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Abstract

Background: A generalized notion of biclustering involves the identification of patterns across subspaces within a
data matrix. This approach is particularly well-suited to analysis of heterogeneous molecular biology datasets, such as
those collected from populations of cancer patients. Different definitions of biclusters will offer different opportunities
to discover information from datasets, making it pertinent to tailor the desired patterns to the intended application.
This paper introduces ‘GABi’, a customizable framework for subspace pattern mining suited to large heterogeneous
datasets. Most existing biclustering algorithms discover biclusters of only a few distinct structures. However, by
enabling definition of arbitrary bicluster models, the GABi framework enables the application of biclustering to tasks
for which no existing algorithm could be used.

Results: First, a series of artificial datasets were constructed to represent three clearly distinct scenarios for applying
biclustering. With a bicluster model created for each distinct scenario, GABi is shown to recover the correct solutions
more effectively than a panel of alternative approaches, where the bicluster model may not reflect the structure of the
desired solution. Secondly, the GABi framework is used to integrate clinical outcome data with an ovarian cancer DNA
methylation dataset, leading to the discovery that widespread dysregulation of DNA methylation associates with poor
patient prognosis, a result that has not previously been reported. This illustrates a further benefit of the flexible bicluster
definition of GABi, which is that it enables incorporation of multiple sources of data, with each data source treated in a
specific manner, leading to a means of intelligent integrated subspace pattern mining across multiple datasets.

Conclusions: The GABi framework enables discovery of biologically relevant patterns of any specified structure from
large collections of genomic data. An R implementation of the GABi framework is available through CRAN (http://cran.
r-project.org/web/packages/GABi/index.html).

Background
Widespread adoption of genome-wide profiling technolo-
gies in biological research has led to a proliferation of
high dimensional datasets, involving simultaneous col-
lection of tens of thousands of molecular measurements
from individual biological samples. Unsupervised cluster-
ing has proved to be a successful approach to the analysis
of such data, as typified by gene expression microarrays,
with widespread use following an initial application in [1].
But where cluster analysis identifies groups of elements
with related values across a dataset, biclustering refers to
a formalisation of the approach of searching for groups of
elements with values exhibiting similar behaviour across
some subset of a dataset.
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Heterogeneity in biological systems, where different
cells (or groups of cells) elicit different mechanisms to
achieve a shared behaviour, is becoming more apparent
as more molecular profiling is performed. This is per-
haps most noted in the field of cancer research, where
many cancers have been shown to separate into largely
distinct molecular subtypes [2-5]. Furthermore, tumours
of a single molecular subtype defined by hierarchical
clustering of gene expression profiles can still exhibit a
considerable degree of heterogeneity at levels of genetic
sequence and copy number, epigenetic modifications,
gene and protein expression [6]. A recent illustrative
example from breast cancer [3] demonstrates 10 molec-
ular subtypes discovered through clustering of profiles
from 2,000 tumour samples, which do not clearly fit with
4 previously described molecular subtypes that were dis-
covered through cluster-based analysis of gene expression
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profiles [2]. The ability to discover relationships that may
not be evident across the full set of samples in a dataset
makes biclustering methods particularly well-suited to the
analysis of large heterogeneous biological datasets. This
is particularly relevant in cancer research, which typically
involve high levels of molecular and genetic heterogeneity,
as is demonstrated in a recent application of bicluster-
ing [7]. With the large amounts of such data avaliable
there is tremendous potential for discovering patterns that
inform us of some key clinical or biological feature. But
to achieve this, it would help greatly to be able to dis-
cover any desired pattern across subsets of large data
collections.
Using the framework of [8], we define the biclustering

problem as follows:

Say we have data matrix A (1)

with rows X = {x1, ..., xn}, (2)

and columns Y = {y1, ..., ym} (3)

Define a bicluster (I, J) (4)

where I = {i1, ..., ip}, I ⊆ X, p ≤ n, (5)

and J = {j1, ..., jq}, J ⊆ Y , q ≤ m. (6)

We denote AIJ = [
aij

]
.∀i ∈ I, j ∈ J . (7)

Then, for some evaluation of desirability of biclusters,
say f (I, J), the goal is to find the optimal ordering of
all possible biclusters, say � ′. The total number of pos-
sible biclusters can be vast for a large dataset, as each
ordering � ∈ ℘(X) × ℘(Y ). In fact, the problem of
finding a set of biclusters (whether they are exclusive
or overlapping) to cover a data matrix is known to be
NP-hard [8], as it is a generalisation of the problem of
finding a minimum set of bicliques to cover a bipartite
graph.
Biclustering was introduced in the 1970’s [9], but

received relatively little attention until Cheng & Church
applied it to the analysis of gene expression data (in [10]),
using the term ‘biclustering’ to describe the approach.
Since then there have been a large number of meth-
ods developed for finding biclusters in data matrices,
each with its own data model and method of optimiz-
ing that model, including [11-18]. Surveys of biclus-
tering algorithms can be found in [8,19,20], including
some illuminating comparisons based on datasets con-
structed to provide benchmarks. While most biclus-
tering algorithms focus on an individual data model,
there could be a huge range of different uses of biclus-
ter analysis: any situation in which evaluating some
localised pattern within a heterogeneous dataset could be
of interest. However, much of the literature on biclus-

tering refers to 4 distinct types of bicluster, as defined
in [8].

1. Constant: all values are (close to) the same
2. Constant rows/columns: all values across each row

(or across each column) are close to the same
3. Coherent values: a single shifting/scaling pattern is

preserved across all rows
4. Evolutive: the same sequence of ‘up’ and ‘down’

trends is preserved across each row and/or column.

The coherent biclusters are sometimes split into ‘addi-
tive’ biclusters (shifting patterns) and ‘multiplicative’
biclusters (scaling patterns). These bicluster models (and
the examples presented in each of [8,19,20]) can be sum-
marized into two general scenarios: (i) those in which
the values for each row of the bicluster, that is AiJ , are
closer to each other than to the values of row i across
the rest of the columns (∀y �∈ J); (ii) those in which
the values for each row of the bicluster follow the same
trend across columns J, ∀i ∈ I. According to the biclus-
ter types given in the previous paragraph, types 1 & 2
represent scenario (i), types 3 & 4 represent scenario
(ii). The ‘plaid’ model of [11] involves offsets for both
rows and columns, and the whole bicluster, and there-
fore contains features of both scenarios. HSSVD [21] is an
interesting recent approach in that it encodes two differ-
ent structures of bicluster that it identifies simultaneously:
‘mean-biclusters’, which correspond to bicluster types 1 &
2, and ‘variance-biclusters’, which may represent type 3
but also applies to biclusters that don’t fit any of the
types 1-4.
As large number of algorithms exist for identifying

biclusters in data matrices, a selection of the most pop-
ular are outlined here. The focus of this summary is the
model defining the type(s) of bicluster discovered by each
algorithm, as it is the current limitation of the state-of-
the-art in this area that the GABI framework was designed
to address.
Cheng & Church: [10] A bicluster model is defined

using a score termed ‘mean squared residue’, which is
the sum of the squared differences of each element
from its row-average and column-average across the
bicluster. A specified maximum allowed mean squared
residue score is set, and biclusters are found through
a greedy process by iteratively removing the rows and
columns from the entire data matrix with the high-
est mean squared residue values. This approach can
therefore discover biclusters of type 1, 2 and 3, but
not 4.
Plaid: [11] A generative model for a whole (numeric)

data matrix is formulated and fitted through iterative
optimization of the parameters so as to minimize error.
There is a whole-dataset offset (θ ) for all elements, a
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per-bicluster offset (μk) for all elements within biclus-
ter k, per-row offsets (αik) for all elements of row i in
bicluster k, per-column offsets (βjk) for all elements of
row j in bicluster k, and random noise for each ele-
ment. The flexibility of this generative model allows
the Plaid method to discover biclusters of type 1, 2
and 3.
Bimax: [19] The data matrix is ‘binarized’ so that each

value is 1 or 0, and the bicluster model is defined as
any submatrix consisting entirely of 1s. The binarized
data matrix is divided recursively until all biclusters are
identified. Performance of the Bimax algorithm on any
real task is dependent on the binarization approach,
and its application is restricted to situations where the
patterns of interest can be represented in a binary
form, which is a limited case of type 1 as defined
above.
ISA: [15] Input data is normalized so that the mean of

each row (across the full set of columns) is zero. Then
a ‘module’ (i.e. a bicluster) is {A,B} such that ∀a ∈ A,
1

|B|
∑
b∈B

Xab is greater than some threshold. The algorithm

proceeds by initializing a random subsetA0, then identify-
ing B0 as those columns for which the average value across
A0 is greater than the threshold. With B0 defined, A1 is
identified as those rows for which the above condition is
satisfied. B1 is identified using A1, and the process contin-
ues until An+1 = An = A′. This process is repeated for a
large number of random initializationsA∗

0, after which any
A∗′ that are highly overlapping are merged together. The
module definition means that ISA discovers only biclus-
ters of type 1 or type 2 (constant rows only). Interestingly,
ISA is shown to be related to SVD, amodification of which
was used as the basis of HSSVD.
It was noted in [19] that a fair comparison of biclus-

tering methods is inherently difficult, owing to the fact
that each is designed for a particular situation, and thus
it would be rare to find any cases that truly represent
a ‘like-with-like’ comparison. If one’s goal is to produce
a biclustering method that can discover biclusters of a
type that fits into either of these scenarios, then com-
parisons using the benchmark datasets of [19,20] would
be an important part of demonstrating the contribution
of the new method to the literature. However, owing to
the diverse range of possible applications of bicluster-
ing, it would be expected that there exist applications for
which one would wish to adopt a bicluster model that is
specifically intended for the particular inferences desired
to be made on the basis of the output. Therefore, the
goal of this current paper is to introduce an implementa-
tion of a biclustering framework that is so general that it
could be adapted to any possible situation, includingmany
which do not fit into the two scenarios outlined in the
preceding paragraph. Steps toward this goal were made

in a recent evolutionary biclustering approach, termed
Evo-Bexpa [22], which allows the user to specify pref-
erences on a number of properties of the biclusters to
be discovered. However, this flexibility is still limited to
only four characteristics (degree of correlation between
rows, product of the number of rows and columns, degree
of overlap between biclusters, and variance across rows
within a bicluster) and therefore does not represent a
truly customizable biclustering algorithm for generalized
subspace patternmining. It is the absence of a suitable tool
for completely adaptable subspace pattern mining that I
address in this paper.
A heuristic approach to solving a problem involves

adopting methods that aren’t guaranteed to find the best
possible solution or aren’t guaranteed to find a solution
within a desirable limit of computation time, but find a
‘good’ solution within ‘reasonable’ time in the vast major-
ity of cases that are confronted. Genetic algorithms [23]
are an example of a ‘global search heuristic’ that involves
forming a pool of whole solutions at each step and improv-
ing these by various methods, which avoid the tendency to
converge on locally optimal solutions that are far from the
best overall solution [24]. GAs have been applied to the
biclustering problem in [25], but the high dimensionality
of molecular and genetic profiling datasets result in most
of the effort in exploring the search space going on vari-
able selection. An important benefit of the GA framework
is that the bicluster definition and evaluation procedures
are explicitly and modularly incorporated into the search
algorithm, enabling flexible specification of the biclus-
ter model. The framework can therefore be customized
for application to different data mining tasks, and can
be used for the direct comparison of different bicluster
models.
Ovarian cancer is associated with a poor prognosis and

only around 40% of women diagnosed with ovarian cancer
are alive after 5 years [26]. Conventional first-line treat-
ment involves cytoreductive surgery and chemotherapy
with platinum-based compounds. Initial response rates
are good and some patients can continue to respond to
multiple rounds of treatment, but in most cases the dis-
ease eventually recurs in a chemo-resistant form [26,27].
It has been shown that cancer cells tend to lose coher-
ent regulation of DNA methylation across regions of the
genome, resulting in widespread variation in the levels of
DNA methylation at particular sites and stochastic pat-
terns of gene expression [28]. In fact, identification of
dysregulation of DNA methylation in cancer was the sub-
ject of a recent exciting application of biclustering [21].
However, it has not previously been investigated whether
or not, within a set of cancer patients, widespread dys-
regulation of DNA methylation (i.e. a lack of concordance
in methylation levels) has an impact on patient out-
come. The GABi framework is used here to demonstrate
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that such relationships exist, opening up the possibility
that factors affecting these patients with poor outcome
linked to widespread DNA methylation dysregulation
could be identified and exploited to reduce the potential
of acquired resistance to chemotherapy.

Methods
With the biclustering problem defined in the previous
section, a key innovation in the GABi approach is to uti-
lize rule-based feature selection into the bicluster scoring
process. Motivated by the fact that for many biclustering
applications it will be relatively straightforward to deduce
a set of the available features that provide a good repre-
sentation of the specified bicluster model, given a selected
subset of samples, this step eliminates the need to evaluate
a potentially vast number of mostly suboptimal combina-
tions of features for which the pattern might apply. The
goal of feature selection is then:

Given some f (I, J), (8)
For any J ⊆ Y , (9)

find I∗ = argmaxI⊆℘(X)

(
f (I, J)

)
(10)

Motivation for adopting this approach comes from the
fact that in many applications it would always be desired
to identify the maximal subset of the features for which
that bicluster pattern holds across the given subset of sam-
ples. Then, provided the maximal subset of appropriate
features could be identified for any subset of the samples
represented in the data, the ‘row dimension’ of the biclus-
ter search could be disregarded. If we define a scoring
function g( J) in terms of only the columns of a bicluster,
assuming selection of the optimal (or at least a near-
optimal) subset of rows, then we redefine the biclustering
problem:

Define g( J) = max
I⊆℘(X)

(
f (I, J)

)
(11)

Find ordering τ = {τ1, ..., τ2m}, (12)
such that g( Jτk ) ≥ g

(
Jτk+1

)
.∀k ∈ {1, ..., 2m − 1} (13)

Given a rule that finds the appropriate I∗ for any given
subset of columns J from the dataset, so that g(J) can be
evaluated directly and efficiently, the biclustering prob-
lem given in Equations 12–13 requires exploration of a
far smaller search space than the equivalent definition
from the previous section. As there will still be 2m pos-
sible biclusters to explore, heuristic techniques may still
be required for approximating τ for datasets with large
m. Genetic Algorithms form a class of heuristic search
techniques for exploring complex solution spaces, such as
finding the best scoring bicluster from the set of all pos-
sible biclusters in a dataset. For a thorough description of
Genetic Algorithms (GAs) see [29], but for the purposes
of this paper it is sufficient to know that a GA requires

a representation of any possible solution as a bit string
(termed a ‘chromosome’), and a ‘fitness function’ which
evaluates each solution and gives a quantitative estimate
of their relative desirability. Assuming rule-based selec-
tion of the optimal feature set for some subset of samples
and a definition of the desired bicluster structure, a natu-
ral GA representation of a bicluster is a bit string of length
the number of columns in the data matrix. This bit string
would take a value of 1 when the sample is included in the
bicluster and a value of 0 otherwise. As good biclusters
are likely to be composed of smaller biclusters with sim-
ilar patterns across different subsets of the large biclus-
ter’s samples, it would be likely that the GA mechanism
of exploring the solution space through recombination
of small, good solutions would prove to be successful.
In this way, the nature of the biclustering problem pre-
sented here is similar to the ideal GA problems discussed
in [23] and [29]. Furthermore, the fact that addition of
a new column to an existing, good bicluster can result
in a far inferior (or non-existent) pattern of consistency
across the new bicluster means that local search heuris-
tics are unlikely to perform so well due to the greater
chance of adding a column that doesn’t fit the bicluster
pattern (and therefore results in an inferior bicluster) than
one that fits the bicluster pattern and results in a better
bicluster.
A second crucial innovation of the GABi approach is the

modular implementation within an R package, enabling
customization of the fitness function. The fitness func-
tion is the mechanism by which desirability of solutions is
encoded into the GA, and incorporates rule-based feature
selection. Through custom specification of this compo-
nent of the algorithm, any bicluster models can be imple-
mented and evaluated within the GABi framework. This
means that the GABi framework can be used to perform
subspace pattern mining for a whole range of tasks, offer-
ing insight into a tremendous range of systems. Defining
what makes a good solution is clearly a critical part of
the biclustering process, whether explicit as in a GA or
otherwise, and should be given due attention. The gen-
eral GABi framework is defined in Algorithm 1, followed
by description of a number of example fitness func-
tions and their corresponding feature selection rules. In
Algorithm 1, GetFitness corresponds to g( J) in
Equation 11. An example of convergence criteria that
can be used include setting a maximum number of iter-
ations through the main loop of the algorithm (some-
times termed ‘generations’ of the GA), and exiting the
loop if the fitness of the best solution in the popu-
lation has not improved over a specified number of
generations.
To summarize Algorithm 1, Figure 1 illustrates the

overall GABi process for identifying biclusters in a data
matrix A.
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Algorithm 1 GABi
Input: data matrix A; list of additional arguments
for fitness evaluation args; convergence criteria
isConverged; function to calculate bicluster score
from any list of selected columns GetFitness; function
to return the list of bicluster rows from any list of selected
columns SelectFeatures; probability of crossover
θc; probability of mutation θm; number of columns to be
included in initial biclusters, q0
Output: list of biclusters B: eachBk a tuple (Ik , Jk), with
Ik containing indices of rows of A in bicluster Bk and Jk
containing indices of columns of A in bicluster Bk .
1: initialize population P as matrix of 0s with same

number of columns as A
2: for all rows of P do
3: set q0 randomly chosen elements to take value 1
4: end for
5: while not isConverged do
6:
7: for all rows of P do
8: evaluate fitness with GetFitness

(incorporating SelectFeatures)
9: end for

10: create population Q by sampling rows of P in
proportion to their relative fitness scores

11:
12: for all rows of Q do
13:
14: if random number U(0, 1) < θc then
15: swap randomly-sampled subset of this

row’s values with those from another row of Q
16: end if
17: end for
18:
19: for all elements of Q do
20:
21: if random number U(0, 1) < θm then
22: flip corresponding element of Q

(i.e. subtract from 1)
23: end if
24: end for
25: replace P with Q; discard Q
26: end while
27: rank rows of P according to fitness scores
28: filter highly-overlapping rows of P (i.e.

keep only best-scoring)
29: initialize empty list B
30: remove duplicated (or highly-overlapping)

rows of P
31: for all rows of P do
32: set Jk to vector of indices of 1s in this

row of P; run SelectFeatures on Jk to get Ik
33: set corresponding element of B to tuple

Ik , Jk
34: end for
35: return B

Parameter setting
The GA function optimization framework involves set-
ting the values of some parameters, which govern the
architecture of the search space exploration. The book of
[29] provides a comprehensive discussion of the impacts
of these parameters on the process, but a brief sum-
mary is provided here. Essentially, the goal of the GA
is to find solutions optimizing the given fitness func-
tion. Therefore, these core GA parameters will only
affect how well the fitness space is explored, and will
not affect the assessment of desirability of any solutions.
Typically, the GA will work effectively with a range of
parameter settings, with most offering a trade-off with
increasing chance of discovering optimal solutions (i.e.
the best biclusters) involving increasing computation
time.
PopulationSize: this sets the number of candidate solu-

tions to keep in the GA population. A higher number will
result in a greater chance of good solutions being gener-
ated through the GA process from random initialization.
We find that for most tasks, a population size of 128 is
sufficient.
Ngens: this sets the maximum number of iterations for

which the GA will run, if convergence criteria are not met
before. Just a practical limit, setting this parameter will
depend on how long each iteration takes (which depends
on the PopulationSize and the complexity of the fitness
function), the computational resources available and the
length of time for which the user is prepared to wait for
the algorithm to return its output. In practice, 100–200
generations is typically sufficient to reach some sort of
convergence.
SubpopSize: the GA population may be split into

‘isolated’ sub-populations. This parameter specifies the
number of such subpopulations. Splitting the overall
population into these subpopulations reduces the chances
of locally-optimal solutions saturating the population and
reducing the algorithms efficiency at exploring complex
fitness landscapes (cite).While using only 1 subpopulation
is perfectly acceptable, we find that it can benefit pefor-
mance to use up to 4 subpopulations (each with at least 32
individual candidate solutions).
Crossover rate: this is the proportion of candidate

solutions at each GA iteration that will exchange
information (I.e. Swap substrings of their bit patterns)
with one another. Setting it too low will slow down
the progress of the GA, such that a value of zero will
result in a parallelized version of the ‘random mutation
hill climber’ (although this in itself can be a reason-
able function optimizer). Typically it will be in the range
0.5–1.
Mutation rate: this is the probability that each bit in

each candidate solution will be flipped at each genera-
tion. Setting this value too high will mean good candidate
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Figure 1 Overview of the GABi process. A diagram illustrating the GABi process. Starting with an input data matrix A, a population of candidate
solutions S is initialized to S0. S, which encodes the bicluster columns Ik for each candidate solution k, is iteratively updated through the GA loop. At
each step of the GA loop, each solution is evaluated in turn: rule-based feature selection is applied to identify Jk given Ik and A (and potentially
external information), then the fitness score for the solution (Fk) is calculated based on the function f (Ik , Jk). Based on the fitness scores F, candidate
solutions are selected so that fitter solutions are more represented in the next iteration. Solutions are combined through crossover operations, and
finally randomly ‘mutated’ before re-entering the solution population S as it goes through the GA loop again. When convergence criteria are met,
each candidate solution’s Ik are extracted and the corresponding Jk identified through rule-based feature selection. The (I, J) sets encode the
biclusters that are the output of the algorithm.

solutions are frequently disrupted too much to contribute
to subsequent generations, and thus the algorithm doesn’t
really progress. Setting it too low will slow the rate
at which the GA explores the given fitness landscape.
Typically, a good guideline value is approximately 1/solu-
tionLength (that is, 1/n, where n is the number of samples
in the dataset).
MaxLoop: this parameter enables some flexibility in

the way the GABi framework is used. While the core
GA is inherently parallel, sometimes a combination
of dataset and fitness function supplied will result in
one high-scoring solution dominating the algorithms
population(s). When the MaxLoop parameter is set to
a value greater than 1, upon convergence of the GA,
GABI will save the output solutions, add them to a
‘tabu list’ that will have zero fitness in subsequent
runs, and repeat the entire GA process. This will con-
tinue MaxLoop times, enabling more diverse solutions
to be discovered. Its effective use is often not neces-
sary, and depends on appropriate handling of the ‘tabu
list’ in the fitness function. However, if you wish to
discover a broader range of biclusters in your dataset

that fit the supplied pattern, you can try setting this
parameter.
An important practical point to note is that the fit-

ness function will be called many times throughout
the algorithm’s progress, and so the desirability of a
solution should be expressed in such a way that the
value may be calculated very quickly. The implemen-
tation of a bicluster search algorithm able to use dif-
ferent bicluster definitions and desirability models is
the primary motivation for this work, and so the fit-
ness function of the GABi algorithm is intentionally
left unspecified with the following constraints: it must
identify the maximal set of features fitting the desired
bicluster definition across a specified set of samples,
and it must calculate a numerical value proportional to
the desirability of the bicluster formed by the speci-
fied samples and the identified features. This function
may operate on any type of data matrix, with val-
ues normalized or discretized in any fashion. We now
define number of different bicluster models that were uti-
lized for the work presented in this paper (for R code,
see Additional file 1: Supplementary Information S1).
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Definitions neccessarily include a submatrix-based biclus-
ter scoring function f (I, J), a feature selection rule δi
(which represents the means of finding I∗ in Equation
10, and a column-wise bicluster scoring function g( J)
that incorporates δi. One final point regarding the han-
dling of customized fitness functions in GABi is that it
is possible to involve any number of additional param-
eters, or even additional datasets, in the fitness eval-
uation. As demonstrated with the example in Section
‘Associating dysregulation of DNA methylation with
ovarian cancer patient prognosis’, this means that it is
possible to use GABi for intelligent integration of multiple
data sources across heterogeneous subjects - providing
a means to address one of the most critical bottlenecks
in utilization of data to guide biological research and
discovery.

Block bicluster model
In a binary data matrix, an obvious definition of a biclus-
ter is a region of local density. That is, some submatrix in
which all (or most of ) the values are 1. Under the prin-
ciple that the larger the pattern, the better, the relative
desirability of a basic bicluster is simply the product of the
number of rows and the number of columns. The selection
rule requires specification of a parameter θ , the mini-
mum proportion of the bicluster columns with 1s for each
row i. This allows some flexibility when applied to noisy
data.

Define f block(I, J)=|I||J|, where|J|denotes the cardinality of set J
(14)

δblocki =

⎧⎪⎨
⎪⎩

1, if
1
|J|

∑
j∈J

aij ≥ θ

0, otherwise
(15)

gblock(J) = |J|
∑
x∈X

δblockx (16)

While intended for binary matrices, this model can
also apply to non-binary numeric matrices, either directly
or by initially binarizing the matrix (e.g. setting all
values above a specified quantile or value to be 1s,
and all other values 0s). In relation to the 4 bicluster
types defined in the previous section, the block biclus-
ter model is clearly designed to discover biclusters of
type 1. With row-wise or column-wise binarization of the
dataset, this could also be used to discover biclusters of
type 2.

Correlation bicluster model
The biclustering version of correlation is a subset of
the columns of a data matrix, over which a subset of
the rows all show significant pairwise correlation. We

define an effective scoring function for identifying corre-
lation biclusters, involving identification of a ‘seed row’
i∗, then taking the sum of the negative logarithms of
the p-values of each selected row’s correlation (across
the selected columns) with the seed row, and multiply-
ing this by the number of columns in the bicluster. In
more formal terms, based on significance estimates of
the Spearman correlation coefficient, with 	 denoting
the standard Normal cumulative distribution function,
abs(.) representing the absolute value of its argument,
and α representing a maximum p-value for selecting
only features with significant correlations to the seed
row:

Say cik =

|J|∑
l=1

(aijl − AiJ )(aikl − AiJ )

√√√√ |J|∑
l=1

(aijl − AiJ )
2

|J|∑
l=1

(aikl − AiJ )
2

, (17)

where AiJ = 1
|J|

∑
j∈J

aij. (18)

Then define f cor(I, J) = −|J|
∑
i∈I

log
(
2	

(√|J|−3
1.06

arctanh(cii∗)
))

,

(19)

Where i∗ = argmaxx∈X

⎛
⎜⎜⎜⎜⎜⎜⎝
abs

⎛
⎜⎜⎜⎜⎜⎜⎝

∑|J|
l=1

(
aijl −AiJ

) (
bl−b

)
√√√√ |J|∑

l=1

(
aijl −AiJ

)2 |J|∑
l=1

(
bl−b

)2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠
,

(20)

where b = {
b1, . . . , b|J|

}
is the rotation vector for the first

principal component of AXJ . (21)

δcori =

⎧⎪⎨
⎪⎩

1, if 2	
(√ |J| − 3

1.06
arctanh(cii∗)

)
< α

0, otherwise
(22)

gcor(J) = −|J|
∑
x∈X

log
(
2	

(√ |J|−3
1.06

arctanh(cxi∗)
))

δcorx (23)

The correlation bicluster model is clearly designed
to discover biclusters of type 3, which includes type 2
biclusters with constant columns as these will necessar-
ily involve a shared pattern preserved across the rows.
It should also prove moderately effective in discovering
biclusters of type 4.
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High-variance bicluster model
One possible scenario of interest for biclustering is the
identification of a submatrix with particularly high vari-
ance when compared to the rest of the matrix. To discover
these biclusters, a scoring function was created that first
selects rows for which the variance across the selected
columns is significantly greater than the variance across
all the unselected columns. The score is then the sum of
the negative logarithms of the p-values of each selected
row’s difference in variance between the bicluster columns
and the rest of the data matrix, multiplied by the number
of columns in the bicluster. More formally, with Fχ2

(x; k)
denoting the cumulative distribution function of the chi-
squared distribution of x with k degrees of freedom, σ 2

iJ
denoting the variance of row i of the data across columns J,
and α again representing a maximum p-value for selection
of features with a difference in variance that is sufficiently
significant:

Define f var(I, J) = −|J|
∑
i∈I

log(pi), (24)

where pi = Fχ2
(

σ 2
iJ

σ 2
iJ ′
; |J| − 1

)
, (25)

and J ′ = Y \ J (26)

= {y|y /∈ J}.∀y ∈ Y (27)

δvari =
{
1, if pi < α

0, otherwise (28)

gvar(J) = −|J|
∑
x∈X

log(pi)δvarx (29)

A simple example designed to give an indication of the
flexibility of the GABI framework, this model does not fit
any of the traditional bicluster types 1-4. It is related to
the ‘variance biclusters’ of HSSVD [21], which represented
the first example of biclusters being defined based on the
variances of the values within the bicluster.

Dysregulation-vs-outcome bicluster
This represents a very specific adaptation of the corre-
lation bicluster, in which rows are only included in the
bicluster if there is some set of columns (outside the
bicluster) across which they are largely uncorrelated with
one another. Furthermore, the score of each bicluster is
multiplied by the negative logarithm of the p-value arising
from the logrank test of the difference in progression-
free survival time between the patients corresponding to
columns of the bicluster and the patients correspond-
ing to the columns across which the selected rows are
uncorrelated. Formally, using OJt to denote the number
of observed events (deaths) in population J at time t,

and NJt to denote the number of samples (patients) in
population J that have neither had an event nor been cen-
sored (removed from the study or lost to follow-up) at
time t:

Define f surv(I, J) = max
(
gcor(J), gblock(J)

)
h(I, J) (30)

(I, J) = −log

⎛
⎜⎝2	

⎛
⎜⎝

∑T
t=1(OJt − EJt)√∑T

t=1 Vt

⎞
⎟⎠

⎞
⎟⎠ , (31)

where EJt = Ot
Nt

NJt (32)

and Vt = Ot(
NJt
Nt

)(1 − NJt
Nt

)(Nt − Ot)

Nt − 1
, (33)

Ot = OJt + OJ ′t , (34)

Nt = NJt + NJ ′t , (35)

where J ′ = {yr1 , ..., yrl }, (36)

l = min(|J|, |Y | − |J|), (37)

and r = {r1, ..., r|Y |}, is a ranking of Y such that: (38)

SI(yrk ) ≤ SI(yrk+1) (39)

where SI(yrk ) = abs

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

∑
i∈I

(
aiyrk −AIyrk

) (
aij1 −AIj1

)
√∑

i∈I

(
aiyrk−AIyrk

)2 ∑
i∈I

(
aij1 −AIj1

)2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

(40)

δsurvi =
{

δblocki , if gblock(J) > gcor(J)
δcori , otherwise (41)

gsurv(J) =
{
gblock(J)h(I ′, J), if gblock(J) > gcor(J)
gcor(J)h(I ′′, J), otherwise (42)

where I ′ = {xi|δblocki = 1}.∀xi ∈ X (43)

and I ′′ = {xi|δcori = 1}.∀xi ∈ X (44)
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In Equation 36, r gives the ranking of all columns in
terms of increasing absolute value of correlation (across
selected features) with the first column contained in the
bicluster (that is, j1).
Another example that illustrates the flexibility of the

GABI framework, the specific (and somewhat esoteric)
use of the two input data sources involved in this model
means that it is not related to any of the traditional biclus-
ter types 1-4. No existing biclustering method displays
the capacity to identify biclusters fitting such application-
specific models as this. The main advance of the GABI
framework is the ability to address such biclustering
problems.

Results
The main aim of introducing the GABi framework to
the field is to provide a fully flexible bicluster search
tool that enables discovery of submatrices reflecting
good representations of any desired pattern from within
a data matrix. GABi is not a tool intended to per-
form any one particular biclustering task better than
the state-of-the-art among existing approaches, rather
it is intended to broaden the range of data mining
tasks to which biclustering can be applied. Therefore,
it would be somewhat missing the point of this work
to carry out a straightforward comparison to the exist-
ing state-of-the-art methods using standard benchmark-
ing datasets (such as those of [19,20]) that reflect the
tasks they were designed to perform. Instead, the strat-
egy taken here to demonstrate the success of the GABi
framework in achieving its goal is to apply GABi with
a number of different bicluster models to datasets that
reflect the scenarios for which they were designed. The
framework is clearly successful if the bicluster model
matched to the appropriate task yields significantly better
results than using a bicluster model designed to dis-
cover a different type of pattern. Three scenarios using
artificial datasets are presented, and one using genome-
wide DNA methylation profiles from ovarian cancer
samples.

Bicluster discovery in synthetic data
Artificial datasets provide the opportunity to implant pat-
terns of defined structure into known locations within
data matrices. The ability of an algorithm to discover the
intended patterns (i.e. find the locations into which the
simulated patterns were implanted) can be readily evalu-
ated by calculating overlap between the solutions returned
by the algorithm and the implanted patterns. Overlap
between two biclusters can be quantitatively assessed
by calculating an F-measure. The F-measure incorpo-
rates both precision and recall, as shown in the following
equation giving the formula for the F-measure for overlap
of two sets A and B (in which | A | denotes the number

of elements in set A, and A∩B denotes the intersection of
sets A and B):

F = 2 ∗
|A∩B|
|A| ∗ |A∩B|

|B|
|A∩B|
|A| + |A∩B|

|B|
(45)

Using this framework, A and B represent the features
of the recovered and implanted biclusters, respectively. To
get an overall measure of the overlap between a recov-
ered bicluster and an implanted bicluster, the F-measure
for the features was multiplied by the F-measure for the
samples. As each implanted bicluster could be represented
by any one of the recovered bicluster solutions (or none at
all), the best F-measure for each implanted bicluster with
any of the bicluster solutions recovered from the respec-
tive dataset was taken as a dataset-orientedmeasure of the
success of a set of recovered biclusters.
For each of the first three bicluster models defined in the

previous section of this paper (that is, the ‘block biclus-
termodel’, ‘correlation biclustermodel’ and ‘high-variance
bicluster model’), a structure of implanted data was cre-
ated to reflect the specific type of pattern the model was
intended to discover. The general strategy for artificial
dataset creation is given in Algorithm 2, with individual
data structures defined as follows:

Algorithm 2 Artificial data generation
Input: pattern type model; number of data rows n;
number of data columns m; number of bicluster rows
p; number of bicluster columns q; standard deviation of
noise distribution ζ Output: data matrix A; I containing
indices of rows in bicluster; J containing indices of
columns in bicluster
1: initialize matrix A with dimensions n×m, all values

drawn i.i.d. from U(0, 1)
2: define |I| as p row indices randomly drawn (without

replacement) from {1, ..., n}
3: define |J| as q column indices randomly drawn

(without replacement) from {1, ...,m}
4: for all i ∈ I do
5: for all j ∈ J do
6: Add offset to Aij according to model
7: end for
8: end for
9: for all x ∈ 1..n do

10: for all y ∈ 1..m do
11: Add random noise offset to Axy, drawn i.i.d.

from N(0, ζ )

12: end for
13: end for
14: for all x ∈ 1..n do
15: Scale row x of A so that all values lie in range (0, 1)
16: end forreturn A
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Block bicluster model
For the block bicluster model, draw a single offset b from
N(0, 1). Add this value b across submatrix defined by (I, J).

Correlation bicluster model
For the correlation bicluster model, create a vector of off-
sets b = {

b1, ..., bq
}
with all bj drawn randomly from

N(0, 1). For each j ∈ J , add the value bj to column j, across
all bicluster rows I.

High-variance bicluster model
For the high-variance biclustermodel, create a p×qmatrix
of offsets B = [

bij
]
, with all bij drawn randomly from

N(0, 1). For each row i in the bicluster, for each column j
in the bicluster, add the corresponding bij.

Artificial dataset results
A set of 40 synthetic datasets were constructed for each of
these bicluster models, using the strategy outlined earlier
in this section. For all datasets, n = 100, m = 20, p was
randomly drawn from {1, ..., 100}, q was randomly drawn
from {2, . . . , 18} (in order to ensure there were at least 2

columns in the bicluster and at least 2 columns out of the
bicluster), and ζ was randomly drawn from U(0, 1).
In addition to using GABi with the three specified

bicluster models, a number of widely used biclustering
algorithms were applied to the same artificial data anal-
ysis tasks: ISA [15], Cheng & Church [10], Plaid [11]
and Bimax [19]. This provides an indication of the base-
line performance that would be expected of any bicluster
algorithm when applied to the given task, regardless of
the bicluster model. It is therefore expected that if the
GABi framework functions effectively, the implanted data
structure reflects the ideal bicluster structure according to
one of the bicluster models, and the noise added to the
artificial datasets does not obscure the signal implanted
into the data, then GABi with the appropriate bicluster
model will achieve higher F-scores than any of the alter-
native methods (including GABi with an inappropriate
bicluster model).
The distributions of each dataset’s best-overlap scores

for each biclustering algorithm’s corresponding set of
solutions are shown in Figure 2. It is clear from inspection

Figure 2 Structure-dependent biclustering algorithm recovery scores. Distribution of per-dataset best overlap scores for each biclustering
algorithm. Scores for GABi framework with the ‘naïve’ bicluster model are shown in red, scores for GABi framework with the ‘correlation-based’
bicluster model are shown in green, and scores for ISA are shown in blue. The panel on the left shows the results for datasets with ‘Block Structure’
and the panel on the right shows the results for datasets with ‘Correlation Structure’.
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of the distributions of implanted bicluster recovery scores
that the GABi framework recovered implanted solutions
with a ‘Block Structure’ better using the block bicluster
model than either the correlation model or the high-
variance model, that the GABi framework recovered
implanted solutions with a ‘Correlation Structure’ bet-
ter using the correlation bicluster model than either the
block bicluster model or the high-variance model, and
that the GABi framework recovered implanted solutions
with a ‘High-variance Structure’ better using the high-
variance bicluster model than either the block bicluster
model or the correlation model. Additionally, when using
the appropriate bicluster model for a given dataset, the
GABi framework recovered the implanted solutions better
than any of the other methods used for comparison. These
comparisons were all statistically significant (at p < 0.01)
according to Wilcoxon signed rank test, with the excep-
tion of a marginally-significant comparison to Bimax on
recovering implanted solutions with a ‘Block Structure’
(p = 0.1). This is not particularly surprising, given that
the other methods were not specifically designed for iden-
tifing biclusters of the implanted structures, although the
‘Block Structure’ resembles the bicluster model of Bimax
and is a special case of the model of the Plaid method.
Crucially, these evaluations shows that the GABi frame-
work can be adapted to different data analysis tasks, and
successfully discovers biclusters with the intended struc-
ture. This adaptability is shown to be specific to the extent
that performance of methods using bicluster models that
don’t reflect the implanted data structure is never as
good.

Associating dysregulation of DNAmethylation with
ovarian cancer patient prognosis
A key aspect of the GABi framework is that it can incor-
porate multiple sources of information to guide bicluster
discovery. This could involve prior beliefs about which
features may be the most relevant to an investigation,
or could involve additional data sources. In the follow-
ing application, patient outcome data was incorporated
into the bicluster evaluation process to guide bicluster
discovery towards clinically relevant observations.
DNA methylation profiles of primary high grade serous

ovarian tumour samples from Illumina HumanMethyla-
tion27k BeadChips, along with clinical data for patients
from whom the samples were taken, were obtained from
The Cancer Genome Atlas (TCGA) data portal [30].
Level 3 methylation data was used, consisting of probe
level β-values. Loss of stability of DNA methylation at
certain genomic loci has been shown to be a feature of
cancers [21,28]. However, it has not yet been established if
there are regions for which the DNAmethylation is tightly
controlled across some tumours and not others. Nor has
it been established if the loss of epigenetic stability in any

such regions is associated with a more aggressive tumour
phenotype and worse patient outcome.
The ‘dysregulation-vs-outcome bicluster model’

(defined in the ‘Methods’ section of this paper) was devel-
oped to offer insight into these questions. It involves
identifying rows that show correlated profiles within the
bicluster, and for which there is some set of columns
outside the bicluster across which they are largely uncor-
related with one another. Furthermore, the score of each
bicluster is multiplied by the negative logarithm of the
p-value arising from the logrank test of the difference
in progression-free survival time between the patients
corresponding to columns of the bicluster and the
patients corresponding to the columns across which the
selected rows are uncorrelated.
Using this model for bicluster search, GABi identified a

set of 21 samples that showed a high level of correlation
of DNA methylation across 14,382 CpG sites across the
genome (Illumina HumanMethylation CpG probe identi-
fiers are listed in Additional file 2: Table S2). A ‘control’
set was identified, consisting of the 21 samples with low-
est correlation to the bicluster samples, across the features
selected in the bicluster model.
Two observations regarding this set of samples are

of particular note. Firstly, the correlation coefficients
between the methylation levels of all pairs of selected CpG
sites shows a distinctly skewed distribution across the
bicluster samples (Figure 3, solid line). Compare this to

Figure 3 Pair-wise correlation of CpGmethylation levels in
subgroups of ovarian cancer. Kernel density estimation plots of the
complete set of Pearson correlation coefficients between each pair of
CpG sites selected in the DNA methylation dysregulation bicluster.
Distribution of correlation coefficients across the subset of tumours
selected in the bicluster shown with solid line, corresponding
distribution of correlation coefficients across the subset of ‘control
set’ of tumours with dysregulation of this DNA methylation.
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the corresponding distribution of correlation coefficients
calculated between the same CpG sites, but across the
selected ‘control set’ of samples (Figure 3, dashed line). It is
clear that the DNAmethylation levels at these 14,382 CpG
sites are indeed highly correlated with one another across
the selected bicluster samples, but not particularly cor-
related at all across the control set of samples. Secondly,
the bicluster samples have markedly better prognosis than
the control samples (Kaplan-Meier plot shown in Figure 4,
logrank test p = 1 ∗ 10−5). In fact, the median time to
relapse or death for the patients whose tumour samples
were in the bicluster set, at 85.4 months, was more than
twice as long as that of the patients whose tumour sam-
ples were in the control set (32 months). In an attempt
to aseess the generality of this observation, an additional
DNA methylation dataset was obtained from profiling 78
primary high grade serous ovarian tumours with the Illu-
mina HumanMethylation27k Bead Chip platform. Sam-
ples were ranked according to the absolute value of the
Pearson correlation coefficient of their DNA methylation
β-values with those of the first sample from the bicluster
in the TCGA dataset, across the 14,382 CpG sites defined
by the bicluster. No samples in this independent dataset
were as uncorrelated with the bicluster sample as those of
the ‘control set’ of samples from the TCGA dataset, and so
it is difficult to draw any conclusions from this, other than
the fact that such extreme epigenetic dysregulation as was
identified a subset of samples from the TCGA dataset may

Figure 4 Progression-free survival of subgroups of ovarian
cancer, identified through biclustering. Plot of Kaplan-Meier
estimates of progression-free survival for subset of tumours identified
through bicluster analysis as having coherently regulated levels of
DNA methylation of 14,382 CpG sites (solid line), compared with the
subset representing a ‘control set’ of tumours with dysregulation of
this DNA methylation.

represent a rare phenotype. However, it was interesting to
note that outcome (in terms of time to death and time to
relapse) was significantly better for the 20 patients whose
tumours were most correlated with the bicluster sample,
against the 20 patients whose tumours were least corre-
lated with the bicluster sample (logrank test for overall
survival p = 0.1, for progression-free survival p = 0.15,
Kaplan-Meier plot for progression-free survival shown in
Figure 5). DNAmethylation profiles and outcome data for
these patients are provided in Additional file 3: Table S3.
These results suggest that, by incorporating progression-

free survival data into the bicluster model used by GABi,
it has been possible to demonstrate that systematic dys-
regulation of DNA methylation in ovarian cancer can
be associated with a marked worsening of the patients’
prognosis.

Discussion
The GABi framework introduces a paradigm for discov-
ering good examples of potentially any desired pattern
across any subset of a dataset. The freely available R
package enables heuristic problem solving according to
custom bicluster models, embedding rule-based feature
selection within a genetic algorithm for bicluster discov-
ery. In essence, this means that rather than having to
create a whole new search algorithm every time you want
to discover a new type of pattern in subsets of some

Figure 5 Progression-free survival of ovarian cancer patients
from validation cohort, classified according to correlation of
DNAmethylation profiles. Plot of Kaplan-Meier estimates of
progression-free survival for two subsets of tumours from the
validation cohort: one (solid line) showing greatest correlation of DNA
methylation across 14,382 CpG sites to the profile identified from the
bicluster in the TCGA dataset, compared with the subset showing
least correlation to this DNA methylation profile.
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dataset(s), you just need to define a feature selection rule
and a scoring scheme. The principal advance of this work,
and in fact its underlying motivation, is that it has the
potential to broaden the range of suitable applications for
biclustering methods, through application-specific defi-
nitions of bicluster models. The evaluation of the GABi
framework in this paper shows that it can be adapted
to perform different tasks, including those for which no
other biclustering algorithm could be used.
This advance is especially exciting in the context of

the heterogeneity that is becoming apparent in many
large-scale biological datasets, as the concept of identify-
ing patterns within a priori unknown subsets of a data
matrix is particularly well suited to application to such
data. Furthermore, the flexible bicluster definition enables
intelligent integrated analysis of multiple heterogeneous
datasets, as demonstrated by the application to find links
between patterns of DNA methylation and patient out-
comes in ovarian cancer. The potential for biclustering to
be used as a means of integrating diverse collections of
datasets was first illustrated in [31], but again the flexible
design of the GABi framework opens up a vast array of
potential applications of biclustering to datamining across
multiple collections of data.
One point worth noting regarding this approach is that

the application of GABi to large collections of data is
dependent on having a bicluster evaluation model that
is sufficiently fast to compute. One potential avenue for
future work is the development of a parallel implemen-
tation of GABi. The population-based architecture of the
GA inherently lends itself to parallel computing, as the fit-
ness evaluations at each iteration of the algorithm can be
performed independently of one another. Such a parallel
implementation could extend the feasible application of
GABi with more complex evaluation functions, through
the utilisation of multiple processors at each iterative step
of the population evolution.
An application was presented using the GABi frame-

work to perform bicluster analysis to identify clinically-
relevant dysregulation of DNA methylation data in
high-grade serous ovarian cancers. It is particularly inter-
esting that this result links the dysregulation of DNA
methylation that has previously been associated with
cancer to differences in the propensity for rapid recur-
rence of the disease. That such widespread epigenetic
dysregulation was observed in a rare subset of ovar-
ian tumours warrants further investigation, to determine
whether or not this feature is present and similarly linked
with outcome in other cohorts of ovarian cancer or other
malignancies. However, these results demonstrate that
biclustering methods implemented through GABi repre-
sent suitable tools for integrated analysis of heterogeneous
cancer datasets to discover clinically relevant patterns in
molecular measurements.

Conclusions
This work represents an extension of the biclustering
problem from the manner in which it has tradition-
ally been applied to molecular biology datasets (typically
gene expression microarray data). Based on this gener-
alized subspace pattern mining, an R package ‘GABi: a
generalised framework for biclustering’ has been pro-
duced to implement a mechanism of discovering patterns
according to any specified bicluster model. This pack-
age is freely available from CRAN (http://cran.r-project.
org/web/packages/GABi/index.html). It has been demon-
strated that GABi can successfully discover biclusters
with properties defined by the particular bicluster model
used. Using an application-specific model of biclustering,
systematic dysregulation of DNA methylation has been
shown for the first time to be linked with patient progno-
sis in ovarian cancer. This work lays the foundations for a
wide range of problem-specific applications of the biclus-
tering paradigm for patternmining in biological data, with
the application to ovarian cancer illustrating the poten-
tial of biclustering as a tool for analysis of heterogeneous
cancer datasets.

Availability and requirements
The GABi package is implemented in R, and is made avail-
able through CRAN (http://cran.r-project.org) under the
GNU GPL license. The project home page is http://cran.
r-project.org/web/packages/GABi/index.html.
This implementation is platform-independent, but

requires a current installation of theR statistical program-
ming environment.
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provided and used in this paper.

Additional file 2: Table S2. List of Illumina HumanMethylation array
probe identifiers for the 14,382 CpG sites identified in the DNA methylation
dysregulation bicluster.

Additional file 3: Table S3. Table of clinical outcomes and Illumina
HumanMethylation array β-values for the 14,382 CpG sites identified in the
DNA methylation dysregulation bicluster.
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