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Abstract

Background: Deep shotgun sequencing on next generation sequencing (NGS) platforms has contributed significant
amounts of data to enrich our understanding of genomes, transcriptomes, amplified single-cell genomes, and
metagenomes. However, deep coverage variations in short-read data sets and high sequencing error rates of modern
sequencers present new computational challenges in data interpretation, including mapping and de novo assembly.
New lab techniques such as multiple displacement amplification (MDA) of single cells and sequence independent
single primer amplification (SISPA) allow for sequencing of organisms that cannot be cultured, but generate highly
variable coverage due to amplification biases.

Results: Here we introduce NeatFreq, a software tool that reduces a data set to more uniform coverage by clustering
and selecting from reads binned by their median kmer frequency (RMKF) and uniqueness. Previous algorithms
normalize read coverage based on RMKF, but do not include methods for the preferred selection of (1) extremely low
coverage regions produced by extremely variable sequencing of random-primed products and (2) 2-sided paired-end
sequences. The algorithm increases the incorporation of the most unique, lowest coverage, segments of a genome
using an error-corrected data set. NeatFreq was applied to bacterial, viral plaque, and single-cell sequencing data. The
algorithm showed an increase in the rate at which the most unique reads in a genome were included in the assembled
consensus while also reducing the count of duplicative and erroneous contigs (strings of high confidence overlaps) in
the deliverable consensus. The results obtained from conventional Overlap-Layout-Consensus (OLC) were compared to
simulated multi-de Bruijn graph assembly alternatives trained for variable coverage input using sequence before and
after normalization of coverage. Coverage reduction was shown to increase processing speed and reduce memory
requirements when using conventional bacterial assembly algorithms.

Conclusions: The normalization of deep coverage spikes, which would otherwise inhibit consensus resolution, enables
High Throughput Sequencing (HTS) assembly projects to consistently run to completion with existing assembly
software. The NeatFreq software package is free, open source and available at https://github.com/bioh4x/NeatFreq.
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Background
The multiple displacement amplification (MDA) reac-
tion allows for single cell sequencing and genome as-
sembly of organisms that cannot be cultured [1]. MDA
is also frequently used to amplify DNA from low bio-
mass environmental samples for use in metagenomic se-
quencing although amplification bias alters the ratio
with which individual species are represented [2]. During
shotgun sequencing, genomic libraries are randomly
sampled from a population of molecules; this sampling
is biased due to sample content and preparation. Such
selection bias is even more prominent when MDA is
used to amplify DNA from a single cell [3-5]. The ampli-
fied DNA has extreme coverage variability and may rep-
resent from only a small portion of the genome span up
to the complete recovery of the genome [1]. Sequence
independent single primer amplification (SISPA) allows
for sequencing of organisms that cannot be cultured, in-
cluding single cell bacterial genomes [4,6], viral genomes
[7-9], and metagenomes [10-13]. Selection bias within
SISPA-prepared sequences also results in extreme cover-
age variability. The biases in sequence coverage from
both approaches lead to an increased probability that
rarely occurring sequences will be removed when reads
are selected randomly for the purpose of coverage re-
duction. Similar outcomes can also occur due to ex-
perimental and sequencing biases, particularly when
coverage greatly exceeds what is optimal for assembly.
Existing simulated multi-de Bruijn graph assemblers
use iterative assembly at multiple kmer sizes to pro-
vide a consensus within variable coverage regions. These
tools are affected by the quality and level of coverage vari-
ability in the data set and often reduce fragmentation
while increasing the quantity of erroneous or duplicative
contigs that may obscure sequence representing true
overlaps.
The quality of de novo genome assemblies is limited

by the quality and quantity of the input sequences.
Without an available reference sequence, the consensus
generated by de novo assembly can be validated only in
the presence of deep and high quality overlaps. Large
quantities of sequence data result in greater coverage
and more contiguous regions of high confidence overlaps;
however, when input sequences contain an extremely high
level of redundancy, it may necessitate greater computing
resources (e.g., memory, CPU, and disk storage) that are
not readily available to many users.
Reducing extremely variable base coverage of reads

allows them to be used more efficiently by standard bac-
terial genome assembly algorithms. The previously pub-
lished algorithm, diginorm, used RMKF values to predict
each read’s coverage, accepting reads until they approach
a user-determined cutoff [14]. Additional studies have
explored the use of bin separation in coverage-reduced
data sets to facilitate memory-restricted assembly of
deeply sequenced metagenomic datasets [15]. For imple-
mentation of coverage normalization within extremely
variable data sets, additional functionality is required to
randomize reads targeted for selection, maximize the re-
tention of two-sided mate pairs and give preference to
the most unique sequences.
Below, we present a novel algorithm, NeatFreq, for re-

ducing large sequence data sets to uniform coverage,
leading to consistently high quality representations of
true target sequence using a traditional OLC assembler.
The algorithm increases the selection of true, low fre-
quency sequences from a read set which has had maximal
false low frequency mers (sequencing errors) removed.
For the purpose of this study, kmer normalization is used
to separate these false low frequency mers by identifying
the prevalence of similar, high abundance mers in the data
set [16]. During this process, high frequency coverage
peaks are reduced to produce a data set primed for trad-
itional bacterial genome assembly techniques. Reads are
binned by a chosen level of retention before selection,
after which a user may opt for either random selection or
targeted recruitment of the most unique sequences with
or without preferential selection of two-sided mate pairs
within the set. The pipeline enables the selection of the
best available high confidence (quality) consensus se-
quences from assemblies generated by several OLC single-
and simulated multi-kmer de Bruijn graph assemblers
while substantially reducing the requirement for high-end
computer resources.
Implementation
Data
Sequences from the following strains were used in the ana-
lysis performed by the pipeline. The format and the type
of the sequences were A) Viral samples: 2009 H1N1 Influ-
enza virus single plaque [ftp://ftp.jcvi.org/pub/data/neat
freq_data/HMPVFLU/] and Bacteriophage F_HA0480/
Pa1651 [Genbank:SRR407427]- SISPA-optimized titanium
454 fragments, derived from a single plaque [9]; B) Single
Cell Amplification of Multiple Bacterial Cells: Escherichia
coli str. K-12 substr. MG1655 and Staphylococcus aureus
subsp. Aureus USA300 FPR3757 (reads available at http://
bix.ucsd.edu/singlecell/) for which both sequence datasets
were obtained by MDA of DNA from single cells that were
selectively sequenced from 10 isolates, as chosen by high-
est exon content. These sequences are therefore expected
to be of more normal coverage and greater sequence quality
than a true single cell sample [1,2]; C) HMPMDA0100 –
Illumina paired-end sequences from a true single cell
MDA sample [ftp://ftp.jcvi.org/pub/data/neatfreq_data/HM
PMDA0100/]. All samples except HMPMDA0100 have
available reference genomes.

ftp://ftp.jcvi.org/pub/data/neatfreq_data/HMPVFLU/
ftp://ftp.jcvi.org/pub/data/neatfreq_data/HMPVFLU/
http://bix.ucsd.edu/singlecell/
http://bix.ucsd.edu/singlecell/
ftp://ftp.jcvi.org/pub/data/neatfreq_data/HMPMDA0100/
ftp://ftp.jcvi.org/pub/data/neatfreq_data/HMPMDA0100/
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Software dependencies
A pipeline for the configurable auto-curation of all se-
quence preprocessing stages used in this study is dis-
tributed with the open source software package. The
recommended pre-processing pipeline includes the third
party software cutadapt [17], DUST [18], QUAKE [19],
the bio-playground package [20], sffinfo [21], cd-hit-est
[22], CLC NGS Cell [23], and ALLPATHS-LG [16]. The
Celera gatekeeper program [24] was used for mate-
sensitive conversion between file formats with a mini-
mum acceptable sequence length of 40 bp. Tools from
the MIRA package were used for fastq file manipulation
[25]. Kmer counting was conducted by the program
Tallymer from the GenomeTools package [26].
The effect of each preprocessing step on input se-

quences was captured for all sequencing platform file
formats and library types with the assembly quality
assessed by rapid assembly using CLC Assembly Cell ver
3.5.5 [23]. The performance of the following assemblers
was compared using all reads, pre-processed reads, and
multiple levels of coverage reduction: Velvet-SC ver
0.7.62 [5], IDBA-UD ver 1.1.0 [27], and SPAdes ver 2.3
[28,29]. All assemblies were run using sequences con-
verted to either fasta or fastq format. Velvet-SC was run
at multiple kmer sizes (k = 25, 35, 45, 55). All other as-
semblers were used with default settings. Expected
coverage values of input sequences required by Velvet-
SC were calculated by counting pre-processed query bases
aligned to contigs obtained by preliminary CLC assembly
using a 40% length and 90% identity cutoff.

Preparing input files
Read selection using this algorithm requires that input
data be cleaned of the most identifiable sequencing er-
rors possible, particularly when using the targeted selec-
tion method. Additional screening and removal of
contaminants, particularly from samples obtained from
human hosts, may be mandated by ethical or funding re-
strictions. A suggested pipeline, including a preliminary
contaminant check, error correction/kmer normaliza-
tion, exact de-duplication, low complexity/tandem repeat
masking, quality trimming, final contaminant check and
adapter contaminant removal is described in Additional
file 1: Figure S1). Details regarding pre-processing meth-
ods used for this study are available in Additional file 2:
Supplemental Methods). All datasets in this experiment
used 19-mers for RMKF evaluation.

Reference-free coverage normalization pipeline
The coverage normalization pipeline described here is
supplied for standalone use, employing user input kmer
frequencies, or as part of a pipeline containing methods
for the formatting of all reads and de novo calculation of
their kmer frequencies. The novel coverage reduction
algorithm calculates RMKF values using reports from
GenomeTools’ Tallymer [26] and compares them to a
RMKF cutoff value provided by the user. Reads with a
RMKF = 0, and those with less than K (default = 19)
non-ambiguous BPs, are removed from the dataset.
RMKF values are calculated for each sequence and com-
pared to a cutoff provided by the user. Each read is
placed into one of a count, Z, of retention bins (default
100) denoting the percentage of reads to be retained, as
follows: 1) All reads with RMKF less than or equal to
the cutoff are placed in the 100% retention bin; 2) Reads
with RMKF greater than the cutoff are evaluated by the
expression, Retention Bin Selection Value = (RMKFcutoff/
RMKFread)*Z, rounded up to the nearest integer, and
placed in retention bins (1% through 100%) from which
the denoted percentage of reads are extracted to satisfy
the user-specified coverage cutoff (see the ‘NeatFreq Pipe-
line Pseudocode’ subsection). Reads with a retention value
of less than 1 are rounded up and placed in the 1% reten-
tion bin. Reads from the 100% retention bin (least abun-
dant in the original pool) are picked first, followed by
progressive selection of reads from the 1% (high abun-
dance) through the 99% (low abundance) bins, utilizing ei-
ther random or targeted selection of unique sequence.

NeatFreq Pipeline Pseudocode

� FOR EACH input sequence

○ IF read length, not including ambiguous “N”
bps, is greater than kmer size (default K=19)
▪ Update to unique read IDs, Concatenate
▪ Calculate kmer Frequencies

○ ELSE
▪ Delete read
▪ Format broken pairs dataset as fragments

○ ENDIF
� FOR EACH concatenated input sequence

○ (Optional) Build list of mate pair relationships
using unique IDs

○ Calculate median kmer frequency
○ Add sequence ID to appropriate “retention bin”
by comparing ideal coverage to RMKF

� END FOR EACH
� IF bin selection = random

○ Select all reads from the 100% retention bin
○ FOR each bin (1-99% retention)…
� Randomize IDs in bin
� Record IDs up to ideal retention count from bin
○ END
� ELSIF bin selection = targeted

○ Highlight 2-sided mates within bin 1 as high
priority

○ Divide all reads by similarity using cd-hit-est
○ Select all reads from the 100% retention bin
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○ (Optional) If a mated read is selected, toggle the
status of its partner

○ FOREACH retention bin (most selective to least
selective)
▪ FOREACH sub-bin cluster (smallest to largest
in population)

� Calculate ideal count of sequences to
re 1
figur
rand
s ava
ntion
bin c
in a b
n ap
ment
fragm
extract from sub-bin cluster based on count
already selected from retention bin
� IF tracking mates = yes
� Randomize the sub-bin cluster ID list
select
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� ELSIF tracking mates = no
� Select maximal sets of 2-sided mate pair
nships within sub-bin cluster
relatio
� Select maximal 1-sided mates whose
er has already been selected
partn
� Select maximal 1-sided mates whose
er has not yet been evaluated
partn
� Select fragments and 1-sided mates whose
r has been removed
partne
� Toggle status of all of selected mates

▪ ENDIF

▪ ENDFOR

○ ENDFOR
� ENDIF
� Extract selected IDs from relevant input libraries to

maintain fragment and mate pair relationships
� (Optional) Parse 2-sided mates from fragment-only

runs using read IDs
tration of sequence selection by Neatfreq pip
ion bins (20% and 85% retention) created by the
method extracts a random subset of reads from ea
eted bin selection method, run as fragment-only s
lustered by the cd-hit-est alignment [22] program
ck). Illustrated here, reads from each intra-bin sub-c
ks represent forward mates and red blocks reverse
d bin selection method to the same bin containing
retrieval of 2-sided mates across all bins, and their s
en priority in selection.
Random selection
The number of reads selected from each bin is determined
by the expression: Ideal read count from bin = (Number
Of Reads In Bin)*(RetentionBin/Total Number of
Retention Bins) (Figure 1A). Sequence IDs are random-
ized within all bins prior to selection. A random selection
of reads from all bins, in inverse proportion to their ori-
ginal abundance, ensures a normalized and uniform selec-
tion from all regions of the sequenced genome. If the
input sequences contain paired-ends, selected reads can
be separated into valid pairs and single-end fragments in
the available pipeline, though any two-sided mate reten-
tion is purely random and depends on the level of reduc-
tion requested.

Targeted selection
Emphasis is placed on extracting unique sequences from
each retention bin to increase the chance of recruiting true
low abundant reads which remain after pre-processing.
After all sequences from the 100% retention bin are se-
lected, targeted selection begins by clustering reads within
each of the remaining bins using the cd-hit-est algorithm
(alignment parameters set to 90% identity over 40% se-
quence length) [22]. Bins are approached one-by-one as in
the random bin method and selection from within each
bin proceeds iteratively from the most unique sub-bin
clusters (smallest population) to the least unique (largest
population), as determined by the size of homologous
clusters created within each retention bin. Selection from
homologous intra-bin clusters occurs by: 1) calculation of
ideal read counts for intra-bin clusters with the expression:
eline. A). Blue blocks represent fragment-only reads. The left side of
ratio between the RMKF of the read and the cutoff input by the user.
ch bin up to the count denoted by its retention level and the number of
equences, is illustrated on a 20% retention bin (left block). Within each
based on similarity and sorted by uniqueness, or the population of the
luster were selected randomly from within each cluster approached
mates, with dark green brackets indicating 2-sided mate relationships.
mate pairs (paired-ends), analysis is identical to that described for
ub-bin clusters, is prioritized. Note that highly unique clusters containing
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(Ideal Read Count per Intra-Bin Cluster) = (Ideal Read
Count per Bin, S)/(Remaining Clusters in Bin); 2) sort-
ing of intra-bin clusters by size, from most unique to least;
3) randomization of reads within each intra-bin cluster
and maximal extraction from each bin up to S, and; 4) up-
date of ideal bin and intra-bin cluster extraction counts
based on the selected read counts prior to the iterative
processing of the subsequent bins (Figure 1B). If the selec-
tion was performed without tracking mates for paired-end
sequences (i.e. treated as fragments), the mates for the se-
lected reads can be parsed after reduction as described for
the random method above.
When input includes paired-end reads and the tar-

geted bin selection method is chosen, reads representing
one side of a mate pair relationships are tracked by their
selection status and the status of their mate. Two-sided
mate pair relationships found within a single bin or
intra-bin cluster are given the highest priority during se-
lection, followed by mated reads with unresolved one-
sided relationships. During the initial recruitment of all
reads in the 100% retention bin, one-sided mates are
toggled to indicate the possible recruitment of both pairs
in the two-sided mate relationship. Subsequently, as se-
lection within the 1% (to 99%) bin proceeds, new one-
sided mates are evaluated by their corresponding mate
status and are preferred for selection if their mate has
previously been selected (Figure 1C). One-sided mates
whose pair has already been discarded are reduced to
the priority of fragments.
Assembly statistics
All assembly statistics evaluate contigs greater than
500 bp only to comply with NCBI assembly submission
requirements. Assembly coverage statistics were calcu-
lated. The successful retention of low coverage sequence
in following dataset reduction is evaluated using the
change in represented reference bases when aligned to
the shredded consensus sequence (Columns ƍ, §, ¥:
Additional file 3: Tables S1, S2). Average contig coverage
was calculated as a weighted mean of means across all
contigs based on contig length. Changes in the sequen-
cing span (reference bp in sequences) and assembly span
(reference bp in contigs) at each pre-processing stage
were calculated by aligning either query sequences or
the assembled output from each stage of pre-processing
to the available reference. Contig and sequence align-
ments were evaluated by aligning to the reference at
40% length and 90% identity cutoffs with contigs shred-
ded to 7999 bp with 49 bp overlaps. Compute time was
captured using system time on a single host machine
with 4 CPU and 256 GB RAM. Memory usage was mon-
itored by ‘ps’ with runs executed in isolation on a single
host.
Results
Short-read assembly requires deep coverage to in order
to sufficiently sample the source genome since shotgun
sequencing is subject to random sampling variation,
amplification and systematic sequencing biases. Some of
the recently developed random-primed laboratory tech-
niques like MDA and SISPA enable whole genome se-
quencing of organisms that cannot be cultured, but have
the caveat of highly variable sequence coverage due to
amplification biases [9,30]. As described by Brown et al.
[14], the relationship between the RMKF of each read
and its true coverage can be estimated with a 1% error
rate on simulated sequences. Production of the longest
valid consensus span requires sufficient coverage across
the entire genome; however, due to selection, amplifica-
tion and sequencing biases, it is likely that certain re-
gions yield far more coverage than others, especially
with extremely deep sequencing coverage (e.g., above
400-fold).
Prioritized selection of true low coverage sequences
The most common reasons to normalize read coverage
are to: eliminate duplicate reads, minimize sequence er-
rors, recruit more reads within low coverage regions and
minimize computational and memory resources required
for assembly. Traditional OLC bacterial assemblers like
Newbler and Celera WGS prefer 40-80-fold of uniform
coverage across a single genome. Both algorithms often
fail during consensus resolution of genomic regions with
particularly high coverage peaks, as shown by the failed
experimental single cell sample assemblies missing in
Additional file 3: Table S2. The reduction to normalized
sequence coverage was shown to promote completed as-
sembly of the experimental HMPMDA0100 sample in
contrast to the failed assembly when more sequence data
was used (failed cases not shown in table). The degree to
which reads from each of the retention bins are repre-
sented in the final pool varies with the coverage com-
plexity of the dataset and the RMKFcutoff value supplied
by the user. Kmer frequencies are not merged for for-
ward and reverse compliments, so RMKFcutoff correlates
empirically to approximately half of the expected output
sequence coverage when using the random bin. As each
retention bin can contain reads with varied abundance,
the likelihood that less abundant sequences are not se-
lected is high when using the random bin selection
method, particularly with extremely variable coverage
input sequences. Both random and targeted bin selec-
tion methods discriminate against the selection of re-
petitive sequence because their representative kmers
are overabundant in the overall data set and recruited
at a lower priority. As illustrated in Figure 2A, reads
were found to be recruited at less than normal coverage
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Figure 2 Comparison of random and targeted NeatFreq selection methods on sequence coverage. A). Elevated kmer counts within
repetitive regions cause over-reduction using an RMKF cutoff. The genomic regions labeled with stars indicate regions identified as repeats by
RepeatFinder [30]. Reads from repetitive regions are placed in low selectivity bins due to the high frequency of similar mers within the data set.
Therefore, over-reduction occurs at multiples directly related to the count of repetitive regions. B). This histogram shows the retrieval of
sequences at different RMKF cutoff levels when using each of the bin selection methods. Aligned sequence coverage distribution is shown for
the first 40,000 bp of the S. aureus genome using query sequences selected by random (top) and targeted (bottom) methods. The targeted
method is more effective at recruiting low coverage regions resulting from single cell amplification bias in variable coverage region, including
0-fold regions. The X-axis shows genomic coordinate from the reference used for mapping the extracted reads and the Y-axis shows the level of
coverage at each genomic position. C). The histogram gives zoomed view of the low coverage area highlighted by an arrow in Figure 2A (region
278 kbp – 292 kbp). Alignment histograms show that the targeted algorithm, in contrast to the random selection, retains the low coverage areas
in the variable dataset, resulting in an increased sequencing span. D). Coverage histogram of reads aligned to the largest H1N1 Influenza genomic
reference segment (log scale). Random selection from the entire dataset (without retention bins) was performed to a count of reads equal to that
used by targeted selection at RMKF cutoff =40. This random selection from all reads is the most subject to input coverage variability and fails to
reduce deep spikes to generate coverage levels compatible with OLC assembly.
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within regions of the reference identified as repeats using
RepeatFinder [30].
Changes in assembly and sequencing spans showed that

the pre-processing steps caused the loss of some reference
bases, particularly when aggressively removing erroneous
reads by read correction (Columns §, ¥: Additional file 3:
Tables S1, S2). Despite lost reference bases in reads, pre-
liminary read processing to remove false low frequency
mers was shown to improve the inclusion of low coverage
regions in the final assembly, particularly when handling
datasets with many low coverage regions or with a wide
range of coverage across the genome span. Using all pre-
processed sequences as input, reduction to assembly-
ready coverage removed as much as 90% of the reads for
samples found to have excessive coverage (Additional
file 1: Figure S2A), while minimally removing true refer-
ence bases within low coverage regions (Columns §, ¥:
Additional file 3: Tables S1, S2).

Improved selection for low coverage MDA sequence
or scaffolding
Random bin selection used less memory and was signifi-
cantly faster than the targeted alternative, making it an
ideal option for large prokaryotic genome assemblies
with only moderate coverage variability. For larger data-
sets, Newbler assemblies used less system time and
RAM for all assembly and processing after data reduc-
tion was performed by the recommended preprocessing
pipeline or following coverage normalization (Additional
file 1: Figure S3). The effects of random and targeted bin
selection algorithms on the coverage reduction and
normalization of the over-sequenced H1N1 Influenza
viral plaque sample were compared to all unprocessed
reads, pre-processed sequences, and a completely ran-
dom subset of the pre-processed data set. Targeted
selection from bins minimized the loss of true low
coverage sequences when evaluating samples with pro-
nounced coverage differences (Figure 2B). The likelihood
that some low abundant sequences are not selected by
random bin selection was linked to sequencing coverage,
and true reference base-pairs may be removed within
low coverage regions, inhibiting the extension of an as-
sembled consensus through that region of the genome
(Figure 2C). Targeted selection from retention bins by
homologous clustering increased the likelihood that
reads coming from low coverage regions were repre-
sented in the selected output pool, resulting in fewer
missing reference bases compared to random selection
methods. In this context, a completely random selection
of the reads failed to remove problematic coverage
spikes, while the targeted selection (sampling) from
homologous sequence clusters retained more reads from
low coverage regions, resulting in an improved genome
span as evaluated by comparison to a reference genome
(Column ¥: Additional file 3: Table S2). Targeted reduc-
tion displayed the best approximation to true genome
span for all samples requiring coverage reduction by
recruiting more reads to low coverage regions (Column
Ħ: Additional file 3: Tables S1, S2). A comparison of
bin-based selection for reduced coverage to bin-less
random selection from all reads was performed, show-
ing a tendency of the latter process to follow the cover-
age distribution of the input dataset and a failure to
remove coverage spikes, which inhibit OLC assembly
(Figure 2D).
Targeted selection using mate tracking recruited 10-

20% more two-sided pairs than when reads were initially
selected from bins as fragments and followed by the
extraction of their mates (Additional file 1: Figure S2B).
The prioritized selection of mate pairs was shown to be
successful at creating improved scaffolds, linking fewer
contigs (Columns α, β: Additional file 3: Table S3).
This effect was more dramatic in the OLC assemblies
than those generated by the scaffolded multi-de Bruijn
graph equivalent. Here, scaffolding of both control
MDA samples (E. coli, S. aureus) was improved des-
pite losing as much as 45% of the two-sided mate
information.



McCorrison et al. BMC Bioinformatics 2014, 15:357 Page 8 of 12
http://www.biomedcentral.com/1471-2105/15/357
Validation of coverage normalization pipeline on controls
Samples amplified by MDA and built from multiple cells
(E. coli, S. aureus) saw the largest jump in the loss of
base coverage (vis-à-vis reference bases) using AllPaths
read correction, although the resulting CLC assembly of
these reads aligned to the reference sequences at levels
comparable to SPAdes assembly of all reads (Columns §,
¥: Additional file 3: Table S1). Samples requiring add-
itional coverage reduction, specifically E. coli as com-
pared to S. aureus, assembled into a more contiguous
consensus at closer approximation to the reference gen-
ome span. Similarly, for the experimental single cell
sample, HMPMDA0100, in which the entire genome
was not fully represented, average coverage decreased as
low quality bases were trimmed or corrected out of the
assembled data pool and highly abundant spurious con-
tigs were removed from the assembled output (Column
Π, Additional file 3: Table S2). A comparison of bin se-
lection methods for sequence selection showed an
increased number of formerly low coverage regions receiv-
ing at least 5-fold coverage following reduction with the
targeted method across all samples except HMPMDA0100
(Column ƍ: Additional file 3: Tables S1, S2). In this
case, random reduction collapsed the overlap graph
Figure 3 Comparison of E. coli MDA assemblies to the expected (idea
samples during consensus resolution (not shown). SPAdes is able to comp
the assembly but the output also generates excessive redundant and spuriou
OLC (Newbler) assembly and yields genomic spans by both Newbler and SPA
assembly from coverage-reduced data is also closer to the reference span a
following preprocessing alone.
and produced a consensus at less than half the predicted
size, resulting in inflated coverage values. SPAdes assembly
of the deeply sequenced control MDA E. coli sample
yielded the most reference bases when using all reads, but
did so at the cost of generating approximately 730 kbp of
nearly duplicative contigs containing errors (Figure 3), In
these cases, SPAdes output consensus lengths were found
at 108% and 1048% of expected genome spans for E. coli
and bacteriophage F_HA0480/Pa1651 samples, respect-
ively (Column Ħ: Additional file 3: Tables S1, S2).
For the bacteriophage and influenza samples with a

short genome span, as well as the idealized high quality
MDA E. coli sample, the cumulative metrics contig N50,
consensus span, difference from reference genome span,
extent of missing reference bases in contigs and the per-
cent of contig duplication suggest that sequences selected
by both random and targeted methods yield assemblies
that are improved or highly similar in quality to the as-
sembly of all reads (Additional file 3: Tables S1, S2). More-
over, these assemblies yielded consensus spans at closer to
the reference genome size while increasing the inclusion
of reads from lower coverage regions, specifically those
found at a minimum of 5-fold coverage, and reduced
the fragmentation of the output consensus (Column ƍ:
l) genomic span. Newbler assembly with all reads (ALL) fails on all
lete an assembly using all reads with few missing reference bases in
s contigs. Pre-processing reduces sequences allowing the completion of
des which are most similar to the ideal (reference) assembly. The Newbler
nd verifies (consistent with) the assembly produced by the SPAdes
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Additional file 3: Tables S1, S2). As coverage is calculated
by the alignment of the input reads to the assembled con-
sensus, average coverage was shown to increase when low
quality and contaminant sequences were removed from
the datasets. Changes in the sequencing (§) and assembly
span (¥) for individual samples showed that despite re-
moving true reference bases in reads during NeatFreq
reduction compared to the pre-processed input, the
resulting assemblies produced an increased (influenza, E.
coli, S. aureus) or competitive (bacteriophage) assembly
span (Additional file 3: Tables S1, S2). When deep cover-
age differences were normalized by random or targeted
coverage reduction, Newbler generated assemblies of
comparable quality with less duplication and fewer spuri-
ous contigs relative to SPAdes and other simulated multi-
de Bruijn assemblers from all samples.
The successfully executed Newbler assemblies also

showed a comparable count of 0-fold (missing) reference
bases as observed from the best-simulated multi-de Bruijn
results for highly variable inputs. Unlike SPAdes and
Velvet-SC, the Newbler assemblies either failed to run to
completion when all unprocessed reads were used for high
coverage samples (E. coli, and S. aureus and coverage-
variant HMPMDA0100) or produced lower quality results
prior to the data reduction and coverage normalization
(Additional file 3: Tables S1 & S2). SPAdes used lower
peak memory and less processing time than is required for
the suggested pre-processing-NeatFreq-Newbler pipeline
for the bacteriophage sample, even when all reads were
used as input (Additional file 1: Figures S3A, S3B).

Discussion
The novel algorithm described here adapts and extends
the earlier methods of digital normalization using kmer
frequency analysis by (1) selecting reads randomly within
retention bins using cutoffs set by expected levels of re-
duction, (2) providing the optional selection of the most
unique sequences in a dataset by comparing the con-
tents of scaled retention bins and (3) offering optional
extraction of two-sided mate pairs during the reduction
of sequences to obtain normalized coverage. Effective
pre-processing reduces false kmers in the dataset and al-
lows the removal of exact duplicates while minimizing
memory use and the obfuscation of alignments due to
the presence of superfluous sequences. The reduction of
overabundant sequences and spikes in unequally distrib-
uted coverage across a target genome were found to
build improved consensus sequences when assembled by
both OLC and simulated multi-de Bruijn graph algo-
rithms. The targeted bin selection approach offers a
novel method for the recovery of rarely occurring se-
quences critical to samples with extreme coverage vari-
ation such as those generated from the sequencing of
randomly amplified genetic material.
When large data sets inhibit processing due to algo-
rithmic or resource restrictions, the ideal starting point
in reducing coverage is the removal of sequencing er-
rors. The exclusion of erroneous kmers results in the
improvement of assemblies when samples are over-
sequenced, but exhibit no significant variation in cover-
age (Additional file 3: Table S1 – S. aureus). The goal in
each de novo assembly task must be to develop an effect-
ive strategy to remove uninformative sequences in a way
in which the biases inherent to individual sample are
best addressed.
The choice between random and targeted bin selection

methods for normalization of extremely variable se-
quence data is dictated by the nature of the sample. The
random bin selection method is preferable to taking com-
pletely random subsets of data in all cases where deep
coverage spikes prevent successful assembly (Figure 2D).
This selection method uses less memory and runs more
quickly since it neither tracks mate pair relations nor re-
quires intra-bin clustering by similarity (Additional file 1:
Figure S3B). As such, the random bin selection algorithm
is preferable to the targeted method for common sequen-
cing analyses which may utilize deep sequencing, but do
not require specialized retention of low coverage regions.
By nature of the randomized selection within each bin, the
highest population reads within each predicted coverage
level are also more likely to be retained in the extracted se-
quence set when using this selection method. For this rea-
son, the targeted selection method should be preferred for
the recruitment of these low frequency kmers for the as-
sembly of extremely variable coverage sequence, such as
that found in transcriptomic data sets or prokaryotic se-
quence exhibiting MDA or SISPA bias. Additionally, the
targeted bin selection method may be preferred for its
capability of preferential 2-sided mate pair selection at
the cost of time- and resource-intensive processing. Such
targeted selection should be used only with those samples
that have been error-corrected by preliminary kmer
normalization. This allows for the effective removal of
exact duplicates without increasing the output of short, er-
roneous, or chimeric kmers (Additional file 1: Figure S4),
and increases the predicted coverage for valid kmers in the
kmer graph. As currently implemented, the RMKF-based
coverage prediction approach is primarily intended for
analyzing data obtained from individual species. Should
multiple species be present in a data set presented to the
NeatFreq algorithm, each would reduce to normalized
coverage, thus increasing the relative population of any low
abundant organisms in the reduced output. In addition,
the presence of sequences from multiple species introduces
noise in kmer frequency counts, which may result in re-
duced coverage in the target organism. Following reduc-
tion, the relative increase in coverage for low abundant
contaminating sequence, as compared to target sequence,
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further facilitates greater contiguity in contaminant assem-
bly for improved identification, recursive removal and re-
duction. Furthermore, the use of these kmer frequency bin
selection reduction algorithms with mixed sample data
(e.g. metagenomic) requires a preliminary binning to sep-
arate organisms by taxonomy, GC profiles, etc. for optimal
use. These techniques, however, would not be sufficient
for the separation of similar strains where normalization
of similar kmer profiles would complicate true overlaps
within organisms present at different coverage levels.
The large amount of data generated from multiple

samples by high throughput sequencing methods neces-
sitates an automated, yet flexible processing pipeline.
Ideally, the pipeline should perform recursive analysis
using several methods of read selection and assembly al-
gorithms, allowing one to choose from the most im-
proved genomic consensus sequences. By tracking the
input sequence metadata and the subsequent assembly
results, a user or program can quickly evaluate the ef-
fects of specific pre-processing steps on the assembly
quality, particularly when a reference is available. Fur-
thermore, automation of sequence pre-processing and
coverage reduction allows rapid processing of samples
while conforming to reduced computer memory and
data storage resources available to most users.
The pipeline described here has a number of other

uses, including the preparation of Illumina sequences for
the correction of lower quality, longer read length se-
quencing types including those from PacBio to ensure
fewer erroneous bases in the final assembly. The tool
can also be useful in the de novo assembly of transcrip-
tome sequences including those of low abundance iso-
forms with the caveat that no differential expression
analysis is possible due to the inherent normalization of
sequence coverage. However, in the future, an imple-
mentation of extended read tracking could allow for
automated de novo gene finding and expression analysis
in RNA-seq projects. As currently implemented, the
fragment-only pipeline can be used to process sequences
and genomes of all sizes. Processing using paired-end
reads should be capped at 100 million pairs due to lack
of parallelization in the execution of some stages in the
pipeline. The planned improvements incorporating multi-
threading and multi-processor (CPU) options and the
parallel processing of bin calculations in a cluster environ-
ment (SGE, Cloud) would extend its utility in processing
larger datasets, including higher eukaryotic samples. Add-
itional improvements could be made to compare the as-
semblies produced by the pipeline to known insertion
sequence elements in order to detect and resolve known
issues of sub-normal recruitment of repetitive sequences.
The software can be trained with the expected kmer distri-
butions from multiple related reference sequences for
metagenomic data or a single reference for individual
novel samples. Implementation of the algorithms and
pipeline as described is valuable in delivering high quality
assemblies from high-density data, obtained from prokary-
otic and small eukaryotic species containing extremely
deep coverage differences.

Conclusions
The single cell amplification of novel organisms whose
genome span is unknown and contains sequences of
extremely variable coverage requires approaches that
emphasize data reduction and coverage normalization
prior to their use with high-confidence OLC assemblers
such as Newbler and Celera WGS to generate more
valid assemblies of target genomes. In this study, we
have shown that using OLC methods with a reduced set
of high quality sequences results in conservative assem-
blies that can be used as a standard to validate results
obtained from more aggressive assembly programs that
require all reads as input. Simulated multi-de Bruijn
graph-based assemblies using multiple kmer sizes such
as SPAdes, Velvet-SC and IDBA-UD perform well with
samples of deep coverage using input sequences that
have not been pre-processed. When using all input reads
and comparing to the same assemblies using reads re-
duced by either the random or targeted selection
methods, these simulated multi-de Bruijn graph assem-
blers, which expect variable coverage input sequence,
are shown to output assemblies with more consistent
confidence when compared to the reference genome.
Pre-processing of input sequence reduced assembly re-
sources and generated assemblies that were less frag-
mented and contained fewer spurious contigs (Column
Ħ: Additional file 3: Tables S1, S2; Figure 3). Verification
of the sequencing spans generated by these simulated
multi-de Bruijn graph assemblers by the concomitant
high confidence OLC assemblies allowed for the selection
of the most valid consensus sequences and minimized
time and effort spent for the costly post-assembly analysis
(finishing) to eliminate contigs of dubious quality. Our
analysis also demonstrates the utility of extracting mate
pairs (or paired-ends), when available, and finds that the
selection of unique sequences over a wide range of cover-
age depth may allow for more contiguous assemblies with
improved scaffolds using commonly problematic data sets.

Availability and requirements
Project name: NeatFreq
Project home page: https://github.com/bioh4x/NeatFreq
Operating system(s): Unix/Linux
Programming language: Perl
Other requirements: 3rd Party Utilities (Install Instuctions
Provided)
License: GNU GPL 2
Any restrictions to use by non-academics: None

https://github.com/bioh4x/NeatFreq


McCorrison et al. BMC Bioinformatics 2014, 15:357 Page 11 of 12
http://www.biomedcentral.com/1471-2105/15/357
Additional files

Additional file 1: 4 Supplemental figures described in text.

Additional file 2: Supplemental Methods. A summary of supplemental
methods for NeatFreq preprocessing.

Additional file 3: Supplemental tables of assembly and scaffold
statistics described in text.
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