the proposed solution; CODePs are necessarily less fine
grained than ODPs, as they represent conceptual and gen-
eral solutions, whereas ODPs offer solutions in a given KR
language with full semantic coverage. We propose that
CODePs and ODPs are complementary: a CODeP will
incarnate itself in an ODP that will show the bio-ontolo-
gist how to implement the CODeP in a concrete KR lan-
guage, much as happens with the CODeP Description-
Reification and the N-ary Relationship ODP [19] in OWL.
In summary, the application procedure, documentation
system and representation of ODPs and CODePs are dif-
ferent. Knowledge Patterns [61] are conceptual general
patterns that are “morphed” into a given knowledge base
by a set of mapping axioms. Thus, the knowledge pattern
can not be applied directly by the bio-ontologist: this is a
drawback since the application of the pattern needs to be
as intuitive as possible. The same argument applies for the
Semantic Patterns [62]. The ODPs presented herein are
real solutions to biological knowledge modelling prob-
lems, rather than theoretical propositions of general pat-
terns; the value of these ODPs is that they are ready to be
used by bio-ontologists, without any morphing axiom.
ODPs are presented in OWL to make full use of the lan-
guage's semantics. Those semantics can be mapped to
other languages for interoperability (for example is rela-
tively easy to map from OWL to OBO [63-66]), but the

opposite does not often happen: it is difficult for bio-
ontologists, given a pattern in an abstract formalism, to
apply that pattern to an actual bio-ontology with a con-
crete KR language.

Some attempts have been made to provide best practice
guidelines in ontology engineering and KR, which in
some cases are semantically equivalent to ODPs. Some of
those efforts have been collected (albeit not as a systema-
tized collection) in the W3C Semantic Web Best Practices
and Deployment Working Group web [67]. Other efforts
have been published as self-contained patterns in single
publications, regarding partonomy [47,48], transitive
propagation [49-52,68], ontology level [53,54] and multi-
ontology level best practices [55,56], and granularity [57],
to mention some representative examples. In all cases,
documentation, graphical representation and application
methodologies as such have not been addressed in detail;
at best, they were only implicitly and partially used. Some
of those ODPs are collected in the ODPs public catalogue
[13].

The use of ODPs will most likely give several advantages
to bio-ontologists when creating and maintaining bio-
ontologies. The following advantages have not been thor-
oughly tested, and therefore there is not experimental evi-
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inmedlately_precedes

UML diagram of the application of the Sequence ODP to CCO. The cell cycle is defined as a sequence of phases that
happen one after the other, using the relationships immediately_preceded_by and immediately_precedes.

dence for them, but they are reasonable assumptions
based in the authors' experience in bio-ontology engineer-
ing. The advantages are divided in three areas:

1. Design (semantics, modelling):

<<gwl::someValuesFrom>> |<—| AnonymousCIassl

N

preceded_by occufs_at

<<owl: :someValuesF rom=>

Figure 8

UML diagram of a query that demonstrates the util-
ity of the Sequence ODP. The OWL-DL query
occurs_at some (preceded_by some S) returns any
interaction that occurs after S (G2 and M). However, if a
user is only interested in anything occurring immediately
after S (G2 but not M) immediately_preceded_by should
be used: occurs_at some (immediately_preceded_by
some S).

¢ Rich and granular modelling. ODPs should facilitate the
production of more richly axiomatised ontologies by
allowing a more fine-grained modelling of the knowledge
domain. They should help in making the implicit knowl-
edge found, for example, in term names, explicit, encod-
ing it in the semantics of the ontology. Additionally, bio-
ontologies are deepening the knowledge they model, and
ODPs to represent that deeper knowledge with the suita-
ble granularity are needed.

e Semantic encapsulation. ODPs provide an easy way of
dealing with the complexity of semantics in conceptual
modelling by encapsulating it in the ODP.

¢ Robustness and modularity. Some ODPs help in creat-
ing more robust and modular ontologies.

¢ Reasoning. The richer axioms needed for efficient and
productive reasoning should be reached more easily using
ODPs. Therefore, as more axioms are placed in the ontol-
ogy more sophisticated inferences can be undertaken.

e Alignment. More and more ontologies are being devel-

oped and efficient ways for comparing/aligning them are
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Figure 9

UML diagram of the Upper Level Ontology ODP

consequently necessary. The consistency of modelling
inherent in the use of ODPs should support semantic
matching between different ontologies.

2. Implementation (actual development of the ontology):

¢ Focused development. Having an ODP as an engineer-
ing artefact should reduce the development time, so that
the domain expert can be focused on the modelling
details of the specific area that is being modelled.

¢ Tooling. ODPs can be codified programmatically, pro-
viding tools that can automatically build sectors of an
ontology that are complex or regular. The same tools

[cenl cycle entity|

http://www.biomedcentral.com/1471-2105/9/S5/S1

could also guide the ontologist in the process of building
ontologies.

¢ Rapid prototyping. ODPs are ideal for rapidly develop-
ing prototypes. Having prototypes should allow develop-
ers to discuss complete models of ontologies in early
stages and hence make more sound ontologies. It should
also allow faster development.

¢ Re-engineering. ODPs could be applied in the beginning
of an ontology development process as well as during the
life cycle of it, providing, for instance, valuable insights for
refactoring some components which may hold an incon-
sistency or which may violate design principles.

3. Communication:

e Good communication. The use of ODPs should
improve communication between ontology developers.
The developers could easily recognize the different fea-
tures of the ontology produced by the ODP, as it repre-
sents a well known and thoroughly documented
abstraction.

¢ Documented modeling. When creating ontologies the
process should be more precisely documented by simply
mentioning which ODPs were used. As a result, the design
decisions would become explicit.

e Comprehension of advances in KR. KR languages are
evolving fast (for example OWL 1.1 [69]) and it is usually
difficult to understand the new features of the languages:
by providing ODPs it should become much easier, as
ODPs are examples of how to use the new features.

|Ce|l Cycle processl

| Cell Cycle continuant

| Interaction |

| Cell Cycle| | Pathway |

Biopolymer |

| Cellular component |

ISmaII moleculel |Comp|ex| |O|‘gani5m

Figure 10

UML diagram of the Upper Level Ontology ODP, as applied in CCO. Disjoint axioms not shown.
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Table I: Examples of competency questions that help in choosing an appropriate ODP

Question

oDP

Do these values exhaust the space of possibilities for a value space!?
Is this a structure where the order matters?

Are those features of a relationship?

Does it constitute an exception of a default case?

Value Partition
List

N-ary Relationship
Exception

Conclusion

ODPs are ready-made solutions for tackling complex
modelling issues when creating and maintaining bio-
ontologies. Moreover, they provide a bridge to rich and
rigorous modelling. They also offer advantages in design
(rich and granular modelling; semantic encapsulation;
robustness and modularity; reasoning; alignment), imple-
mentation (focused development; tooling; rapid proto-
typing; re-engineering) and communication (good
communication; documented modelling; comprehension
of advances in KR). Even if ODPs present all those advan-
tages, it remains essential that bio-ontologists are pro-
vided with ontology building blocks and tools to easily
create and manage ODPs. A Protégé plugin is foreseen as
a supporting tool that will allow the creation and storage
of ODPs by means of a graphical and user-friendly envi-
ronment, and there is already a Protégé plugin for apply-
ing ODPs that uses the ODPs public catalogue presented
[70]. ODPs might ideally follow a path similar to SDPs:
first, they are discovered or identified, then they are com-
prehensibly tested, and finally, they become part of the
language or system itself. Such a process cannot occur
within ODPs (and OWL which is much less extensible) to
the same extent but in an ideal situation the ODPs might

well be perceived by the bio-ontologist as something that
comes “for free” in the language or the tools for support-
ing the development of ontologies.

In order for the ODPs to be used, not only tooling but also
proper documentation is vital, and there are open issues
in the documentation system presented. The most impor-
tant problem is the lack of a proper graphical language for
representing the structure of the ODPs; UML is acceptable
for the current implementation but a better representation
is needed and GrOWL [71] is a promising possibility. On
the other hand, other UML to OWL mappings can also be
used [58,72]. The sections for the documentation system
might evolve in the future as ODPs are more widely used
and identified, depending on the users' feedback. Two
new sections are foreseen in the short term: a section with
the questions for choosing ODPs (as in Table 1) and a sec-
tion for the version of the ODP, including a backwards-
compatibility mechanism. Classification of ODPs might
well also evolve towards a classification adapted to the
needs faced while building and maintaining ontologies.
In the long term, metrics for evaluating ODPs will also be
studied so that a degree of complexity will be associated
to each ODP (in a section of the documentation system),

Table 2: Documentation system sections and their explanation. The names of the sections are given in the left column; the explanation
in the center column, and the right column states which sections are optional

Section name Explanation Optional
Name The unique name of the ODP No
Also known as Any other name that is given to this ODP Yes
URL An URL where the ODP can be obtained No
Classification The classification, by general usage, of the ODP: One of “Extensional”, “Good practice” or “Domain No
Modelling”
Motivation The scenario where the ODP might be needed No
Aim The concrete solution the ODP provides No
Elements The properties, classes and instances that build the ODP No
Structure How the elements relate to each other to build the ODP. This should be provided in any graphical form like ~ No
UML or OWLViz
Sample An example of the structure, applied to an ontology No
Implementation Explanation of how to build or apply the ODP in an actual system No
Result The structure that should appear in the ontology after applying the ODP (and often after reasoning) No
Side effects Any non obvious consequences of applying the ODP No
Known uses Any system where the ODP has been successfully applied Yes
Related ODPs Any ODRP that uses or is used by this ODP, or any ODP that has anything in common with this one Yes
References Any publications or web pages where this ODP has been previously described Yes
Additional information  Any information that does not fit in any of the previous sections Yes
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and target spotting methodologies, documentation and types of formalisms.

that in turn will provide users more information about the
ODPs they would like to use. The same metrics will also
provide a way to measure the complexity of the resulting
ontology.

The ODPs identified in CCO will support its sound evolu-
tion by being part of the CCO maintenance life cycle.
There are still some ODPs that have not been completely
explored such as ODPs dealing with temporal aspects or
those dealing with negative (complementary) knowledge.
Besides, many more ODPs within CCO and other bio-
ontologies will be identified and added to the ODPs pub-
lic catalogue. There are plenty of areas of biological
knowledge that have not yet been explored to find possi-
ble ODPs, such as phylogeny, molecular interactions, etc.
In any of those areas of biological knowledge the identifi-
cation of ODPs will facilitate the development of rich and
rigorous bio-ontologies. This will ultimately provide a
robust and fine grained representation of the knowledge
in biology, allowing for a more efficient knowledge man-
agement in the field, and increased exploitation of com-
putational reasoning.
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