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Abstract
Background: This article provides guidelines for selecting optimal numerical solvers for biomolecular system
models. Because various parameters of the same system could have drastically different ranges from 10-15 to 1010,
the ODEs can be stiff and ill-conditioned, resulting in non-unique, non-existing, or non-reproducible modeling
solutions. Previous studies have not examined in depth how to best select numerical solvers for biomolecular
system models, which makes it difficult to experimentally validate the modeling results. To address this problem,
we have chosen one of the well-known stiff initial value problems with limit cycle behavior as a test-bed system
model.  Solving this model, we have illustrated that different answers may result from different numerical solvers.
We use MATLAB numerical solvers because they are optimized and widely used by the modeling community. We
have also conducted a systematic study of numerical solver performances by using qualitative and quantitative
measures such as convergence, accuracy, and computational cost (i.e. in terms of function evaluation, partial
derivative, LU decomposition, and "take-off" points). The results show that the modeling solutions can be
drastically different using different numerical solvers. Thus, it is important to intelligently select numerical solvers
when solving biomolecular system models.

Results: The classic Belousov-Zhabotinskii (BZ) reaction is described by the Oregonator model and is used as a
case study. We report two guidelines in selecting optimal numerical solver(s) for stiff, complex oscillatory
systems: (i) for problems with unknown parameters, ode45 is the optimal choice regardless of the relative error
tolerance; (ii) for known stiff problems, both ode113 and ode15s are good choices under strict relative tolerance
conditions.

Conclusions: For any given biomolecular model, by building a library of numerical solvers with quantitative
performance assessment metric, we show that it is possible to improve reliability of the analytical modeling, which
in turn can improve the efficiency and effectiveness of experimental validations of these models.  Also, our study
can be extended to study a variety of molecular-level system models for human disease diagnosis and therapeutic
treatment.
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Background
Complex biochemical systems have been described by
many models [1-4], but these modeling studies have not
been used to address biomedical problems of practical or
clinical interest. One major hurdle is that when describing
a non-observable biomolecular system, the set of ordinary
differential equations (ODEs) often do not have closed-
form analytical solutions. Even when numerical solutions
are proposed, there are no standard quantitative metrics
to verify the efficacy of a numerical solution in approxi-
mating the true solution. Thus, there is an urgent need to
study numerical solver behavior in biomolecular systems
modeling using both qualitative and quantitative per-
formance measures.

Biomolecular system modeling is an iterative process that
depends on robust and accurate numerical solvers for
future experimental validation. We aim to determine the
optimal numerical solver(s) for a particular system
model, by applying various numerical solvers to the
model and then comparing the numerical solutions. The
workflow for such a systematic study is shown in Figure 1.

• In the application phase, we select the optimal numeri-
cal solver(s) (ideally based on a weighted decision from
performance measures) to elucidate model-solver
dependency (that is, to determine the characteristics of
numerical solvers that can express model behavior reason-
ably well).

• In the design phase, we identify and incorporate signifi-
cant features of similar biomolecular systems into con-
crete analytical models. This is to determine a system-
model correspondence.

• Based on specific model characteristics, we apply the
optimal numerical solver(s) to obtain the solution that
best approximates the true system behavior.

• We validate the model through experimentation by
comparing empirical results with the simulated model
results by using the optimal solver(s).

• We improve the optimal numerical solver(s)  selection
to correct modeling errors by reducing discrepancies
between experimental results and modeling simulations.

As a test-bed, we have used the Belousov-Zhabotinskii
(BZ) reaction system, which is represented by the Oregon-
ator model [4] as the test system. In the following sec-
tions, we first describe the system model and numerical
solvers implemented; we then present and discuss the
results obtained using qualitative and quantitative per-
formance measures; and we conclude by laying out plans
for related future work. Finally, we will determine simple

rules to help select the optimal numerical solver(s) given
stiff problems. These rules can help researchers decide if
there exists an optimal numerical solver(s) for a given sys-
tem or if there are only sub-optimal solvers.

Results
Two sets of simulations were performed under different
conditions of error tolerance – (a) relaxed relative error
tolerance (RET) i.e. in MATLAB, 'RelTol' = 10-3 and (b)
strict relative error tolerance (SET) i.e. 'RelTol' = 10-6 ;
other invariant conditions are a parameter set {s = 100, w
= 3.835, q = 10-6, f = 1.1} and initial conditions {α = 20,
η = 1.1, ρ = 20}. Simulations were run for 200 time units.

Figures 2 and 3 are visual representations of simulation
results under RET. Respectively, Figure 2 shows 2-D phase
plots of pairs of reactant species and Figure 3 shows time-
series solutions of all three reactant species. These results
are based on the assumed ability of the numerical solvers
in MATLAB to handle stiff problems as shown in Table 1.
In Figure 3, only the phase plots of ρ(Z) vs. η(Y) are pre-
sented for brevity; the trends presented are representative
of other combination pairs.

Based on these performance measures, we propose two
simple guidelines to select the optimal numerical
solver(s) for solving models of stiff, complex oscillatory
biochemical systems.

1. For problems with unknown parameters, ode45 is the
optimal choice regardless of relative error tolerance.

2. For known stiff problems, both ode113 and ode15s are
good choices under strict relative error tolerance.

Qualitative metrics
From Figure 2 under RET, we observe that the expected
limit cycle (LC) behavior only exists in some solvers. For
example, among the non-stiff solvers, only ode45; among
the stiff solvers, only ode15s and ode23tb; and the mod-
erately stiff solver ode23t. LC behavior is observed from
all solvers under SET.

In Figure 3, the time-series solutions are logically parallel
to the 2-D phase plots in Figure 2. In addition, the non-
stiff solvers ode23, ode113 and stiff solver ode23s pro-
duce solutions that quickly depart from the expected limit
cycle behavior and become unstable. For reference pur-
poses, we define a 'take-off' point as the pivotal time-
point when the numerical solution first departs radically,
by visual inspection of time-series data, from expected sta-
ble limit cycle behavior. Furthermore, of these solutions
in Figure 3, the stiff solvers ode15s and ode23tb produce
oscillations with varying amplitudes and periods with
pseudo-random sequence while the oscillations from
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Workflow diagram for systematic study of numerical solver behaviorFigure 1
Workflow diagram for systematic study of numerical solver behavior. 2 primary phases are identified in this system-
atic study – design and application. This study focuses on the application phase; specifically, to derive rules to guide the selec-
tion of optimal numerical solver(s).
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ode45 and ode23t are relatively uniform throughout the
period of simulation. In addition, where limit cycle
behavior is observed under SET, the amplitudes of oscilla-
tions are similar for α and ρ, ranging between [43.3, 50.7]
while the corresponding period ranges between [12.4,
13.6].

From Figures 2 and 3, we observe significant differences in
the numerical solutions obtained using different numeri-
cal solvers on the same system model under similar oper-
ating conditions (e.g. model parameters and initial
conditions). These observations are summarized in Tables

Phase plots of ρ(Z) vs. η(Y) under RET ('RelTol' = 10-3)Figure 2
Phase plots of ρ(Z) vs. η(Y) under RET ('RelTol' = 10-3). The plots are physically dimensionless on both axes, but may 
be considered analogous to units of concentration. x-axis: [1,1.2]; y-axis: [0,70]. Limit cycle behavior was observed for all 
numerical solvers under SET ('RelTol' = 10-6).
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2 and 3, together with other qualitative and quantitative
performance metrics.

Quantitative metrics
Comparing statistics in Table 2 under RET, ode45 is the
only non-stiff solver that produces a convergent solution;

ode15s is the least costly stiff solver based on the number
of function evaluations. Among all implicit solvers,
ode15s is the optimal stiff solver because it had to com-
pute the least number of partial derivatives, LU decompo-
sitions and solutions of linear systems. The moderately
stiff solver ode23t performs the next best in this group of

Time-series solutions of α(X), η(Y) and ρ(Z) under RET ('RelTol' = 10-3)Figure 3
Time-series solutions of α(X), η(Y) and ρ(Z) under RET ('RelTol' = 10-3). x-axis: [0,200]; y-axis: [0,55]. α(X): blue, 
η(Y): green and ρ(Z): red. Limit cycle behavior was observed for all numerical solvers under SET ('RelTol' = 10-6) (data not 
shown).
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implicit solvers. Between implicit and explicit solvers,
where convergent solutions to LC behavior were deter-
mined, the observed period and amplitude of oscillations
is significantly different: (13.5, 49.7) from ode45 as
opposed to an average of (8.6, 23.6) from ode15s,
ode23tb and ode23t. Where numerical solutions do not
converge, the 'take-off' point is consistent for ode113
(25.55 time units) and ode23s (23.05), but varies for
ode23 depending on the maximum step-size allowed.
This phenomenon is further examined in Figure 4.

Comparing statistics in Table 3 under SET, in terms of the
number of function evaluations, among explicit solvers
ode113 is the least costly i.e. it performed the least
number of function evaluations. Among implicit solvers,
ode15s is optimal in terms of computational costs i.e.
computing the least number of partial derivatives, LU
decompositions and solutions of linear systems.

Comparing statistics across Tables 2 and 3, only ode45
provided consistent results in terms of the period and
amplitude of oscillation – (13.5, 49.7) under RET and
(13.6, 50.5) under SET. Among implicit solvers, ode15s
performed the best in terms of computational cost. From
Table 2, only one of three explicit solvers and 3 of 4
implicit solvers produced convergent numerical solutions

under RET. From Table 3, all numerical solvers produced
convergent numerical solutions to LC behavior when the
relative error tolerance was stricter under SET.

Following the departure of the numerical solution from
expected limit cycle behavior, we observe that the 'take-
off' point for non-stiff solver ode23 under RET varies
based on the maximum step-size (i.e. 'MaxStep' in MAT-
LAB) allowed. In all other simulations performed for this
study, the simulation option 'MaxStep' is set by default
with the rule 'MaxStep' = 0.1*abs(t0 - tf) [5] where t0 is the
simulation start time, set at 0 units; tf is the end time, set
at 200 time units. In fact, the period of simulation dictates
the maximum step-size allowed. The actual step-sizes
taken are more directly controlled by the relative error tol-
erance 'RelTol'. The relation of the 'take-off' point with
respect to the 'MaxStep' allowed for ode23 simulations is
shown in Figure 4. From Figure 4, the 'take-off' point var-
ies between ~11 and ~26 time units with 'MaxStep' ≤ 4.2
units. The 'take-off' point remains constant at ~24.6 if
the'MaxStep' is >4.2.

Discussion
Numerical solvers have various theoretical formulations
such as single- vs. multi-step, low- vs. high-order, explicit
vs. implicit solvers [6-8]. To systematically compare the

Table 1: Overview of MATLAB numerical solvers [5,18]

Solver Problem Type Step Order Accuracy Explicit/Implicit

ode23 Non-stiff Single 2nd/3rd Low Explicit
ode45 4th Medium
ode113 Multi 1st–13th Low to High
ode23t Moderately stiff Single 2nd/3rd Low Implicit
ode15s Stiff Multi 1st–5th Low to Medium
ode23s Single 2nd/3rd Low
ode23tb 2nd/3rd Low

Table 2: Quantitative performance measures under RET ('RelTol' = 10-3)

Solver Type Non-stiff Stiff Moderately stiff

Solver ode23 ode45 ode113 ode15s ode23s ode23tb ode23t

Successful steps - 785 - 827 - 695 859
Failed attempts - 30 - 147 - 141 127
Function evaluations - 4891 - 2222 - 3757 2439
Partial derivatives n/a 43 - 71 63
LU decompositions 272 - 370 377
Solutions of linear systems 2049 - 4218 2186
Convergence No Yes No Yes No Yes Yes
Take-off point Variable - 25.55 - 23.05 - -
Period - 13.5 - 8.5 - 8.9 8.5
Amplitude - 49.7 - 23.4 - 25.6 21.7

'Take-off' point defined as the pivotal time-point when the numerical solution first departs radically from expected limit cycle behavior, by visual 
inspection.
Period and amplitude data for α(X) and ρ(Z) from Figure 3.
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Table 3: Quantitative performance measures under SET ('RelTol' = 10-6)

Solver Type Non-stiff Stiff Moderately stiff

Solver ode23 ode45 ode113 ode15s ode23s ode23tb ode23t

Successful steps 5821 2306 2434 2421 10996 6609 8459
Failed attempts 0 0 93 240 0 17 5
Function evaluations 17464 13837 4962 5242 65978 24311 15564
Partial derivatives n/a 30 10996 10 1
LU decompositions 499 10996 458 461
Solutions of linear systems 5121 32988 30887 15559
Convergence Yes Yes Yes Yes Yes Yes Yes
Period 13.6 13.6 13.7 13.4 13.6 12.4 12.4
Amplitude 50.6 50.5 50.7 48.4 50.5 44.0 43.3

Period and amplitude data for α(X) and ρ(Z) from Figure 3.

'Take-off point' variation for ode23 simulation under RET ('RelTol' = 10-3)Figure 4
'Take-off point' variation for ode23 simulation under RET ('RelTol' = 10-3). The 'take-off' point is defined as the piv-
otal time-point when the numerical solution first departs radically from expected stable limit cycle behavior. This is determined 
by visual inspection of the time-series solution. Adaptive step-sizes allowed in implementation may account for the variation of 
the 'take-off' point with respect to the maximum step-size allowed.
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numerical solvers, we have examined qualitative perform-
ance measures such as convergence and accuracy, and
quantitative performance measures such as computa-
tional cost in terms of function evaluations, partial deriv-
atives, LU decompositions, solutions of linear systems,
'take-off' points, period and amplitude of oscillation.

Adaptive schemes allow savings in computational cost
without compromising accuracy, i.e., the solvers take
smaller step-sizes when the results change rapidly, or
larger step-sizes when the results move slowly. With a
specified tolerance interval for the magnitude of step
errors, the step-size may be adjusted so that smaller steps
are taken where the step error is large and vice versa. This
adaptive step-size feature is studied by performing simu-
lations under 2 conditions: (a) relaxed relative error toler-
ance (RET), i.e. in MATLAB, 'RelTol' = 10-3, and (b) strict
relative error tolerance (SET), 'RelTol' = 10-6.

Single-step numerical solvers depend only on one preced-
ing time-point i.e. only y(tn-1) is required to obtain y(tn).
Hence, trends from additional preceding time-points do
not influence the solution of the immediate step. On the
other hand, multi-step solvers require multiple preceding
time-points to determine y(tn). As such, multi-step meth-
ods are less sensitive to initial conditions compared to sin-
gle-step methods in general. In the case of single-step
Runge-Kutta (RK) methods – that form the basis for
ode23, ode45 and ode23tb – the interval between tn-1 and
tn are further divided into subintervals based on the order
of the RK method. This subdivision also helps to control
error propagation at successive steps, leading to increased
stability in the solution. Thus, with the exception of
ode23 where the solution quickly diverges, RK methods in
general are a popular choice for numerical solvers.

The explicit solvers compute y(tn) using other known val-
ues, while the implicit solvers require an iterative process
to solve y(tn) instead. Convergence is not guaranteed in
this iterative process and depends heavily on the termina-
tion criteria. On the other hand, because this iterative
process refines the solution at each step, implicit solvers
are generally more suited to solve stiff problems. An unex-
pected result occurs with ode23s, where the solution
becomes unstable under RET.

The tradeoff for obtaining a high order of accuracy is
increased computational cost. For example, the variable-
order solver ode113 is capable of accuracy up to the 13th
order. However, to achieve this accuracy, it performs
extensive function evaluations depending on the highest
order of the derivatives required. On the other hand, low-
order solvers such as ode23 perform simpler function
evaluations that are limited to computing the 3rd-order
derivative.

From this comparison, our results suggest ode45 and
ode15s are better numerical solvers when dealing with
stiff systems of nonlinear ODEs. ode45 is an explicit RK
method of order 4 while ode15s is variable-order capable
of 1st–5th order accuracy. Furthermore, low- to medium-
order methods appear to provide more accurate solutions
compared to high-order methods. In addition, results sug-
gest that under relaxed relative error tolerance, implicit
solvers may handle stiff problems relatively better than
explicit solvers; this is consistent with established guide-
lines in handling stiff problems. However, when the rela-
tive error tolerance is strict, all numerical solutions
studied here converge to limit cycle behavior. Under this
condition, explicit solvers have an advantage over implicit
solvers in terms of computational cost because of the
lesser number of operations required. In addition, LC
behavior is dependent on the parameter set {s, q, w, f}
and initial conditions for the species involved [9-12]. The
choice of the parameter set and initial conditions is based
on a previous solution [13] that has been verified to
exhibit LC behavior. This implies that the parameter set
used for this study may not be the best choice. Thus, the
characterization of the parameter space for the Oregona-
tor model remains a worthwhile problem.

The key advantage in selecting MATLAB numerical solvers
for comparison is that they are widely used in engineering
and science and these solvers' reliability is of critical inter-
est to the community. For those experienced users who
may implement these solvers individually, it is also criti-
cal for them to understand the intrinsic differences in all
types of solves, so as to be able to tailor solver algorithms
to specific problems. For instance, Cocherová modified
the ode23 solver to solve the Hodge-Huxley model of
electrical conduction through a nerve fiber [14]. Results
from her work demonstrate improved accuracy and con-
vergence of solutions even under RET.

The next step is to determine whether there exists an ana-
lytical system-model dependency, that is, to extract and
map features of biological systems to concrete analytical
models. This extraction process for biomolecular systems
emulates the modeling process of conventional systems
such as mechanical, electrical and fluid flow systems. The
numerical solver selection results from this work should
help in validating the analytical model and also in trans-
lating systems biology to clinical treatrment and therapeu-
tic engineering applications.

Conclusion
We have demonstrated that the selection of numerical
solvers plays an important role in modeling outcomes.
Using both qualitative and quantitative performance
measures, we have shown that ode15 is an optimal
implicit solver for solving stiff systems of ODEs, and
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enforcing strict relative error tolerance is a key factor for
improving the performance of numerical solvers for con-
vergent solutions. However, enforcing stricter relative
error tolereance leads to an increase in computational
costs. For explicit numerical solvers, ode45 is found to
perform consistently regardless of relative error tolerance.
These results reinforce the iterative process of biomolecu-
lar systems modeling, and indicate that it is not only pos-
sible to improve and ensure reproducibility of the
analytical models, and also possible to improve the effi-
ciency and effectiveness of experimental validations of
these models.

Methods
Here we discuss: (a) justification for the choice of the Bel-
ousov-Zhabotinskii (BZ) reaction as our test case, (b) the
corresponding Oregonator model proposed by Field,
Körös and Noyes, (c) stiff problems and (d) an overview
of selected numerical solvers.

Belousov-Zhabotinskii (BZ) reaction
The Belousov-Zhabotinskii (BZ) [HBrO2-Br--Ce(IV)] reac-
tion [4,15,16] was chosen as the test system for three rea-
sons:

1. The long-term objective of our research is to study bio-
chemical systems modeling for human disease diagnosis
and treatment. So, we want to choose a model that can be
easily extended to clinical applications. Clinical disease
conditions are often the consequence of cellular metabo-
lite accumulations or deficiencies that arise from faulty
cellular metabolite recycling mechanisms. Metabolites
exhibit temporal oscillations in healthy cells as a result of
consistent metabolite recycling. The BZ reaction model
demonstrates similar sustained temporal oscillations i.e.
limit cycle behavior that may be observed as a continuous
progression of concentric waves in a bench-top flask. Fur-
thermore, there is a correlation of the BZ reaction model
and cell behavior. For instance, sustained temporal oscil-
lations in a biochemical system are possible only if the
system is maintained far from equilibrium i.e. the system
is open and mass transfer occurs freely across the bound-
aries between the system and its surroundings. In cells, the
cellular cytoplasm may be considered an open system to a
limited extent because metabolic reactions occur in local-
ized regions within the cytoplasm. Thus, the BZ reaction
is a reasonable model to investigate that is readily extensi-
ble to clinical applications.

2. The BZ reaction is readily reproducible with materials
found easily in classroom laboratories. As such, analytical
or numerical predictions regarding the amplitude and fre-
quency of oscillations can be easily verified. Furthermore,
because the BZ reaction may be replicated in multiple set-
tings [17] using different reactants with slightly different

settings, there is a large variability, or a diverse family, of
BZ reactions that are suitable and useful for validation of
numerical solutions.

3. The BZ reaction is well-studied and modeled since the
early 1970s when Field and Noyes first proposed the clas-
sic Oregonator [4,17] model to model the BZ reaction. As
such, a wide array of literature [9-13] is readily available
to provide an additional means to verify our results. While
the Oregonator model may not be perfect, the model
parameters and initial conditions are sufficiently well-
characterized, making the Oregonator model an ideal
choice for case study.

Oregonator model [17]
From Field, Körös and Noyes, the Oregonator model is a
set of 5 kinetic reactions with 2 substrates, 3 intermediates
and 2 products as follows:

A + Y → X (1)

X +Y → P (2)

B + X → 2X + Z (3)

2X → Q (4)

Z → fY (5)

where A, B are substrates; P, Q are products; X, Y and Z are
intermediates; f is a stoichiometric factor.

The intermediates X, Y and Z, representing HBrO2, Br-,
and Ce(IV) respectively, exhibit limit cycle behavior under
suitable conditions. Assuming irreversible reactions (1–
5), we express the rate of change of these intermediates as
follows, in physical dimensions of concentration per
time:

where the ki's represent reaction rate constants in equa-
tions (1–5).

Furthermore, Field and Noyes cast this system of nonlin-
ear ODEs into a physically dimensionless system in terms
of α, η and ρ. By removing physical dimensions from the

dX
dt

k AY k XY k BX k X= − + −1 2 3 4
22 (6)

dY
dt

k AY k XY k fZ= − − +1 2 5 (7)

dZ
dt

k BX k Z= −3 5 (8)
Page 9 of 11
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systems of ODEs, the associated analytical difficulties in
manipulating these physical dimensions of the Oregona-
tor model are resolved as:

where

and f remains the stoichiometric factor (physically dimen-
sionless). Thus, under a prescribed set of parameters {s, w,
q, f}, the solutions to this physically dimensionless sys-
tem, equations (9–11), derived from a variety of numeri-
cal solvers are of particular interest.

Stiff problems
Stiff problems are problems where the speed of comput-
ing the numerical solution is restricted by the smallest
step-size constrained by the parameter with smallest mag-
nitude and dynamic range. As a result, it has significantly
increased computational cost and potentially compro-
mised the accuracy of the computed numerical solution.
For example, in a previous study [13], a parameter set {s
= 100, w = 3.835, q = 1 × 10-6, f = 1.1} and initial condi-
tions {α = 20, η = 1.1, ρ = 20} were verified to lead the
Oregonator model to exhibit limit cycle behavior. This set
of parameters {s, w, q, f} differs significantly in orders of
magnitude (i.e. q is in the order of 10-6 in comparing to s
in the order of 102), which makes the system stiff where
the solution step-size is constrained by the smallest
parameter q.

To obtain a strong, unambiguous basis for comparison of
numerical solvers, we use MATLAB to simulate this model
with adaptive step-sizes for 200 time units using this a pri-
ori set of prescribed parameters and initial conditions.

Numerical solvers
A variety of numerical solvers are available in MATLAB to
deal with stiff, coupled, nonlinear systems of differential
equations such as the physically dimensionless Oregona-
tor model in terms of α, η and ρ. A brief overview of the

available numerical solvers is summarized in Table
1[5,18-20].

From Table 1, there is a broad selection of numerical solv-
ers, ranging from low to high order, single- and multi-step
as well as explicit and implicit solvers implemented to
deal with both stiff and non-stiff problems. The 3 explicit
and 4 implicit numerical solvers selected for comparison
represent key analytical and practical components of
numerical solvers across the board.

A systematic study of the formulation and practical imple-
mentation constraints of these numerical solvers is con-
ducted using specific performance measures such as
convergence, accuracy and computational cost to summa-
rize the efficacy of these numerical solvers. Evident from
Table 1, there are multiple ways to characterize numerical
solvers; here, the numerical solvers examined in this work
are primarily organized and compared by the basis of abil-
ity to deal with stiff problems.

List of abbreviations
BZ – Belousov-Zhabotinskii; LC – Limit cycle; RK –
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