BIVIC Bioinformatics Baomid)@mral

Research

BioGraphE: high-performance bionetwork analysis using the
Biological Graph Environment

George Chin Jr*t1, Daniel G Chavarriat!, Grant C Nakamuraf? and
Heidi] Sofiat3

Address: 'High Performance Computing Group, Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, P.O.
Box 999, Richland, Washington, USA, 2Information Analytics Department, Computational and Statistical Analytics Division, Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington, USA and 3Computational Biology and Bioinformatics Department, Computational
Sciences and Mathematics Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington, USA

Email: George Chin* - george.chin@pnl.gov; Daniel G Chavarria - daniel.chavarria@pnl.gov; Grant C Nakamura - grant.nakamura@pnl.gov;
Heidi J Sofia - heidi.sofia@pnl.gov

* Corresponding author tEqual contributors

from Symposium of Computations in Bioinformatics and Bioscience (SCBB07)
lowa City, lowa, USA. |3—-15 August 2007

Published: 28 May 2008

BMC Bioinformatics 2008, 9(Suppl 6):56 doi:10.1186/1471-2105-9-56-56

This article is available from: http://www.biomedcentral.com/1471-2105/9/S6/S6

© 2008 Chin et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Graphs and networks are common analysis representations for biological systems.
Many traditional graph algorithms such as k-clique, k-coloring, and subgraph matching have great
potential as analysis techniques for newly available data in biology. Yet, as the amount of genomic
and bionetwork information rapidly grows, scientists need advanced new computational strategies
and tools for dealing with the complexities of the bionetwork analysis and the volume of the data.

Results: We introduce a computational framework for graph analysis called the Biological Graph
Environment (BioGraphE), which provides a general, scalable integration platform for connecting
graph problems in biology to optimized computational solvers and high-performance systems. This
framework enables biology researchers and computational scientists to identify and deploy
network analysis applications and to easily connect them to efficient and powerful computational
software and hardware that are specifically designed and tuned to solve complex graph problems.
In our particular application of BioGraphE to support network analysis in genome biology, we
investigate the use of a Boolean satisfiability solver known as Survey Propagation as a core
computational solver executing on standard high-performance parallel systems, as well as multi-
threaded architectures.

Conclusion: In our application of BioGraphE to conduct bionetwork analysis of homology
networks, we found that BioGraphE and a custom, parallel implementation of the Survey
Propagation SAT solver were capable of solving very large bionetwork problems at high rates of
execution on different high-performance computing platforms.

Page 1 of 10

(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/S6/S6
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9(Suppl 6):S6

Background

Networks and graphs are well-studied constructs in com-
puter science and applied mathematics. As the sizes and
complexities of networks grow, however, critical limita-
tions arise that restrict a scientist's ability to analyze a large
network, both computationally and cognitively. From our
observations, humans appear to be capable of compre-
hending networks that contain up to about 100 nodes.
Single-processor computers, on the other hand, can often
process graphs of up to 100,000s of nodes, depending on
the algorithm. Yet, in many scientific fields, networks
often arise that may consist of millions to hundreds of
millions of nodes. In a world of continually growing sci-
entific data and information spaces, scientists need
advanced new strategies, tools, and computer systems to
effectively and efficiently process and analyze large-scale
scientific networks.

Data complexity and volume issues have recently become
especially significant in biology as the result of high-
throughput data production in genomics and proteomics.
Networks are a fundamental concept in biological sys-
tems, and their analysis is an essential capability. Of great
interest are methods for discovering bionetworks from
diverse types of data, storing, representing, comparing,
and extracting features from them, and computing upon
dynamic bionetworks. Yet, despite these trends, it is also
increasingly common to hear biologists use the term
"giant hairball" to convey their experiences working with
large, complex bionetworks in research.

We believe that unlocking the real potential of these net-
works for biologists will require a significant investment
in high-performance computing (HPC) and innovative
computational systems and techniques. These approaches
have been applied less often in biology, yet biological sys-
tems have many intriguing and ideal properties for driv-
ing the development of advanced computational
strategies and high-powered solutions. Biological com-
puting involves critical issues in data-intensive comput-
ing, defined as "applications to explore, query, analyze,
visualize, and in general process very large-scale datasets"
[1]. In this context, scale relates to both absolute data size
and the algorithms and applications that can process
large-scale data.

In this paper, we introduce the Biological Graph Environ-
ment (BioGraphE), which offers novel graph approaches,
techniques, and tools in an integrated framework to
address data-intensive computing challenges associated
with large-scale bionetworks. BioGraphE will enable biol-
ogy researchers and computational scientists to identify
and deploy network analysis applications and to easily
connect them to efficient and powerful computational

http://www.biomedcentral.com/1471-2105/9/S6/S6

software and hardware that are specifically designed and
tuned to solve complex graph problems.

Results

Graph problems in genome biology

Many areas of biological research are poised to benefit
from advances in network analysis. Sources of biological
networks include protein-protein interactions, gene
expression from microarrays, metabolic pathways, and
signal transduction cascades. We have selected genome
biology problems in this project for several reasons. These
results are important to biologists in the study of how pro-
teins function in the cellular machinery. We are able to
build networks in genome biology in a highly tunable
fashion: they can be made as large or small, as simple or
complex as needed, in large numbers, and with correct
biological encodings. The data is freely available in public
databases with large quantities of nodes for these net-
works as well as diverse types of interconnections. Edges
based on homology can be defined in high-throughput
using the BLAST [2] algorithm and these comparisons can
be performed very efficiently with the ScalaBLAST imple-
mentation [3]. Other types of edges may also be retrieved
from the databases. Finally, we are able to extract right or
wrong answers from these networks to provide useful
feedback on the analysis.

We have produced a series of protein homology networks
for testing BioGraphE based on sigma 70 signaling path-
ways. Sigma 70 regulatory proteins are of interest for
bioenergy applications. Sigma and anti-sigma factor pro-
teins are modular protein pairs that function as on/off
switches in many microbial signaling pathways. Recently,
we have shown that seemingly discrete clusters of anti-
sigma factors are linked together by a previously unrecog-
nized protein domain [4]. In a protein homology network
this result can be detected as bridge proteins that link
densely clustered regions of anti-sigma factor homology
networks. We illustrate the use of several common graph
algorithms with protein homology networks, including k-
clique, subgraph matching, and k-coloring. Protein fami-
lies that are functional subtypes are often fully connected
in a homology network, and thus, appear as cliques. Fig-
ure 1 shows a Similarity Box [5] visualization of the max-
imum cliques found from a bionetwork derived from
chromosomal neighbors of sigma 70 proteins.

Subgraph pattern matching is illustrated in Figure 2. The
subgraph highlighted in green consists of gene products
with a particular orientation in the chromosome near
sigma 70 factors. The highlighted proteins are not ran-
domly placed throughout the network, but rather fall
within specific clusters that represent different protein
families.

Page 2 of 10

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S6

File Coarsen \iew

N

http://www.biomedcentral.com/1471-2105/9/S6/S6

£ Graph View
File Coarsen Yiew

Y

Rotation: |y | —

IL M Zoom: 49— K

Iterations: 150 Converged

Rotation: |y | —

IL M Zoom: 10.0x —)

Iterations: 163 Converged

Figure |

K-cliques in homology networks. Large cliques identify

families of proteins in a homology network. Cliques repre-

senting different protein subtypes are shown in the graph in
different colors.

K-coloring is illustrated in Figure 3. The patterns in this
graph identify subtle evolutionary relationships between
proteins from three strains of Rhodobacter sphaeroides, each
marked in a different color. The 3-cliques display orthol-
ogous proteins based on bidirectional best hits, while pro-
teins in the open subgraphs are homologs but not likely
to be orthologs.

Computational framework for large-scale graph analysis
Graph algorithms are known to be computationally
expensive for large graphs because they often involve
comparisons of each node to every other node in the
graph. As the number of nodes increase, the number of
comparisons will often increase exponentially. In fact,
many general graph problems such as k-clique, Hamilto-
nian paths and cycles, and subgraph isomorphism are NP-
complete (i.e. there is no known polynomial time algo-
rithm).

To facilitate complex, large-scale graph analysis, we seek a
general solution and computational framework to enable
scientists to deploy and integrate new graph algorithms
and techniques as needed. Rather than continuously
building customized, one-off graph solutions, we wish to
develop and provide an extensible and uniform analysis
platform built on modern computational approaches and
systems.

Figure 2

Subgraph pattern matching in homology networks.
Subgraph pattern matching may be applied to search for sets
or classes of proteins within homology networks. Nodes of
the identified subgraph are plotted in green. In this example,
the identified proteins have a particular chromosome orien-
tation and fall within specific clusters representing different
protein families.

We introduce BioGraphE as a high-performance computa-
tional framework for the analysis of complex networks
from biology and potentially other domains as well. As
shown in Figure 4, BioGraphE is designed to integrate a
variety of graph analysis applications into a common suite
of tools. Our approach is to identify relevant graph prob-
lems and reduce them into equivalent problems that may
be addressed by efficient solver implementations. Exam-
ples of potential general solvers are ones built for Boolean
satisfiability equations and integer linear programming.
As an alternative to using a general solver, graph problems
may also be directly solved by implementing specific solu-
tions on high-performance systems.

To achieve the best performance, direct and indirect graph
solvers should be implemented on high-performance
computing (HPC) architectures such as compute clusters,
shared-memory SMP and NUMA platforms, as well as
multithreaded architectures such as the Sun Niagara and
Cray MTA-2. To best utilize the features and capabilities of
individual HPC platforms, computational solvers should
utilize data structures and synchronization code that are
most efficient for the individual platforms.

Page 3 of 10

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S6

= Graph View |5
File Coorsen View

-\'\I b

(B[00 [1p [& zoome vesx Rotation: [~ =]

|terations: 135 Converged

Figure 3

K-coloring of homology networks. K-coloring may be
used to study bionetworks generated from bidirectional best
hits. The color of a protein specifies the strain to which that
protein belongs. The network is designed such that adjacent
nodes will never be of the same color.

As a computational framework for bionetwork analysis,
BioGraphE has distinct benefits including:

® The BioGraphE framework is extensible and allows core
solvers to be added and new graph algorithms to be built
on top of the algorithmic toolkit.

e Core solvers should address well-studied problems in
computer science, where efficient heuristics and algo-
rithms are available. Specific domain problems and appli-
cations, on the other hand, have had much less scrutiny
and evolution, and thus, are much less likely to garner
optimized solutions.

e Core solvers should provide a very expressive language
or interface to which many different kinds of graph prob-
lems may be translated.

¢ Once the core solvers have been ported and optimized
to run on a HPC machine, domain problems that are
passed to the solvers should automatically gain the per-
formance and benefits of the HPC machine without
requiring recoding to that platform.

Bionetwork analysis
When applying BioGraphE to support bionetwork analy-
sis, we had to make some choices regarding the software

http://www.biomedcentral.com/1471-2105/9/S6/S6

Domain G Biol. N K
Applications enome Biology Networks
General :
Graph K—Cllqu§ Subgrgph K-Coloring
z Identification | Matching
Algorithms
Survey Propagation :
Core Y pag Direct
1 Solvers
elpers Walksat
e
Shiared Shared Distributed
Memory
Data < Poiier Memory Memory
Representations i Matrix-Based | Partitioned
LT Data Re Data R
L Data Rep. P el
Cray XMT, Global MPI-
SMP Arrays-Based Based
Platforms Platforms Platforms

Figure 4

The computational framework of BioGraphE. Differ-
ent graph problems are applied in network analysis and may
be reduced to a form for input into general solvers or
directly solved on underlying high-performance systems using
specific data representations.

and hardware to be utilized. We sought a core solver that
would be capable of efficiently solving NP-complete
problems, since many of the graph algorithms we wished
to apply were also NP-complete. We also sought a general
solver that would accept a wide range of problems, had
known formulations for graph problems, and had strong
potential for code parallelization. For these reasons, we
selected a modern solver for Boolean satisfiability (SAT)
equations called Survey Propagation (SP) [6,7] as a core
solver.

SAT is a well-known NP-complete constraint-satisfaction
problem. Various graph problems such as k-clique, k-
coloring, and Hamiltonian paths and cycles may be
reduced to SAT equations using known efficient reduction
algorithms [8]. SP is a modern SAT solver originally devel-
oped to study the physics of complex systems such as spin
glasses. It has proven to be successful on many large satis-
fiability problems beyond the reach of other SAT meth-
ods.

SAT solving using Survey Propagation

Given randomly generated formulas of M clauses of
exactly K literals over N Boolean variables, research has
shown that hard instances of random K-SAT exist when
the formulas are near specific threshold values of o = M/
N. K-SAT problems moderately below o are under-con-
strained and easily satisfiable, while those moderately

Page 4 of 10

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S6

above a are over-constrained and generally unsatisfiable.
K-SAT problems near o identify a critical phase transition
region where solutions are difficult and computationally
expensive to obtain. In the case of random 3-SAT, the a
threshold value was found to be approximately 4.2 [7].
More specifically, a values between 3.921 and 4.267 were
considered to represent the hard region for random 3-SAT.

SP was designed to solve SAT problems that fall within the
hard region. To initially evaluate SP, we executed the algo-
rithm on a personal computer running Window XP on a
single Intel 2.00 GHz Pentium M processor. We tested
randomly-generated 3-SAT formulas consisting of various
numbers of variables and the number of clauses equal to
4.2 times the number of variables. Thus, the 3-SAT prob-
lems fell within the hard region. As shown in Table 1, the
SP + Walksat combination had increasingly better per-
formance than executing Walksat alone for 3-SAT prob-
lems consisting of 2500 variables and above. For every
test, SP computed a partial solution with a subset of vari-
ables defined and clauses satisfied. With our test cases,
partial solutions passed to Walksat always had o values
much lower than the critical range of 3.921 and 4.267,
and thus, were easily satisfiable.

A number of issues should be noted when using SP to
solve hard random K-SAT problems. First, SP is a heuristic
algorithm that has no guarantee of convergence, but still
has been found to converge for many hard K-SAT prob-
lems that other K-SAT implementations were unable to
solve. Furthermore, SP has been found to be particularly
effective in determining the satisfiability of K-SAT formu-
las, but has some difficulty determining unsatisfiability
[7]. Finally, SP has mainly been tested for randomly-gen-
erated K-SAT formulas. Evaluations of SP's performance
on nonrandom K-SAT formulas have been limited.

Parallel implementation of Survey Propagation

Although rapid progress has been made in SAT solvers,
most are sequential and few are parallel [10], and are thus
limited to the capabilities of a single workstation. In order

http://www.biomedcentral.com/1471-2105/9/S6/S6

to enable the solution of very large sets of SAT equations
(such as those derived from large biologically-originated
graphs), we need the parallel processing capabilities and
large aggregated memory spaces of HPC systems.

Given the advantages exhibited by SP over traditional SAT
solvers for very large sets of equations, we implemented a
parallel version of SP. SP operates by repeatedly updating
weights associated with the variable and clause nodes
until a fixed point is reached when the difference between
successive updates falls below a specific threshold. The
variables must be updated in a random order that changes
at each iteration step. The fine-grained nature of the syn-
chronization in this computation makes it more suitable
for a parallel implementation on a multiprocessor with a
shared address space than on a network of commodity
workstations.

Parallel computing environments
We implemented two versions of the parallel SP applica-
tion:

¢ A portable, shared-memory OpenMP implementation.

¢ An experimental shared-memory, multithreaded version
for the Cray MTA-2 and XMT systems [12,13]. The MTA
platform has been found to be very effective for irregular
and graph-based applications [14-16].

Our testing platforms were a Sun Fire T2000 server with
an 8-core Sun UltraSPARC T1 ("Niagara") processor and a
40-processor Cray MTA-2 system located at the Cray facil-
ities. More details about these platforms can be found in
[14]. On the Sun Niagara server, we executed the OpenMP
version compiled with the Sun compiler suite. On the
MTA-2 system, we executed our custom multithreaded
version.

As part of our characterization of the SP algorithm, we
tested both parallel implementations with a series of
problems that are designed to fall in the "hard" SAT space

Table I: Sequential SAT solver statistics and execution times on random 3-SAT equations. Initial statistics and wall clock times for
baseline testing of the Mézard and Zecchina sequential implementation of Survey Propagation and Walksat SAT solvers on a personal
computer running Windows XP on a single Intel 2.00 GHz Pentium M processor.

SP SP Clauses « Walksat Walksat Walksat o Woalksat SP Exec Woalksat SP+Walksat
Variables Variables Clauses Exec Time Time Exec Time Exec Time
(alone) (comb.) (comb.) (comb.)
1,000 4,200 4.20 790 2,595 3.28 0.05 0.34 0.02 0.36
2,500 10,500 4.20 429 485 1.13 3.83 2.78 0.02 2.80
5,000 21,000 4.20 2,785 6,939 2.49 22.41 3.30 0.02 3.31
7,500 31,500 4.20 4,633 12,569 2.71 457.95 525 0.34 5.59
10,000 42,000 4.20 5,464 13,465 2.46 492.75 9.30 0.05 9.34
50,000 210,000 4.20 26,318 63,467 2.4| 3,388.52 98.61 1.64 100.25
100,000 420,000 4.20 56,649 143,932 2.54 5,121.84 231.27 4.19 235.45
Page 5 of 10

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S6

where SP is especially known to outperform other SAT
solvers. All of the cases we tested were random instances
generated with a = 4.2 that places the problem within the
"hard" SAT region. As shown by the actual clock times of
Figure 5, the execution time of this algorithm implemen-
tation scales non-linearly with the size of the problem
instance. Overall, we found the MTA-2 to have a 2.66 to
4.98 times improvement in execution times over the Nia-
gara. The speedup charts of Figure 5 also illustrate that the
parallel SP code exhibits an almost linear speedup within
the same problem size when utilizing from one to eight
processors on both the Niagara and the MTA-2. The effi-
ciency generally degrades on both machines, however,
when the number of processors exceeds eight except in the
case of the MTA-2 running the largest SAT problem
(1,000,000 variables, 4,200,000 clauses). In this one case,
MTA-2 further exhibits linear speedup of up to sixteen
processors. In addition, the MTA-2 was able to achieve
higher overall speedup rates than the Niagara. For the
largest SAT problem, for example, MTA-2 was able to
achieve a speedup rate of up to 13.17, while Niagara's
highest speedup rate was about 8.65.

K-clique analysis of homology networks

As an initial, proof-of-principle problem, we chose to
apply the k-clique problem on a collected set of protein
homology networks, which are graphs where nodes repre-
sent proteins and edges represent similarity between pro-

http://www.biomedcentral.com/1471-2105/9/S6/S6

teins measured by the BLAST algorithm [2].
Correspondingly, we have built software to perform the
transformation or reduction of a protein homology net-
work specification into a set of Boolean satisfiability equa-
tions for finding a k-clique in the network. To test this
software, we prepared a series of graphs that represent spe-
cific biological relationships that we understood well.

K-clique to SAT reduction

We implemented a k-clique to SAT reduction algorithm
that takes a particular input graph and produces SAT equa-
tions. The SAT equations, in turn, will be solved by the
SAT solvers in BioGraphE. A k-clique is a subgraph con-
sisting of k nodes, all of which have edges to one another.

As shown in Table 2 and 3, we applied the k-clique to SAT
reduction to a number of homology networks. In the first
set of test cases, we started by looking for 3-cliques in a
specific homology network. To find the maximum clique,
we incrementally increased the size of the clique until no
cliques in the network were found. An interesting side
effect of the reduction and SP algorithm was that the set of
true variables produced by SP was always associated with
the same clique in the network. We used this information
to more efficiently adjust the size of clique for which we
were looking. For instance, if we analyzed a homology
network for 3-cliques and the SP algorithm returned eight
true variables, then we should know that at least one

Random 3-SAT (10,000 variables, 42,000 clauses) Random 3-SAT (100,000 variables, 420,000 clauses) Random 3'5“7“:“'"-“”“ "]’”"b'es' 4,200,000
Clauses
160 3,000 -
150 35,000
= 120 _ zs0 30,000
® " —
2 100 2 2,000 < 25,000
= Niagara|| = Niagara E 20,000 Niagara
5 80 = MTA:2 || § 1,500 = MTA-2 | c = MTA-2
= — =3
2 60 5 = 15,000
2 3 1,000 ER
o 40 T & -.\ % 10,000 T
20 ~ . 500 T 5,000 L\k
— = [
0 ° e S — 0 - —
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Threads/Processors Threads/Processors Threads/Processors
Random 3-SAT (10,000 variables, 42,000 clauses) Random 3-SAT (100,000 variables, 420,000 clauses) Random J’SAT“'””IOY”"“ ")a'i‘“"e'*"’””ﬁm”
clauses
7 12
14
6 ——— 10 - ———= .
— / 12 £
5 7 3 / /
- / : a ¥ : ° 7 -
% 4 Niagara % / Niagara 2 3 Niagara
H s ¥ —=—MTA-2 | & 6 7 —=MTA2 || B /' —a—MTA-2
@ 7 & y :i)_ 6 7
o
2 é/ 4 7 4 /
Jr' / /
1 2 ’ 2 L
v
0 0 " : 0 : !
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Threads/Processors Threads/Processors Threads/Processors
Figure 5

Parallel SP solver execution statistics on random 3-SAT equations. Initial wall clock times and speedup rates for par-
allel SP algorithm on an 8-core Sun Microsystems Niagara and 40-processor Cray MTA-2.

Page 6 of 10

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S6

Table 2: Impact of clique size on k-clique to SAT reduction.
Statistics from the reduction of nodes and edges from the k-
clique problem to the equivalent variables and clauses of SAT
equations for different values of k.

Nodes Edges K Vars Clauses o
148 6,186 3 444 70,089 157.86
148 6,186 5 740 194,935 263.43
148 6,186 10 1,480 780,470 527.34
148 6,186 20 2,960 3,123,340 1,055.18
148 6,186 30 4,440 7,028,610 1,583.02
148 6,186 40 5,920 12,496,280 2,110.86
148 6,186 50 7,400 19,526,350 2,638.70
148 6,186 60 8,880 28,118,820 3,166.53
148 6,186 67 9916 35,063,177 3,536.02
148 6,186 68 10,064 36,117,724 3,588.80

clique of size eight existed in the network. We would
immediately start searching for 9-cliques in the network
on our way to finding the maximum clique.

Table 2 also shows how the size of the SAT problem rap-
idly increases with clique size. Our clique-to-SAT reduc-
tion approach produces O(n2k?) clauses with O(nk)
variables, where n is the number of nodes in the graph
and k is the size of the clique.

In the second set of test cases, we applied SP to homology
networks of different sizes. Table 3 shows that the SAT
problem also rapidly increases with the overall size and
complexity of the homology network.

In both the cases of increasing clique size k or the number
of nodes n, a very large number of clauses are generated
and the corresponding o values of the SAT equations are
very high compared to the 4.2 phase transition region for
3-SAT equations. One might expect the produced SAT
equations to be over-constrained and unsolvable. Never-
theless, the SAT equations from the reduction are gener-
ally solvable using SP. This interesting result requires
further investigation as well as the exploration of alterna-
tive reduction strategies to generate SAT equations from k-
clique problems.

Table 3: Impact of graph size on k-clique to SAT reduction.
Statistics from the reduction of nodes and edges from the k-
clique graph problem to the equivalent variables and clauses of
SAT equations for different graph sizes.

Nodes Edges K Vars Clauses [0
148 6,186 3 444 70,089 157.86
248 11,529 3 744 224,325 301.51
533 52,055 3 1,599 1,038,501 649.47
781 63,939 3 2,343 2,449,329 1,045.38

1,270 196,121 3 3,810 6,303,957 1,654.58
3,741 217,350 3 11,223 61,979,313 5,522.53

http://www.biomedcentral.com/1471-2105/9/S6/S6

We should also note that the Boolean formulas produced
from the reduction are in the form of 2- and n-clauses.
Since most SAT phase transition studies have focused on
SAT equations with fixed clause sizes (e.g., 3-SAT), a rele-
vant research effort would be to examine and characterize
the phase transition region of our particular set of SAT
equations that evolved directly from bionetworks. Part of
this research should involve simplifying the SAT equa-
tions to more efficient forms.

In addition, we are evaluating three additional reduction
algorithms for k-clique in the literature [8] that require a
smaller number of variables for the reduction, as well as
reductions for other graph methods. It is important to
note that these more sophisticated reductions will not
necessarily lead to faster execution speeds for the overall
graph analysis procedure, since we expect the overall runt-
ime to be dominated by the SP solver. In particular, the
runtime should be dominated by how "hard" the SAT
instances are as defined by the ratio of clauses to variables.
For 3-SAT, it has been experimentally determined that a
ratio of clauses to variables of approximately 4.2 may lead
to SAT instances with exponential solution times. We are
in the process of studying the behavior of our reduction-
generated SAT instances and characterizing them with
respect to their solution difficulty.

Parallel performance of Survey Propagation

In Figure 6, the performance of the parallel SP code is
compared between the Sun Niagara and Cray MTA-2. The
parallel SP code was applied to SAT equations that were
generated by the k-clique to SAT reduction algorithm. The
k-clique problems were derived from the bionetwork
analysis of protein homology networks.

The first problem was a 67-clique problem performed on
a graph consisting of 148 nodes and 6,186 edges. This
clique problem reduced to SAT equations consisting of
10,064 variables and 36,117,724 clauses. The second
problem was a 3-clique problem performed on a graph
consisting of 3,741 nodes and 217,350 edges. This prob-
lem reduced to SAT equations consisting of 11,223 varia-
bles and 61,979,313 clauses.

As shown by the actual clock times of Figure 6, the parallel
SP algorithm implementation scales non-linearly with the
size of the problem instance. Overall, the MTA-2 had a
2.28 to 5.79 times improvement in execution times over
the Niagara. The speedup charts of Figure 6 also show that
the parallel SP algorithm exhibits an almost linear spee-
dup within the same problem size when utilizing from
one to eight processors on the Niagara and from one to
sixteen processors on the MTA-2. The efficiency generally
degrades on both machines, however, after reaching those
processor thresholds. Furthermore, the MTA-2 more than

Page 7 of 10

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S6

http://www.biomedcentral.com/1471-2105/9/S6/S6

67-clique (148 nodes, 6,186 edges) to 3-clique (3,741 nodes, 217,350 edges) to
SAT (10,064 variables, 36,117,724 clauses) SAT (11,223 variables, 61,979,313 clauses)
120,000 200,000
180,000
= 100,000 < 160,000
T @ 140,000
E 80,000 Niagara E 120,000 Niagara
S 60,000 “=-MTA2 | = 100,000 —=— MTA-2
- " S 80,000 *
§ 40,000 l‘ § 60,000 \l_
w 1]
20,000 40,000 -\
| & 20,000 ~—
0 T . . 0 T T T
0 10 20 30 40 0 10 20 30 40
Threads/Processors Threads/Processors
67-clique (148 nodes, 6,186 edges) to 3-clique (3,741 nodes, 217,350 edges) to
SAT (10,064 variables, 36,117,724 clauses) SAT (11,223 variables, 61,979,313 clauses)
16 18
14 " 16 L/f,///f,-
12 /// 14 va
e 10 / Niagara| o 12 / Niagara
T . —=—mTA2 | 310 7 —=— MTA-2
:.f 6 / :‘} 8 /"
oL ‘7
./ * /
2
. 27
D T T 0 T T T
0 10 20 30 40 0 10 20 30 40
Threads/Processors Threads/Processors
Figure 6

Parallel SP solver execution statistics on SAT equations generated from genome biology graphs. Initial wall clock
times and speedup rates for parallel implementation of the Survey Propagation algorithm on an 8-core-processor Sun Micro-
systems Niagara and 40-processor Cray MTA-2 solving SAT equations reduced from k-clique problems in genome biology.

doubled the speedup rates of Niagara for the larger SAT
problems when running on sixteen or more processors.
For the bionetwork-related SAT equations, MTA-2 was
able to achieve a speedup rate of up to 15.97, while Nia-
gara's highest speedup rate was 6.33.

Conclusion

In this paper, we introduced a high-performance compu-
tational framework for graph analysis called BioGraphE.
The general approach of BioGraphE is to identify and
deploy complex graph algorithms, which may be compu-
tationally- and/or data-intensive, and to integrate those
algorithms with powerful and efficient computational
solvers and HPC systems. The goal is to bring high-per-
formance software and hardware capabilities to bear on

challenging graph problem without requiring the scientist
to become an expert of specific computing environments.

For our initial implementation, we selected a SAT solver
known as Survey Propagation (SP) to serve as our first
core solver. Both SAT and SP have desirable properties
such as high expressivity, potential for parallelization,
strong history of research, and existing tools and technol-
ogies. Our initial findings on the performance of SAT and
SP were promising in that we were able to solve large k-
clique problems and see definitive improvements in exe-
cution speed.

We will continue to optimize the parallel SP code to

achieve the highest performance possible. We will also

Page 8 of 10

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S6

continue to study graph-to-SAT reductions to better
understand the phase transition of generated SAT equa-
tions and how SAT solving performance maps back to the
structure and properties of bionetworks. Also, we will con-
tinue to explore and experiment with other computa-
tional solvers to evolve and extend BioGraphE's overall
graph analysis capabilities.

Methods

Serial Survey Propagation SAT solver

SP is an iterative message-passing algorithm that repre-
sents Boolean formulas as bipartite graphs, where
Boolean variables correspond to one type of node and
clauses to the second. Edges between the two types of
nodes correspond to variables appearing in the clauses of
the original formula. Messages or data passed among the
nodes of the graph consists of probability distributions
which are used to compute weights on the individual
nodes. The SP algorithm finds the variable node that is
most biased towards a true or false value and sets that
node accordingly. It then updates the probability distribu-
tions, recomputes the weights, and finds and sets the next
most biased node. Normally, SP will partially solve the
equations to the point where a traditional SAT solver can
easily complete the remaining parts of the solution. For
the traditional SAT solver, we employed Walksat [9],
which is a well-known, traditional local search algorithm.

Parallel Survey Propagation SAT solver

Our initial analysis of the serial SP code available from
Mézard & Zecchina [6] indicated that the main opportu-
nities for parallelization in this C implementation are
found in the computation of the per-variable information
and the per-clause information, which can be executed in
parallel. However, the overall structure of the application
involves a large number of sequential iterations over the
short parallel steps described above as well as several
sequential steps such as choosing the most biased varia-
bles. Thus, this original structure would not ultimately be
conducive to scalable performance.

We implemented a parallel version of SP from first princi-
ples based on the distributed SP algorithm presented in
[11]. The main difference between the serial and parallel
SP algorithms is that the decisions about which Boolean
variables to fix to a particular value are done locally
instead of globally. In the original serial algorithm, the
variables that are fixed to particular Boolean values are
selected globally after updating the weights for all varia-
bles. In the parallel version, the decision to fix a variable
to a particular value is done with local information that
does not depend on the state of other Boolean variables.
For this reason, the distributed SP algorithm can be struc-
tured as a set of serial iterations over two large parallel
steps — updating the weights of the variable nodes and

http://www.biomedcentral.com/1471-2105/9/S6/S6

updating the weights of the clause nodes. The fixed-point
stopping conditions can be computed locally with respect
to each variable and clause node.

OpenMP implementation

Our OpenMP implementation reuses part of the code
from the serial SP implementation to handle file input
and output and most data structures, however, the main
computational structure has been replaced with a new
parallel structure as previously described. The computa-
tion is based on two main parallel loop nests that update
the nodes representing Boolean variables and the nodes
representing clauses. OpenMP threads will update a set of
variables and a set of clauses using a block-dynamic
scheme to reduce load imbalance. Each OpenMP thread
has a separate condition flag to indicate whether a fixed-
point has been reached. No node under the control of the
thread changed its weight above the threshold. Special
care must be taken to safely simplify the overall Boolean
formula when a variable is fixed to particular value — not
only the clauses in which the variable appears are affected,
but other variables on the same clauses could have their
values fixed as a consequence.

Cray multithreaded implementation

Our Cray multithreaded version was derived from the
OpenMP version and has basically the same computa-
tional structure. The main difference is that this version
can take advantage of the memory latency hiding capabil-
ities inherent in Cray's multithreaded processors, thus
enabling very high processor utilization and scalability.
However, since SP depends on a final postprocessing step
executed by a traditional sequential SAT solver (Walksat),
our experimental Cray version only implements the SP
algorithm itself. Sequential code sections execute with
very poor performance on the multithreaded processors.

K-clique to SAT reduction algorithm

We implemented a simple k-clique to SAT reduction algo-
rithm that worked on the basis of the following three sim-
ple rules:

1. Every member of the k-clique must be some node in the
graph.

2. Any given node of the graph can be at most one mem-
ber of the k-clique.

3. Two nodes that do not share an edge cannot both be
members of the k-clique.

Each rule leads to the generation of a set of disjunctive
Boolean clauses, which may be viewed as constraints on
the solution. The reduction software applies these rules

Page 9 of 10

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 6):S6

and generates the clauses in a form suitable for the BioG-
raphE SAT solver programs.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

G(J, DGC, and HJS conceived and developed the BioGra-
phE approach. DGC implemented parallel versions of the
SP code. GCN implemented visual analysis tools and k-
clique to SAT reduction algorithms. GCJ and DGC con-
ducted performance testing of algorithms and tools on
HPC machines. HJS directed and managed overall
research. All authors contributed to and approved the
final manuscript.

Acknowledgements

This work was funded in part by the U. S. Dept. of Energy Office of
Advanced Scientific Computing Research. PNNL is operated by Battelle for
the U. S. Dept. of Energy.

This article has been published as part of BMC Bioinformatics Volume 9 Sup-
plement 6, 2008: Symposium of Computations in Bioinformatics and Bio-
science (SCBBO7). The full contents of the supplement are available online
at http://www.biomedcentral.com/1471-2105/9?issue=S6.

References

I. Cannataro M, Talia D, Srimani PK: Parallel data intensive com-
puting in scientific and commercial applications. Parallel Com-
puting 2002, 28(4):673-704.

2. Altschul SF, Madden TL, Schaffer AA, Zhang |, Zhang Z, Miller W, Lip-
man D): Gapped BLAST and PSI-BLAST: A new generation of
protein database search programs. Nucleic Acids Research 1997,
25:3389-3402.

3. Oehmen CS, Nieplocha J: ScalaBLAST: A scaleable implemen-
tation of BLAST for high-performance data-intensive bioin-
formatics analysis. [EEE Transactions on Parallel and Distributed
Systems 2006, 17:740-749.

4. Campbell EA, Greenwell R, Anthony JR, Wang S, Lim L, Sofia HJ,
Donohue TJ, Darst SA: A conserved structural module regu-
lates transcriptional response to diverse stress signals in
eubacteria. Molecular Cell in press.

5. Sofia HJ, Nakamura GC: Similarity Box: visual analytics for large
sequence sets. Bioinformatics in press.

6. Mézard M, Zecchina R: Random K-satisfiability problem: from
an analytic solution to an efficient algorithm. Phys Rev E Stat
Nonlin Soft Matter Phys 2002, 66(5 Pt 2):056126.

7. Braunstein A, Mézard M, Zecchina R: Survey propagation: An
algorithm for satisfiability. Random Structures & Algorithms 2005,
27(2):201-226.

8. Iwama K, Miyazaki S: SAT-variable complexity of hard combi-
natorial problems. IFIP Transactions A-Computer Science and Technol-
ogy 1994, 51:253-258.

9. Selman B, Kautz H, Cohen B: Local search strategies for satisfi-
ability testing. In Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge Edited by: Johnson DS, Trick MA. Providence, RI:
American Mathematical Society; 1996:521-532. [DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, vol 26.]

10. Singer D: Parallel resolution of the Satisfiability Problem: A
survey. In Parallel Combinatorial Optimization Edited by: El-Ghazali T.
New York: Wiley-Interscience; 2006. [Zomaya AY (Series Editor): Wiley
Series on Parallel and Distributed Computing, 10 Nov 2006.]

I'l. Chavas J, Furtlehner C, Mézard M, Zecchina R: Survey-propaga-
tion decimation through distributed local computations. |
Stat Mech 2005:P11016.

12. Anderson W, Briggs P, Hellberg CS, Hess DW, Khokhlov A, Lanza-
gorta M, Rosenberg R: Early experience with scientific pro-
grams on the Cray MTA-2. In Proceedings of the 2003 ACM/IEEE

http://www.biomedcentral.com/1471-2105/9/S6/S6

conference on Supercomputing: 15-21 November 2003; Phoenix Edited
by: Koelbel C, Horner-Miller B. IEEE Computer Society; 2003:46.

13. FeoJ, Harper D, Kahan S, Konecny P: Eldorado. In Proceedings of the
2nd Conference on Computing Frontiers: 4—6 May 2005; Ischia, Italy
Edited by: Valero M, Ramirez A. ACM; 2005:28-34.

14. Nieplocha], Marquez A, Feo], Chavarria-Miranda D, Chin G, Scher-
rer C, Beagley N: Evaluating the potential of multithreaded
platforms for irregular scientific computations. In Proceedings
of the 4th Conference on Computing Frontiers: 7-9 May 2007; Ischia, Italy
Edited by: Dubois M, Strenstrom P. ACM; 2007:47-58.

5. Bader DA, Feo J: On the architectural requirements for effi-
cient execution of graph algorithms. In Proceedings of the 2005
International Conference on Parallel Processing: 14—17 June 2005; Oslo,
Norway Edited by: Feng W, Duato J. IEEE Computer Society;
2005:547-556.

16. Bader DA, Madduri K: Designing multithreaded algorithms for
breadth-first search and st-connectivity of the Cray MTA-2.
In Proceedings of the 2006 International Conference on Parallel Processing:
14—18 August 2006; Columbus, Ohio Edited by: Feng W. IEEE Computer
Society; 2006:523-530.

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 10 of 10

(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9?issue=S6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12513575
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12513575
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Graph problems in genome biology
	Computational framework for large-scale graph analysis
	Bionetwork analysis
	K-clique analysis of homology networks

	Conclusion
	Methods
	Serial Survey Propagation SAT solver
	Parallel Survey Propagation SAT solver
	OpenMP implementation
	Cray multithreaded implementation
	K-clique to SAT reduction algorithm

	Competing interests
	Authors' contributions
	Acknowledgements
	References

